Tutorial

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

Lo OVEIVIBW ..ottt e 5
1.1, COMVENEIONS ...ooiiiiiiiiiiiiii et e e 5
1.1.1. Files and directoriesccccoviiiiiiiiiiiiiiiiii e 5

1.1.2. Linux development environmentccooouumiiiiiieiiiiiiimiiineeeeeeiieiiiee e e eeeeeeninnnees 5

1.2. Provided filescccooiiiiiiiiiiii 5

1.3. DebUGZINEGooooiniiiiiiiiiiiiii e 6

2. A Basic Client-Only Game (CLI ENT_ONLY)ccooiiiiiiiiiiiiiiiiiiiiii e 7
2.1. Creating @ NEW PIOJECEooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii et aeaeaes 7

2.2. Defining resource Pathisoooiiiiiiiiiiiiiiiiii e 7

2.3. Creating the resources directoryoooooiiiiiiiiiiiiiiii, 8

2.4. Creating our first entitycccoooooi 8
240, entiti @S, XM oo 8

2.4.2. Defining the Avatar entity typecccooiiiiiiii 8

2.4.3. Implementing the Avat ar entity typeccccccoiiiiiiiiiiiiiiii 9

2.5. The personality SCIiPtouiiiiiiiiiii e 11

2.6. XML configuration filescccocccoiiii 13

2.7. A SIMPLE SPACEooiiiiiiiiiiiiiiii e 14

2.8. Running the client for the first timeocoo 16

3. A basic client-server game (CLI ENT_SERVER)cccooiiiiiiiii, 19
3.1. Server Installation and Configurationcccooiiiiiiii 19

320 A SPACE @NEILY. ..ooiiiiiiiiiiiiii e 19
3.2.1. entities. Xl ..o 19

3.2.2. Entity definitionoooooo 19

3.2.3. Base Part ...t 20

3.2.4. Cell Partoooviiiiiiiiiii 20

3.3. Server-side personality scriptscccccccciiiiiii 21

3.4. The server-side Avat ar SCIIPScoceeiiiiiiiiiiiiiii it 22

3.5. Connecting the client to the server 23

3.6. GOING 3™ PEISOMovvoieiiiieeieie e 24

3.7. Server-side XML configurationc.ccooiiiiiiiii 24

3.8. Starting and connecting to the serverccooooiiiiii 25
3.8.1. Indie Edition ..o 25

3.8.2. Commercial/Indie Source Editioncc..ooii 26

3.8.3. Starting a Serverccocoo 26

4. Implementing a chat system (CHAT_CONSOLE)coooiiiiiiiiiiii 27
4.7, GUI text COMSOLE ..o 27

4.2. Modifications to the Avat ar entitycooooiiiii 29

5. EntityLoader (ENTI TY_LOADER)outttttititiiitttituetttteteeeteeeeeeeeeeeaeaeseeeeeeesaeeeesesaseeeeasasasenesenenenenene 33
5.1. Implementationccoooiiiiiiiiiiiiiiii e 33

6. A Basic NPC Entity (BASI C_NPC)ccovviiiiiiiiiiiiiiiiceccii e 35
0.1, DI@SIGI ..ooeiiii 35

6.2 ATt .ooiiiiiiiiiiii 35
6.2.1. Exporting the modelcccciiiiiii 35

6.2.2. Configuring the modelcooooii 36

6.3, SCIIPES ..o ettt e e e 36
6.3.1. entities.xml ... 37

6.3.2. Entity definition ... 37

6.3.3. Base Part ...t 38

6.3.4. Cell Partoooooiiiiiiiiiiii 39

6.3.5. CLieNt PArtoooiiiiiiiiiiiiiiiiiiiiii e 40

6.3.6. EItOT SCIIPL «..ovveeniiiiiiii e 43

6.4, TESTIIIGooiiiiiiiiiiiiii ettt 43

6.5. Possible improvementsccccoiiiiiiiii 45

bigw@RLD"

Chapter 1. Overview

This tutorial provides a brief overview of the minimum steps needed to get a basic game working from
scratch. Game developers and technical artists working with BigWorld for the first time should work through
this tutorial to get a feel for the way the various files and directories fit together to produce a working game.

The game demo that ships with the BigWorld package is called FantasyDemo. If you are reading this tutorial,
you have probably already spent some time playing through it and seeing some of the things that the Big-
World engine can do. Unfortunately for new developers, FantasyDemo is actually a rather large and involved
project, so using it as a reference point for implementing a new game can be quite confusing. In general, it
is not obvious what can and cannot be stripped out to create a skeleton game.

Instead, this document will work from an empty directory and build the project file by file, to give you a
clear understanding of what each file and directory is for.

For details on BigWorld terminology, see the document Glossary of Terms.

1.1. Conventions

1.1.1. Files and directories

This document uses Unix filesystem conventions for file naming i.e., files will be named <r es>/ scri pt s/
db. xm , and not <r es>\ scri pt s\ db. xn . You should follow this practice when developing your game,
whether or not you are dealing with client-side or server-side scripts and/or assets.

This tutorial assumes you are working on a Windows box, with the files mounted on a local filesystem.
The early stages of the tutorial are entirely client-side, so any issues regarding the synchronisation of files
between the client and server are not addressed here. Cross machine synchronisation is discussed in “Server
Installation and Configuration” on page 19 .

This tutorial assumes that the BigWorld package was extracted to the directory C:
\ Bi gWor | d.

1.1.2. Linux development environment

This tutorial assumes that you are using a UNIX user account called Fr ed. The parts of this tutorial that
involve resources mounted on a Linux filesystem assume that they are mounted at $HOVE/ nf (i.e., / horre/
fred/ nf).

1.2. Provided files

All files used in this tutorial are provided in the t ut ori al directory of your BigWorld package.

As shipped, the files represent the final state of the completed tutorial. If you are new to BigWorld de-
velopment, then you probably want to see the minimal set of files required at each stage of the tuto-
rial, instead of just diving into the completed tutorial (which while much simpler than FantasyDemo,
still consists of a fair number of files). To help you with this, BigWorld provides a utility (t utori -
al / bw_gener at e_res_trees. py) that strips down the resource tree to the minimal state needed for
a particular stage of the tutorial. If you run the utility with the symbolic name of a chapter (e.g., ./

bigw@RLD"

#dest=

Overview

tutorial.py CLIENT_SERVER), then the stripped resources are extracted to an appropriately named
<r es> directory in the tutorial directory (e.g., tutorial /res_client_server). You can then alter the
pat hs. xm " and . bwmachi ned. conf “ settings to point to these stripped trees.

Even if you are doing the final stage of the tutorial, it may be helpful to run this stripping utility before
looking through the source code, as it removes all inclusion/exclusion steps that we have inserted to facilitate
the stripping process and makes the code easier to read.

The symbolic constants for each chapter are given in the chapter heading e.g.,
CLI ENT_ONLY.

1.3. Debugging

There may be times while working through the tutorial that the client won't start due to some error in the
scripts. In order to discover the cause of the error, use a program such as DebugView (available on the Mi-
crosoft website) which captures and displays debug output.

"For details on how to configure pat hs. xni , see “Defining resource paths” on page 7 , and “A simple space” on page 14 .
For details on how to configure . bwmachi ned. conf, see “Starting and connecting to the server” on page 25 .

Chapter 2. A Basic Client-Only Game
(CLI ENT_ONLY)

This chapter describes how to get a bare-bones client up and running with its own resources and scripts.
This involves:

¢ Creating a new BigWorld project directory.
¢ Creating files and directories necessary to define a single client-side player entity.
¢ Creating a new space.

By the end of this part of the tutorial, it will be possible to walk around a trivial space in the client using
a first-person view.

2.1. Creating a new project

The FantasyDemo project is located in the f ant asydeno directory in C: \ Bi g\Wr | d. Following that con-
vention, we will start our new tutorial project in the same directory, by creating a new directory called t ut o-
rial inC \ Bi gWor | d. All resources and scripts specific to this project will be located within this directory.

Please note that the tutorial project is shipped as part of your package. A skeleton project called nmy_gane
is also shipped as part of the Indie edition, in order to allow you to start a new project easily. Please review
the Getting Started document for more details.

2.2. Defining resource paths

The BigWorld client is a generic executable, located at bi gwor | d\ bi n\ cl i ent\ bwcl i ent. exe. Since it
is independent of the game resources it loads, it needs to be instructed as to where to find your project's
resources.

The easiest way to go about this is to use the - - r s command line switch in conjunction with a batch file to
provide a convenient way to start the client for your particular game. A benefit of doing it this way is that
it also keeps the resource path configuration self contained within your project folder. Typically, you would
create a batch file named r un. bat and it would be located at the root level of your project folder (i.e. in
ny_gane) and would look something like:

"..\bigworld\bin\client\bwlient.exe" --res %dpOres;../../../bigworld/res

Keep in mind that paths are relative to the executable location, not the current working directory. The above
example uses %-dp0 to grab the batch file's directory as an absolute path in order to keep the batch file
generic.

Remember, the %~dp0 trick will only work in a .BAT file. If you want to launch the
from the command prompt directly, you will need to specifiy the full path explicitly.

For details on how the client searches for resources, see the “Resource search paths”
section in the Client Programming Guide.

bigw@RLD"

#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

2.3. Creating the resources directory

Resource directories for BigWorld games are typically named r es, therefore you can simply create a direc-
tory called r es in the t ut ori al directory. This top-level resources directory will contain all game-specific
scripts, assets, and configuration files.

2.4. Creating our first entity

Entities are game objects that have a position. Not every class that you write in your game must be an entity,
but most objects that are part of the game mechanics will be. Examples of entities would be the player, NPCs,
chat rooms, dropped items, etc.... Examples of objects that need not be entities might be helper classes that
are only attached to/used by a single entity type.

For details on this and other BigWorld server terms, see the document Glossary of
Terms.

241.entities. xm

Entity scripts for a BigWorld game must reside ina r es/ scri pt s directory. One of the files that must exist
in this directory is ent i ti es. xn |, which lists the game entities that will be used.

Create abasict utorial /res/scripts/entities.xnl file that contains a player entity called Avat ar :

<r oot >
<ClientServerEntities>
<Avat ar/ >
</CdientServerEntities>
<ServerOnl yEntities>
</ ServerOnl yEntities>
</ root >

Example tutorial /res/scripts/entities.xm

Notice that the file is broken down into two sections: entities that can exist on both the client and server, and
entities that exist only on the server. Even though this chapter is offline mode only, the Avatar entity must
reside in the Cl i ent Ser ver Enti ti es block.

2.4.2. Defining the Avatar entity type

The other directory that must exist is r es/ scri pt s/ enti ty_def s, which contains the . def ? files, with
definitions of the properties and methods for each entity.

It might be helpful to think of these definition files as being similar to C/C++ header files as they specify the
types of properties and the method calls attached to the entity.

Createthetutorial /res/scripts/entity_defs/Avatar. def file, with the following contents:

<r oot >
<Vol ati |l e>

"For details on this file, see the Server Programming Guide's section Directory Structure for Entity Scripting in “The entities.xml File”.
For details on these files, see the Server Programming Guide's section Directory Structure for Entity Scripting, in “The Entity Definition
File”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

<posi tion/>
<yaw >
</ Vol atil e>
<Properties>
<pl ayer Nane>
<Type> UNI CODE_STRI NG </ Type>
<Fl ags> ALL_CLIENTS </Fl ags>
</ pl ayer Nane>
</ Properties>
<C i ent Met hods>
</ d i ent Met hods>
<Cel | Met hods>
</ Cel | Met hods>
<BaseMet hods>
</ BaseMet hods>
</root>

Example tutorial /res/scripts/entity_defs/Avatar. def

This is a very basic entity definition which defines properties for the entity, but no methods. Notice that the
properties are separated into two sections: volatile and non-volatile.

2.4.2.1. Volatile properties

For a BigWorld entity, volatile properties are positional/directional properties. They are described as volatile
because they are constantly changing. The volatile properties' current value are only considered to be im-
portant thing while the history of changes on the property is less important. In a bandwidth-constrained
environment only the current value should be sent.

The supported volatile properties are posi ti on, yaw, pi tch, and rol | . For simplicity, the tut ori -
al/res/scripts/entity_defs/Avatar. def that we have just defined only sends posi ti on and yaw
of the Avat ar entity.

For details on volatile properties, see the Server Programming Guide's section Properties, in Properties.

2.4.2.2. Non-volatile properties

In contrast to volatile properties, regular properties tend to change infrequently, and therefore all changes to
a particular property should be sent down to the client. Each property can be named as you wish, and can
have a number of different settings attached to it.

We have defined a simple property for storing the player's name, and for simplicity, we are only using the
most necessary property settings, specifying the type STRI NG and distribution flags ALL_CLI ENTS. The
ALL_CLI ENTS tags means that this property will be visible to the player controlling the client entity, as well
as any other player that can see his entity. For details on this and other distribution flags, see the Server
Programming Guide's section Properties, in Properties.

For details on entity properties, see the Server Programming Guide's section Properties.

2.4.3. Implementing the Avat ar entity type

The scripts that control the client-side entity logic are located in the r es/ scri pt s/ cl i ent, and the ones
that control the server-side entity logic are located inr es/ scri pt s/ cel | andres/scri pts/base direc-
tories.

Create each of these directories within the tut ori al /res/scri pts directory. Your directory structure
should now look like this:

tutorial

bIgW@RLED" :

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

+-res
+-scripts
+- base
+-cel |
+-client
+-entity_defs

Folder structure at this stage of the tutorial

For details on the exact structure and mechanics of the scri pt s directory, see the Server Programming
Guide's section Directory Structure for Entity Scripting.

Up to this point, we have declared the Avat ar entity intutorial /res/scripts/entities.xnl”and
defined itintutorial /scripts/entity_defs/Avatar. def “Now we must provide (at least part of)
the script implementation of that entity. Since we are working only on the client-side at the moment, just
create thetutori al /res/scripts/client/Avatar. py script:

i mport BigWrld

These are constants for identifying keypresses, nouse novenent etc
i mport Keys

class Avatar(Bigwrld. Entity):

def onEnterWrld(self, preregs):
pass

cl ass PlayerAvatar(Avatar):
def onEnterWrld(self, preregs):
Avat ar. onEnterWorl d(self, prereqgs)

Set the position/nmovenent filter to correspond to an player avatar
self.filter = BigWrld. PlayerAvatarFilter()

Setup the physics for the Avatar
sel f. physics = Bi gWr | d. STANDARD_PHYSI CS

sel f. physics. vel oci tyMouse = "Direction"
sel f. physics.collide = True
sel f. physics.fall = True

def handl eKeyEvent (self, event):

Get the current velocity
v = sel f.physics.velocity

Update the velocity depending on the key input
if event.key == Keys.KEY_W
v.z = event.isKeyDown() * 5.0
elif event.key == Keys. KEY_S:
v.z = event.isKeyDown() * -5.0
elif event.key == Keys. KEY_A
v.X = event.isKeyDown() * -5.0
elif event.key == Keys. KEY_D:
v.X = event.isKeyDown() * 5.0

Save back the new velocity

JSee “entities. xnml ” on page 8.
See “Defining the Avatar entity type” on page 8 .

10

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

sel f. physics.velocity = v

Example tutori al /res/scripts/client/Avatar. py

Notice that the script declares two classes: Avat ar and Pl ayer Avat ar . These two classes are required to
satisfy a hard-coded requirement in the BigWorld client that any entity type that can act as a client proxy
must have a sub-class called Pl ayer <cl ass> that is used when attaching to the client.

We are only interested in the player at the moment, so the implementation of the base Avat ar class is left
blank. For the moment, we have just provided implementations of callbacks for initialisation (where we set
up the position filter and player physics) and keyboard events (where we provide basic WASD controls).

Notice that the Avat ar script imports a module called Keys. This module defines constants for things like
keyboard character codes, mouse events, joystick events, and other commonly used constants. It is located
inbi gwor | d/ res/ scripts/client,sowedonotneed to copy it or do anything special to access it from
our scripts.

2.5. The personality script

The next required script for our basic client is the personality script. The easiest way to think of this script is
as the bootstrap script for each component of a BigWorld system.

For details on this and other BigWorld client terms, see the Glossary of Terms.

There should be one personality script in each script directory (i.e., for cell, base, and client) and they are
used for defining callbacks to be called on startup and shutdown, as well as other global, non-entity-related
functionality. On the client, this might include menu systems, user input management, camera control, etc...

For details on the client personality script, see the Client Programming Guide's section Scripting, in “Person-
ality script”.

Save the basic personality script below ast utori al / res/ scri pts/client/BWersonality. py:

This is the client personality script for the Bigwrld tutorial. Think of

it as the bootstrap script for the client. It contains functions that
are called on initialisation, shutdown, and handlers for various input
events.

i mport BigWrld

Section: Required call backs

The init function is called as part of the BigWwrld initialisation process.
1t receives the Bigwrld xm config files as arguments. This is the best
place to configure all the application-specific Bigwrld conponents, |ike
initial camera view, etc...

def init(scriptConfig, engineConfig, prefs):

initOfline(scriptConfig)

Hi de the npuse cursor and restrict it to the client area of the w ndow.
GUl . ntursor().clipped True
GUl . ntursor().visible Fal se

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

This is called imediately after init() finishes. W're done with all our
init code, so this is a no-op
def start():

pass

This nethod is called just before the gane shuts down.
def fini():
pass

This is called by Bigwrld when player noves froman inside to an outside
environnment, or vice versa. |t should be used to adapt any personality
related data (eg, canera position/nature, etc).
def onChangeEnvironnents(inside):
pass

This is called by the engi ne when a system generated nessage occurs.
def addChat Msg(nsg):
print "addChat Msg:", nsg

Keyboard event handl er
def handl eKeyEvent (event):
return Fal se

Mouse event handl er
def handl eMbuseEvent (event):
return Fal se

Joystick event handl er
def handl eAxi sEvent (event):
return Fal se

Section: Hel per nethods
def initOfline(scriptConfig):

Create a space for the client to inhabit
spacel D = Bi gWor | d. creat eSpace()

Load the space that is naned in script_config.xmn
Bi gWor | d. addSpaceGeonet r yMappi ng(
spacel D, None, scriptConfig.readString("space"))

Create the player entity, using positions fromscript_config.xn
pl ayerI D = Bi gWorl d. createEntity(scriptConfig.readString("player/
entityType"),
spacel D, 0
scri pt Config. readVector3("player/
startPosition"),
scri pt Config. readVector3("player/

{})

Bi gWor | d. pl ayer(BigWrld.entities[playerID])

startDirection")

Use first person node since we are not using nodels yet.
Bi gWor | d. canera().firstPerson = True
Example tutorial /res/scripts/client/BWPersonality. py

This personality script provides an i ni t Of f | i ne method that contains enough code to get a basic client
going, as well as stub implementations of all other required callbacks. The initialisation code expects various

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic Client-Only Game (CLI ENT_ONLY)

configuration files to be passed to it, and expects scri pt Confi g to contain particular settings, such as
space, pl ayer/ entityType, and so on.

The following sections describe how to set up those files, so they will be ready to be passed to the personality
script on startup.

.6. XML configuration files

At a minimum, the BigWorld client expects three XML configuration files to be passed into the personality
script at startup:

e <engi ne_config>. xm
e <scripts_config>. xm

e <preferences>. xm

For details on these files, see the Client Programming Guide's section Script-
ing, in “Personality script”, sub-sections “File <engi ne_confi g>. xm ”, “File
<scripts_config>. xm ”, and “File <pr ef er ences>. xml ” respectively.

The <engi ne_confi g>. xm file is used for setting various configurable properties on the client engine,
including the name of the game's personality. We will re-use the engine settings used for FantasyDemo by
copying f ant asydeno/ r es/ engi ne_confi g. xm totutorial/res/engi ne_config. xm,ensuring
that we change the <per sonal i t y> setting to BWPer sonal i ty. Notice that this corresponds to the file
BWPer sonal i ty. py that we created in “The personality script” on page 11).

The <scri pts_confi g>. xm file is used to define the settings that the personality script is expecting —
save the following intot ut ori al / res/scri pts_config. xm :

<scripts_config.xm >

<l-- The contents of this file are passed to the personality script
as the first argunment in the init function (as a data section). Its
grammar is solely defined by the personality script. -->

<space> spaces/ mai n </ space>

<pl ayer >

<entityType> Avatar </entityType>

<!-- This is the entity type of the player that will be created. You
nmust i npl enent

a Player<class> type (e.g. PlayerAvatar) to use this type as a
client proxy. The follow ng options -->
<startPosition> 0.0 1.25 0.0 </startPosition>
<startDirection> 1.0 0.0 0.0 </startDirection>
<!-- are used by the personality script to provide a start position and

facing dir for players if there is no space specific spawn point.
-->

</ pl ayer >
</scripts_config.xm >

Example tutorial /res/scripts_config.xm

At this stage, the values for the configuration settings expected by the personality script's i ni t method
have been provided. The only thing still missing for our basic client is the actual space data. The script

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

configuration passes the string spaces/ mai n into the personality script as the space in which the client
entity will be created, so next we will create a basic space to walk around in.

2.7. A simple space

Before starting World Editor, you will need to tell it where to find the resources for your particular project.

To do this, open bi gwor | d/ t ool s/ wor | dedi t or/ pat hs. xm and replace the reference to FantasyDemo
to your own project. For example,

<r oot >
<Pat hs>
<Path>../../../tutorial/res</Path>
<Path>../../../bigworld/res</Path>
</ Pat hs>
</root>

Example bi gwor | d/ wor | dedi t or/ pat hs. xm
To create a simple space that can be navigated, follow the steps below:
e Start World Editor (bi gwor | d/ t ool s/ wor | dedi t or/wor | dedi t or. exe).

¢ In the Open Space dialog box, click the Create button.

Upen space

‘WarldE ditor cannot find a vald default space to open, do pou
wiant o open one, creshe one of exit WorldE ditar?

Lpen I [Lreate

Open Space dialog box
¢ In the New Space dialog box:
* Set the Space Name field to main.
* Set the Space Dimensions group box's Width and Height fields to 5.
¢ Set the Default Terrain Texture field to a texture of your choosing.

¢ Click the Create button.

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic Client-Only Game (CLI ENT_ONLY)

Mew Space

Space Mame: | main
Space Pathe | o fefFankasydemofrasfspaces E]

Space Dimensions

width: |5 chunks (500 m)

Height: | 5 chunks {500 m)
Space Terrain Creation Settings
|_|use simple terrain
Height units (0,01 = 1 cm): 0,01
Height Map resohtion: 1268 ™
Mormal Map resclution: 128w
Hule Map resalution: . ey
Shadow Map resolution: az w
Texture Blend Map rasolution: 128

Diefaull Terran Texture
maps/landscape/grasslands. tga E

Space Crestion Progress

| |
co

New Space dialog box

For details on this dialog box, see the Content Tools Reference Guide's section “Dia-
log boxes”, in “New Space dialog box”.

* The new space mai n will be created and displayed in World Editor, as displayed below.

bigw@RLD" -

#dest=
#dest=
#dest=
#dest=

A Basic Client-Only Game (CLI ENT_ONLY)

* spacesimain - WorldEditor
Fie Edit View Options Languages Help

Do S2ad oo = FTTEHDOHAD od Tl

Tool Ophions: Objects

-
Selection Filker |-ﬁIExl:l:|:|t Terrsin and Shells — w |
Coordinate System Locking Mode
i World (%)Fres
() Local () Terrain
O wiew (O cbstacle 2
Asebs
L & O
1= Al A
I# Farvourites
) Hstary
E 12 Models -
Y

il

shbey0l.model sbbey0Z model srrow.model

Pk A

base. model base, mode! beast.model
= - " 1/23% kems : c:\bwe-19d|Fantasydemcires. . \arrow.model
Memory Load: 6% -7.94, B.77, -15.57 Fiffffffo m: O pg: O 5na

The mai n space

¢ Select the File » Save menu item to save the new space

¢ Select the File = Exit menu item to close World Editor.

2.8. Running the client for the first time

Having carried out the steps in the previous sections of this tutorial, you can now run the client . To do that,
use the run. bat you created earlier. You should have a basic first-person player that can walk around a
space using mouse-look and WASD controls.

16 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic Client-Only Game (CLI ENT_ONLY)

M BigWorld Client Hybrid Yersion

A simple first-person client

h ™
- 17

bigw@r:

Chapter 3. A basic client-server game
(CLI ENT_SERVER)

In A Basic Client-Only Game (CLI ENT_ONLY) on page 7 we set up a basic client resources tree that would
allow us to walk around a simple space using a first-person view. In this chapter of the tutorial we will extend
the game to the server, so that multiple clients can log in and see each other walking around.

3.1. Server Installation and Configuration

Prior to progressing through this part of the tutorial it is necessary to install and configure the BigWorld
server. If you haven't already done this please proceed to the Server Installation Guide

At this point it is also relevant to address the issue of sharing files between Linux and Windows machines.
Since there are many files that are read by both the client and the server (tutorial /res/scripts/
entity_defs/*, space data, etc), it is necessary to keep them all on a single file system that is shared be-
tween the client and server, rather than having to keep them synchronised manually. Please refer to the Client
Programming Guide's section on Shared Development Environments for more information on this topic.

For the purposes of this tutorial, we will assume that you have mounted your Windows directory tree at
$HOVE/ bi gwor | d_wi ndows_shar e on your Linux file system.

3.2. A Space entity.

In BigWorld, spaces are separate coordinate systems. Each space can have one or more geometry mappings
(as created in the World Editor). Cell entities are associated with a single space at any one time. These may
be used to implement things like planets, mission instances, apartments or game sharding.

A new space is created by creating a cell entity in a new space. It is typical to have an entity type that is
responsible for space creation.

3.2.1. entities.xml

Every entity must be defined in the enti ti es. xml file located at t ut ori al / r es path. In this case the
Space entity exists only on the server, so it should be defined within the Ser ver Onl yEnt i ti es block:

<r oot >
<ClientServerEntities>
<Avat ar/ >
</dientServerEntities>
<ServerOnl yEntities>
<Space/ >
</ ServerOnl yEntities>
</ root >

3.2.2. Entity definition

The Space entity type has a single string property spaceDi r . This will be used to indicate which space
geometry to load.

<r oot >
<Properties>
<spaceDi r >
<Type> STRI NG </ Type>
<Fl ags> BASE </ Fl ags>
</ spaceDir>

bIgW@RLD" 5

#dest=
#dest=
#dest=
#dest=

A basic client-server game (CLI ENT_SERVER)

</ Properties>

<C i ent Met hods>
</ d i ent Met hods>

<Cel | Met hods>
<addGeonet r yMappi ng>
<Ar g> STRI NG </ Arg>
</ addGeonet r yMappi ng>
</ Cel | Met hods>

<BaseMet hods>

</ BaseMet hods>
<r oot >

Example tutorial /res/scripts/entity_defs/ Space. def

3.2.3. Base part

The base entity calls sel f. cr eat el nNewSpace() to create a new space, put its cell entity in it, and tells
the cell to add a space geometry mapping. It registers itself globally as " Def aul t Space" so that the base
entity can easily be found later.

i mport BigWrld
cl ass Space(Bi gWrl d. Base):
def __init__(self):
BigWorld. Base. __init__(self)
Create this entity in a new space
sel f. creat el nNewSpace()
sel f.cell.addGeonet ryMappi ng(sel f.spaceDir)
sel f.registerd obal | y("Defaul t Space", self.onRegistered)
def onRegi stered(self, succeeded):
i f not succeeded:
print "Failed to register space."
sel f.destroyCel | Entity()
def onLoseCell (self):
Once our cell entity is destroyed, it's safe to clean up the Proxy.
We can't just call self.destroy() in onClientDeath() above, as
destroyCel | Entity() is asynchronous and the cell entity would still

exist at that point.
sel f.destroy()

Example t ut ori al /res/ scri pt s/ base/ Space. py

3.2.4. Cell part

The cell entity maps the geometry to load after receiving a call from the base to addGeonet r yMappi ng(),
with an appropriate path to a geometry (e.g. spaces/ mai n).

i mport BigWrld

20 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A basic client-server game (CLI ENT_SERVER)

class Space(BigWwrld. Entity):

def __init__(self, nearbyEntity):
BigWorld. Entity. __init__(self)

This is the first entity created for the space
assert(nearbyEntity is None)

def onDestroy(self):
Destroy the space and all entities in it
sel f. destroySpace()

def addGeonetryMappi ng(sel f, geonetryToMap):

The base infornms us what geonetry to nap.
Bi gWor | d. addSpaceCGeonet r yMappi ng(sel f. spacel D, None, geonetryToMap)

Example tut ori al /res/scripts/cell/ Space. py

3.3. Server-side personality scripts

Just like the client, the server uses personality scripts to perform bootstrap functionality on each CellApp
and BaseApp. For the moment, we are only interested in the onBaseAppReady callback in the BaseApp
personality script, which we will use to create a space.

Our initial revision of t ut ori al / res/ scri pt s/ base/ BWPer sonal i ty. py is displayed below:
Base bootstrap script
i mport BigWrld

def onlnit(isReload):
pass

def onBaseAppReady(isBootstrap, didAutolLoadEntitiesFronDB):
Only on the first baseapp
i f isBootstrap:
Create a Space entity that will create a space with our geonetry.
Bi gWor | d. creat eBaselLocal | y("Space", spaceDir = "spaces/main")
Example tutori al /res/ scri pts/ base/ BWPersonal i ty. py
A Space entity is created with the spaceDi r property set to " spaces/ mai n".
Our initial revision of t ut ori al / res/ scri pts/ cel | / BWPer sonal i ty. py is displayed below:
Base bootstrap script

i mport BigWwrld

def onlnit(isReload):
pass

def onCel | AppReady(isFronDB):
pass
Example tutori al /res/scripts/cell/BWPersonality. py

Our implementation of the scripts is trivial and provides only stub implementations of callbacks that will
be explained later.

bIgW@RLD" &

A basic client-server game (CLI ENT_SERVER)

For a complete list of the available personality script callbacks, see the documentation for the BWPer son-
al i ty module in BaseApp Python API, Cell App Python API, and Client Python APL

3.4. The server-side Avat ar scripts

The next step is to define the server-side logic that goes with our Avat ar class. Even if we did not want to
define any server-side logic for our Avat ar, we would still need to provide at least stub implementations
of Avat ar . py in the base and cel | directories so that the base and cell parts of our Avat ar entity can
be created.

First we need to define the base part of the Avatarint ut ori al / res/ scri pt s/ base/ Avat ar . py:

i mport BigWrld

Must derive from Bi gWrld. Proxy instead of BigWrld.Base if this entity type
i1s to be controlled by the player.
class Avatar(BigWrld.Proxy):

def __init__ (self):
Bigworld. Proxy. __init__ (self)

Set our spawn position.
self.cellData] "position®] = (0,0,0)

Spawn in the default space.
self.createCel | Entity(Bi gWorl d. gl obal Bases["DefaultSpace"].cell)

def onClientDeath(self):
We ensure our cell entity is destroyed when the client disconnects.
sel f.destroyCel | Entity()

def onLoseCel | (self):
Once our cell entity is destroyed, it is safe to clean up the Proxy.
We cannot
just call self.destroy() in onClientDeath() above, as
destroyCel | Entity()
is asynchronous and the cell entity would still exist at that point.
sel f.destroy()

Example tut ori al /res/ scri pts/ base/ Avat ar . py

The constructor for the base entity creates the cell entity in our space created earlier. It was registered in
Bi gWor | d. gl obal Bases as " Def aul t Space".

There is a little bit of housekeeping here too — we have provided implementations for the onCl i ent Deat h
and onLoseCel | callbacks, which clean up the cell and base parts of the entity when the client disconnects
from the server.

At this stage we do not need to define any interesting logic on the cell entity, so we provide a stub imple-
mentationintutorial /res/scripts/cell/Avatar. py:

i mport BigWrld

class Avatar(Bigwrld.Entity):

def __init__(self, nearbyEntity):
BigWwrld.Entity. __init__(self)

Example tutorial /res/scripts/cell/Avatar. py

22 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/client/index.html#dest=Client_Python_API

A basic client-server game (CLI ENT_SERVER)

3.5. Connecting the client to the server

We need to add code to our basic client to have it connect to a server. If you have used FantasyDe-
mo, you will have experienced the various GUI-based methods that can be used to connect to a server.
Since we are not writing GUI code yet, we will just enter the address of our server into t ut ori al / res/
scripts_config. xm and have the personality script read it from there.

We will also add an entry to control whether the client should attempt to connect to a server, or just explore
the space offline as in the previous stage of the tutorial.

The relevant changes tot ut ori al / res/ scri pts_confi g. xm are displayed below:

<server>

<online> true </online>

<!-- Whether the client actually connects to the server. -->

<host > 10. 40. 3. 23 </ host >

<!-- The server to connect to. ldeally we would allow this to be entered
via an in-gane

GU (or leverage the server discovery stuff) but for now we'll just
hardcode it. -->
</ server>

Example tutorial /res/scripts_config.xn

If you are using multiple users on the same server machine, you will need to spec-
ify the port as well as the IP address. The port for the LoginApp can be found by
inspecting the | ogi napp/ nubExt er nal / addr ess watcher value on the Web Con-
sole. For example, if the IP address is 10. 40. 3. 23 and it is on port 20013, then put
10. 40. 3. 23: 20013 inside the <host > tag. You may need to update the port after
restarting the server.

The next step is to implement the function calli ni t Onl i ne in the client personality scriptt ut ori al / r es/
scripts/client/BWersonality. py and switch between calling it and calling i ni t Of f | i ne based
on the onl i ne optionintutorial /res/scripts_config.xm .

To achieve that, make the changes to tutori al /res/scripts/client/BWersonality.py as illus-
trated below.

def init(scriptConfig, engineConfig, prefs):
i f scriptConfig.readBool ("server/online"):
initOnline(scriptConfig)
el se:
initOfline(scriptConfig)

def initOnline(scriptConfig):
cl ass Logi nParanms(object):
pass

def onConnect(stage, step, err =""):
pass

bigw@RLD"

A basic client-server game (CLI ENT_SERVER)

Connect to the server with an enpty usernanme and password. This works
because the server has been set up to allow |logins for any user/pass.
Bi gWor | d. connect (scriptConfig.readString("server/host"),

Logi nParams(), onConnect)

Example tutorial /res/scripts/client/BWPersonality.py

Notice that we no longer need to do client-side space creation, geometry mapping, or entity creation; these
functions now happen on the server side. The client will automatically perform the necessary client-side
actions based on the server-side game state.

3.6. Going 3" person

The lastline of i ni t O f | i ne in the personality script sets the camera to use first-person mode. We chose to
do this in the first part of the tutorial because we wanted to get a client up and running as quickly and simply
as possible, and using first-person mode allowed us to ignore the issue of rendering the player himself.

However, since we are now implementing a client-server game where multiple clients can log in and inhabit
the same space, it will be helpful if they have models so that they can see each other!

We have provided a basic biped model in r es/ char act er s/ bi pedgi r| . model , which we will use for
all Avatars. Edit the ent er Wor | d callback for the Avat ar class in tutorial/res/scripts/client/
Avat ar . py as follows:

class Avatar(Bigwrld. Entity):
def enterWorld(self):

Set the position/nmovenent filter to correspond to an avatar
self.filter = BigWwrld. AvatarFilter()

Load up the bipedgirl nodel
sel f.nodel = Bi gWorl d. Mbdel ("charact ers/ bi pedgirl.nodel")

Example tutorial /res/scripts/client/Avatar. py

3.7. Server-side XML configuration

The BigWorld server uses the file your _gane/ r es/ ser ver/ bw. xml for configuring options on the various
server components. For a comprehensive list of configuration options along with a detailed description, see
the Server Operations Guide's section Server Configuration with bw. xn .

Typically, the bw. xni file includes a BigWorld provided default configuration file which contains recom-
mended default values for all the available configuration options. This is achived by using the <par ent -
Fi | e> tag as follows:

<r oot >
<parent Fi | e> server/devel opnent _defaults.xnm </parentFile>
You will notice that in the example above, the included file is devel oprment _def aul ts. xml . This file

provides good working defaults for a game development environment that will generate more warnings
and intentionally crash the server in certain circumstances to ensure that critical issues are caught prior to

24 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=

A basic client-server game (CLI ENT_SERVER)

the release of a game. The development defaults file however is only a small file that modifies a subset of
values from the file bi gwor | d/ res/ server/ producti on_def aul ts. xm . The production defaults file
aims to provide a comprehensive set of options and default values to be used for a game in a live production
environment and can be used as a reference point when searching for a specific option.

While it is anticipated that the majority of configuration options will not need to be modified, if you need to
change a value or are simply curious as to the purpose of an option, complete documentation for the BigWorld

server configuration options can be found in the Server Operations Guide's section Server Configuration with
bw. xni .

To get our basic game up and running, we need to set a few options to specify what entity type the player
should be connected to once logged in, and to allow players to log in with unknown usernames (just for
convenience while developing).

Save the following int ut ori al / res/ server/ bw. xm :

<r oot >
<parent Fi | e> server/devel opnent _defaults.xm </parentFile>
<bil i ngSyst enr
<entityTypeFor UnknownUsers> Avatar </entityTypeForUnknownUser s>
<shoul dAccept UnknownUser s> true </ shoul dAccept UnknownUser s>
<shoul dRenmenber UnknownUser s> fal se </ shoul dRemenber UnknownUser s>
</ billingSysten>
</root>

Example tut ori al /res/ server/bw. xm

3.8. Starting and connecting to the server

At this point of the tutorial, it is assumed that you have set up your Linux machine as described in the Server
Installation Guide. In particular, this assumes you have installed BWMachined on your Linux machine and
have installed the Web Console somewhere on the local network. For details on Web Console see the Server
Operations Guide's section Cluster Administration Tools, in “WebConsole”).

Before we can start the server, we need to specify where the server should get its binaries and resources from.
This is a concept similar to the pat hs. xm files used by the client and tools.

We firstly need to know the directory the game resources are located on the Linux machine. If you have been
developing the game resources on your Windows machine and have shared them using the setup_win_dev
script, the resources are most likely located in $HOVE/ bi gwor | d_wi ndows_shar e. Check the directory
where you believe the resources are located actually contain the correct files. For example:

$ |'s $HOVE/ bi gwor | d_wi ndows_share
bigworld fantasydeno ny_gane readne.html rpm tenplate tutorial

We now run the bw_configure script providing the location of the game resources we wish to use. This will
differ slightly depending on the BigWorld Edition you are using.

3.8.1. Indie Edition

$ bw configure
Gane resource path [~/ my_gane/res]: ~/bigworld w ndows_share/tutorial/res
Witing to /home/fred/.bwrachi ned. conf succeeded

Installation root : /opt/bigworld/current/server
Bi gWorl d resources: /opt/bigworld/ current/server/res

bIgW@RLD" %

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

A basic client-server game (CLI ENT_SERVER)

Gane resources . /hone/ fred/ bi gworl d_wi ndows_share/tutorial/res
The contents of the file $HOVE/ . bwmachi ned. conf ! has now become:

Generated by ./bw configure

/ opt/ bi gworl d/ current/server;/hone/fred/ bi gworl d_w ndows_share/tutorial/res:/
opt/ bi gworl d/ current/server/res

Example $HOVE/ . bwnachi ned. conf

This file can then be edited whenever required to update the resource paths as your game development
proceeds.

3.8.2. Commercial/lndie Source Edition

$ bw_configure

Installation root [~/nf]: ~/nf

Gane resource path [~/ nmy_gane/res]: ~/nf/tutorial/res
Witing to /hone/fred/.bwrachi ned. conf succeeded

Installation root : /hone/fred/nf

Bi gworl d resources: /hone/fred/ nf/bigworld/res
Gane resources . /honme/fred/nf/tutorial/res

The contents of the file SHOVE/ . bwrachi ned. conf * has now become:

CGenerated by ./bw configure

[opt/bi gworl d/ current/server;/hone/fred/ bi gworl d_w ndows_share/tutorial/res:/
opt/bigworl d/ current/server/res

Example $HOVE/ . bwnachi ned. conf

This file can then be edited whenever required to update the resource paths as your game development
proceeds.

3.8.3. Starting a Server

You can now use the WebConsole's ClusterControl module to start the server. You should see six active
processes in the process listing. Once the server is up and running, run the client and you should be able
to connect to the server and control a basic biped Avatar from a 3™ person perspective. Connect multiple
clients and watch each other moving around.

"Note the leading . in the filename.
Note the leading . in the filename.

26 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 4. Implementing a chat system
(CHAT _CONSCLE)

At this stage we have a basic client-server game working, so it is a good time to write our first entity methods
and learn how method calls propagate in BigWorld.

As an easy first example, we will write a simple chat system that allows players to talk to the other players
around them. The implementation is in two parts:

* Implementing a basic GUI for displaying and entering chat messages on the client.

* Writing the entity methods to propagate the messages between clients and the server.

4.1. GUI text console

The chat console GUI needs to be able to display a few lines of text and be able to accept and display the
player's input on a separate line, the edit line. It is implemented in tutorial/res/script/client/
Hel per s/ Chat Consol e. py.

That chat console displays through two GUI components. A window that darkens the background so the
text is easier to read and a multiline text component which is a child of the window. These are both set up
inthe _init__ () method.

import string

i mport BigWrld

i mport GUI

i mport Keys

i mport collections

cl ass Chat Consol e(object):
sl nstance = None
def __init__(self, nunVisibleLines =4):

sel f. nunVi si bl eLi nes = nunVi si bl eLi nes
self.lines = collections. deque()
self.editString = ""

sel f.box = QU . Wndow "system maps/col _white.bnp")
sel f. box. position = (-1, -1, 0)

sel f. box. vertical Anchor = "BOTTOM'

sel f. box. hori zont al Anchor = "LEFT"

sel f.box.colour = (0, 0, 0, 128)

sel f. box. material FX = "BLEND'

self.box.width = 2

sel f. box. script = self

sel f.box.text = QU . Text ()

sel f. box.text.vertical PositionMode = "CLIP"
sel f. box. text. horizontal PositionMode = "CLIP"
sel f. box.text.position = (-1, -1, 0)

sel f. box.text.vertical Anchor = "BOTTOM'

sel f. box. text. hori zont al Anchor "LEFT"

sel f. box. text.col our Formatting True

sel f.box.text.multiline = True

QU . addRoot (sel f. box)

bIgW@RLED" =

Implementing a chat system (CHAT_CONSOLE)

sel f.active = True

sel f. updat e()

sel f. box. hei ght = sel f.box.text.height * (nunVisibleLines + 1)
self.editing(False)

The Avatar and Personality scripts calls three of the chat console's methods:
e instance() returns the chat console singleton, creating it on the first call

* edi ting() controls the visibility of the console and it is activated when the player hits the return key. If
no parameter is given it returns the current state

° write() causesaline of text to be displayed and it is called from the Avatar's say() method which is in
turn called when a chat message is received from the server.

@ assnet hod
def instance(cls):

Static access to singleton instance.

if not cls.slnstance:
cl s. sl nstance = Chat Consol e()

return cls.slnstance

def editing(self, state = None):

if state is None:
return self.active
el se:
self.active = state
sel f.box.visible = state

def wite(self, msg):
sel f.lines.append(nsg)

Rotate out the oldest line if the ring is full
if len(self.lines) > self.nunM sibleLines:
sel f.lines. popleft()

self.editing(True)
sel f. updat e()

When the chat console is visible it also parses key events. Printable characters are added to the edit line and
removed with the backspace. The return key sends the edit line to the server for propagation and puts it
into the main display. This is done with the conmmi t Li ne() . When the line is committed or anything else
changes the updat e() method will correctly set the text field of the text component. Finally the escape key
closes the chat console.

28 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Implementing a chat system (CHAT_CONSOLE)

def commitLine(self):

Send the line of input as a chat nessage
Bi gWor | d. pl ayer().cell.say(unicode(self.editString))

Display it locally and clear it
self.wite("You say: " + self.editString)
self.editString = ""

def update(self):

if self.active is Fal se:
return

sel f.box.text.text =

Redraw all lines in the ring
for line in self.lines:
sel f.box.text.text = self.box.text.text + line + "\n"

Draw the edit line
sel f.box.text.text = self.box.text.text + "\cffffOOff;" +
self.editString + "_" + "\cffffffff;"

def handl eKeyEvent (self, event):

if event.isMuseButton():
return Fal se

if self.active is Fal se:
return Fal se

if event.isKeyDown():
if event.key == Keys. KEY_ESCAPE:
self.editing(False)
elif event.key == Keys. KEY_RETURN:
sel f.commi t Line()
elif event.key == Keys. KEY_BACKSPACE:
self.editString = self.editString[:len(self.editString) - 1]
elif event.character is not None:
self.editString = self.editString + event.character

sel f. updat e()
return True

return Fal se

4.2. Modifications to the Avat ar entity

We need to implement methods on both the client and the server to make our chat system work:

¢ The server-side methods are responsible for receiving messages and forwarding them to other clients
whose player entities are close enough to the speaker.

* The client-side methods are responsible for displaying incoming messages on-screen.

Before implementing these methods, they need to be declared in tutorial/res/scripts/
entity_defs/Avatar. def:

bIgW@RLD" %

Implementing a chat system (CHAT_CONSOLE)

<Cl i ent Met hods>

<!-- Chat to people within 50 netres -->

<Say>
<Arg> UNI CODE_STRI NG </ Arg> <!-- nessage -->
<Det ai | Di st ance> 50 </ Det ai | Di st ance>

</ say>

</ d i ent Met hods>
<Cel | Met hods>

<l-- Cell part of the chat inplenmentation -->
<say>

<Exposed/ >

<Ar g> UNI CODE_STRI NG </ Ar g>
</ say>

</ Cel | Met hods>

Exampletutorial /res/scripts/entity_defs/Avatar. def

The step above adds the method definitions to the previously empty client and cell method sections. The
cell method definition includes the <Exposed/ > tag, which exposes the method to the client. Without this,
the method cannot be called from the client. The definition file also uses BigWorld's method LODing fea-
ture, by declaring a <Det ai | Di st ance> of 50m, which means that referring to self.all Clients or
sel f. ot herCients from within this method will not refer to all clients in that entity's Aol, just those
within 50m.

Having declared these methods, we must now provide their implementations. In tutorial /res/
scripts/cell/Avatar. py, add the following:

def say(self, id, nessage):
if self.id ==id:
sel f.otherdients.say(nessage)

Example tutorial /res/scripts/cell/Avatar. py

Even though we prototyped the cell method to take only the message as an argument in the definition file, our
implementation expects another argument (i d) before the declared arguments. This is because this method
was declared as <Exposed/ >, and the ID passed as an argument is that of the client who called the exposed
method. Please note that this may not be the client who is attached to this Avat ar, so we add a check to
make sure the calling client is in fact the owner of this entity.

We only forward the message to sel f. otherd i ents, nottoself.alldients.
This is because in our earlier implementation of Chat Consol e. edi t Cal | back
intutorial/res/scripts/client/Hel pers/Chat Consol e. py (for details, see
“GUI text console” on page 27) when the user enters a line of text it is immediately
displayed on his client, so we do not want to send the message back to him. Therefore,
we only need to call the say method on other clients.

Now we implement the client entity's say method int ut ori al /res/ scri pts/client/Avatar. py:

class Avatar(BigWwrld. Entity):

Implementing a chat system (CHAT_CONSOLE)

def say(self, msg):
Chat Consol e. Chat Consol e.instance().wite("%l says: %" % (self.id,

neg))

Example tutorial /res/scripts/client/Avatar. py

Now you should have a basic usable chat system. Connect a couple of clients to a running server and test
it out!

bIgW@RED &

Chapter 5. EntityLoader (ENTI TY_LQADER)

Currently, the server loads the spaces/main space as the default space on startup. However, it is only the
CellApp which is loading the space, and it is only loading the space geometry. In order to be able to place
entities in World Editor and have them appear on the server, we need to create a more advanced space loading
mechanism. To this end, we will make a helper class called EntityLoader which will be used by the Space
entity. It will be the responsibility of this class to parse the space . chunk files and create entity instances
for every entity encountered.

You may be wondering why the engine doesn't just create entities automatically. While
it could, this would remove flexibility from the scripts. This way, the game specific
scripts are able to tailor how and when entities are created.

While at the end of this chapter it will appear to the end-user that nothing has changed, we will have laid the
groundwork for the next chapter which covers creation of a editor placeable entity. Inspecting the BaseApp
logs after running this server shows that it was unable to actually load the Greeter entity. This is added in
the next chapter.

5.1. Implementation

The EntityLoader class exists only on the base entity, and in this tutorial will be implemented in the same
Python module file as the Space entity. The following operations are performed:

* The Space entity creates a new instance of the Enti t yLoader class, and passes that instance into the
Bi gWor | d. fetchEntiti esFronChunks function. This function instructs the BaseApp to parse all
. chunk files in the given path, which is done asynchronously in the background loading thread (in order
to avoid IO from blocking the main thread).

* Whenever a non client only <ent i t y> section is encountered within the . chunk files, the engine will call
EntityLoader. onSect i on with the relevant <Dat aSect i on>.

* The script uses the properties passed in to the onSection method in order to create an entity instance
using Bi gWor | d. cr eat eBaseAnywher e. It passes the Space entity's cell mailbox so that the new entity
knows which space to create itself in. Note that this paradigm assumes that all entity scripts will accept
createOnCel | as a property.

* The engine notifies the Ent i t yLoader when chunks have finished being parsed via the onFi ni sh call-
back.

scripts/base/ Space. py

cl ass Space(Bi gWrl d. Base):

def onGetCel |l (self):
print "Space.onGetCell loading entities from'%'" % self.spaceDir
Bi gWorl d. fetchEntitiesFronChunks(sel f.spaceDir,
EntityLoader(self))

class EntitylLoader(object):
def __init__(self, spaceEntity):
sel f.spaceEntity = spaceEntity

bigw@RLD"

EntitylL oader (ENTI TY_LQOADER)

def onSection(self, entity, matrix):
entityType = entity.readString("type")
properties = entity["properties"]
pos = matrix.appl yToOri gi n()

Create entity base
Bi gWor | d. creat eBaseAnywhere(entityType,

properties,

createOnCel | = self.spaceEntity.cell,

position = pos,

direction = (matrix.roll, matrix.pitch, nmatrix.yaw))

def onFinish(self):
print "Finished |oading entities for space", self.spaceEntity.spaceDir

Adjusted example t ut ori al / res/ scri pt s/ base/ Space. py

34

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 6. A Basic NPC Entity (BASI C_NPC)

This chapter will cover the basic steps of creating a non-player entity. While the entity presented is quite
simple in terms of functionality, it covers all the common essentials required in order to get a new entity up
and running in the engine (including exporting the model from 3D Studio Max and configuring the model
to work correctly).

6.1. Design

Before creating an entity, we need to determine what functionality is required. For this tutorial we will to
create an NPC which will greet a player when they get within a certain radius (think of a person who stands
in a supermarket entrance greeting people).

Entity requirements:

¢ It should be placeable in the World Editor so that the run-time instance is created by the SpaceLoader
entity on the server.

* Model should be loaded asynchronously on the client.
¢ The entity will not move. It should stand on the spot as placed in the World Editor.

* A server-side trap should be used to trigger a greet action. The server should notify all clients in the area
that it has greeted a player (including which player).

* When the entity greets a player, a wave animation should be played on all clients in the area.
* A message, generated on the server, should be displayed above the Greeter's head for a couple of seconds.

¢ It should be possible to deactivate (and reactivate) the Greeter from the client, but only if the client is within
the trigger radius.

We shall give this entity the class name G eet er.

6.2. Art

For this tutorial, we have provided the 3D Studio Max source file to the Barbarian model (a fantasy themed
human). The model needs to prepared for use by the engine and needs to be configured to satisfy the re-
quirements of the Greeter entity. This section assumes the BigWorld exporters have already been installed
(see the Content Tools Reference Guide).

Detailed documentation about the exporters and tools can be found in the Content Tools Reference Guide
and the Content Creation Manual.

If you want to skip this section, the barbarian model has been pre-prepared for this
tutorial (in C: / bi gwor | d/ tut ori al / res/ char act er s).

6.2.1. Exporting the model

1. Opentutorial/sourceart/barbarian. max in 3D Studio Max.

2. Copy the textures tot ut ori al / r es/ char act er s. The textures must be in the target directory before
exporting (the exporter will display an error message and fail if they are not).

bigw@RLD"

#dest=
#dest=
#dest=

A Basic NPC Entity (BASI C_NPC)

3. Re-apply the textures to the model so that the Max scene points to the textures copied in the step above.
4. Go to File - Export and choose the BigWorld visual exporter.

5. Save themodel totut ori al / res/ charact ers/ barbari an. nodel .

6.2.2. Configuring the model

In order to automatically play an idle animation and to create the action required for the Greeter entity to
wave, we need to add animations to the model and configure the appropriate actions. This is done in the
Model Editor.

While an animation is a raw sequence of key frames, an action is a higher level concept. Actions are animation
wrappers that contain extra information such as animation blending and what game-play situations will
trigger the animation (e.g. idling, walking or running based on the velocity of the entity).

The Greeter will have two actions: an Idle action which is automatically selected when the entity is standing
still, and a Wave action which will be explicitly invoked from the Greeter's Python scripts.

1. Openuptutorial/res/characters/barbarian. nodel in Model Editor.

2. Before we can setup the actions, we need to add references to the idle and wave animations.
In the Animations tab, click the "New animation" button and select the tutori al /res/ charac-
ters/idl e_a.ani mati on animation file. A new animation will be added to the list which can be pre-
viewed in the 3D view. Repeat this for the m waveonehand. ani mat i on file.

3. To setup an Idle action that is automatically invoked when the entity is standing still,
a. Open the Actions tab in Model Editor.

b. Click the New Action button and select the m_idle animation in the pop-up dialog. Set the action
name to Idle.

c. Select the new Idle action from the list.

d. Setup the parameters in the Match section to allow the action matcher to automatically select the
action when the entity is not moving. To do this set the following values:

* Minimum speed=0.0, Maximum speed=0.0
* Minimum turn=-360.0, Maximum turn=360.0

e Minimum direction=-360.0, Maximum direction=360.0
As you can see, the action will be picked whenever the speed of the entity is exactly zero and is facing
in any direction.

4. To setup a Wave action that is invoked explicitly by the Python scripts (i.e. not automatically picked by
the engine),

* Click the New Action button and select the m_wave animation in the pop-up dialog. Set the action
name to Wave.

No match settings need to be set for this action since we will manually invoke the action from the Python
scripts.

6.3. Scripts

In order to insert the model as an entity into a space, we need to create the entity scripts. These are written
in Python and perform game-specific logic and are split up into three parts: base, cell, and client.

36 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic NPC Entity (BASI C_NPC)

Please refer to the Python API reference documents' for detailed information on the API's mentioned here.

6.3.1. entities.xml

First off, we need to tell the engine about our new entity. Every entity must be defined in the enti ti es. xm
file located at t ut ori al / r es path. We add the Greeter to the Cl i ent Server Enti ti es block since the
entity will exist on both client and server.

<r oot >
<ClientServerEntities>
<Avat ar/ >
<G eeter/>
</ClientServerEntities>
<ServerOnl yEntities>
<Space/ >
</ ServerOnl yEntities>
</root>

Remember that since the entity name corresponds with a Python class name, the name used here must con-
form with Python naming rules.

6.3.2. Entity definition

In order to allow the engine to know what methods and properties the entity has, we need to create a special
file known as the entity definition file. In some ways this file is the most important part of an entity, as it
defines how properties and methods are handled by the engine (e.g. property type, whether or not a property
or method is exposed to clients, prioritisation of remote method calls and property updates, and configuring
distance based LoD parameters for individual properties).

See the Server Programming Guide chapter “The Entity Definition File” for a detailed description of entity
definitions.

For the Greeter entity, create a new file named G eet er . def and placeitintutorial /res/scripts/
entity_defs/.We will define the following information for our entity:

¢ Three properties:

* Ar adi us property which controls the trigger region for the Greeter. This is exposed to the World Editor
so that it can be tweaked by the world builder. Its type is FLOAT, it has a default value of 3 metres and
is declared as CELL_PRI VATE (since this property is only needed on the cell part of the entity and does
not need to be publicly accessible by other entities).

To provide a more intuitive interface for the World Editor, some extra meta-data
has been defined for this property. The RADI US widget allows the property to be
manipulated via a visual spherical widget.

e A property named act i vat ed which is a boolean property representing whether or not the Greeter is
currently active. It's flags is set to ALL_CLI ENTS so that changes to this property on the cell are auto-
matically propagated to the clients.

e The creat eOnCel | property which indicates which space the entity should be created in (a require-
ment for entities loaded via the SpaceLoader entity).

1BaseApp Python API, CellApp Python API, Client Python APIL

bigw@RLD"

#dest=
#dest=
api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/client/index.html#dest=Client_Python_API

A Basic NPC Entity (BASI C_NPC)

* Two methods:

* A client-side method named gr eet . This will be remotely called by the server on all nearby clients
whenever the entity greets a player (i.e. whenever the server-side trap is triggered). It takes two param-
eters, the ID of the entity is greeting, and a personalised greet message.

* A method called t oggl eAct i ve which is exposed to the client which allows the client to toggle the
Greeter on and off. By default methods are not callable by the client (for security purposes), so the
<Exposed> keyword is used to explicitly expose it to clients. It does not take any arguments.

<r oot >
<Properties>
<r adi us>
<Type> FLOAT
<W dget > RADI US
<col our > 255 0 0 192 </ col our >
<gi znoRadi us> 2 </ gi znoRadi us>
</ W dget >
</ Type>
<Fl ags> CELL_PRI VATE </ Fl ags>
<Def aul t > 3.0 </ Def aul t >
<Edi t abl e> true </ Edi t abl e>
</ radi us>
<activat ed>
<Type> | NT8 </ Type>
<Fl ags> ALL_CLI ENTS </ Fl ags>
<Def aul t > 1 </ Defaul t >

</ acti vat ed>

<createOnCel | >
<Type> MAI LBOX </ Type>
<Fl ags> BASE </ Fl ags>
</createOnCel | >
</ Properties>

<C i ent Met hods>
<gr eet >
<Arg> U NT32 </Arg> <!-- Entity ID of who we are greeting -->
<Arg> STRING </ Arg> <!-- Qur greeting nessage -->
</ greet >
</ Cient Met hods>

<Cel | Met hods>
<t oggl eActi ve>
<Exposed/ >
</toggl eActive>
</ Cel | Met hods>

<BaseMet hods>

</ BaseMet hods>
</ root>

Example tutorial /res/scripts/entity_defs/ G eeter. def

6.3.3. Base part

The base part of the entity is the first part that gets created by the server. The base is created on one of
the BaseApp processes, and is used to define entity logic which does not require spatial information (e.g.
character inventory). The base part of an entity does not migrate between BaseApps after it has been created.

38 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic NPC Entity (BASI C_NPC)

The base script for the Greeter entity is very simple and performs two tasks:

o It creates the cell part of the entity within the cell specified by the cr eat eOnCel | property (as setup by
the Enti t yLoader class when it loads the entity information from the space's chunk file).

o It destroys itself when the cell part of the entity disappears.

i mport BigWrld

class Greeter(BigWrld. Base):
def __init__(self):
BigWorl d. Base. __init__(self)
sel f.createCel | Entity(self.createOnCell)

def onLoseCel |l (self):
sel f.destroy()

Example tut ori al /res/ scri pts/ base/ G eet er. py

6.3.4. Cell part

The cell part of an entity represents the current position, orientation, and movement for an entity within a
particular space. Managed by the Cell App processes, the cell part of an entity can be moved between CellApp
processes at any time based on CPU load. Generally, all entity logic that requires access to spatial information

is implemented in the cell part of an entity (e.g. any code that needs to find out about other nearby entities,
such as Al).

The cell part of the Greeter performs the following tasks:
¢ Creates a trap when the entity is created using the radius specified in the World Editor.

¢ Greets any Avatars that walk into the trap by calling gr eet on all clients that have the Greeter entity
within their Aol

* Allow clients to toggle acti vat ed state of the entity, but only if they are within the radius. Note that
exposing a method to the client implicitly adds an argument which is the ID of the Avatar entity which
invoked the method. This can (and should) be used to validate that the Avatar is actually allowed to per-
form the desired command (remember, never trust the client).

Cell entities must derive from the Bi g\Wor | d. Enti t y class.

i mport BigWrld
i mport Avat ar
i mport random

MESSAGES = ["Hello BigWrld", "Have a nice day"]
class Greeter(BigWwrld. Entity):

def __init__(self):
BigWorld.Entity. __init__(self)

Setup the trap
sel f.addProximty(self.radius, 0)

def onEnterTrap(self, entityEntering, range, controllerlD):
If we are not active, do nothing.
if not self.activated:
return

bIgW@RLED" -~

A Basic NPC Entity (BASI C_NPC)

Filter by entity class type
if not isinstance(entityEntering, Avatar.Avatar):
return

Notify clients.
self.alldients.greet(entityEntering.id, random choi ce(MESSAGES))

def toggl eActive(self, sourcelD):
Get the entity who called us. If the entity can't be found then they
obviously not near by so just bail out.
try:
sourceEntity = BigWrld.entities[sourcelD]
except KeyError:
return

Get the distance between ourself and the Avatar
di st = sourceEntity.position.distTo(self.position)

Do a check to nake sure they are cl ose enough.
if dist > self.radius:
return

Al good, toggle our state. The activated property will be
autonatically

propagated to all clients once this server tick is conplete.
sel f.activated = not self.activated

Example tutorial /res/scripts/cell/ G eeter. py

6.3.5. Client part

The client part of the entity is automatically created by the engine whenever an entity appears within your
Avatar's area of interest (Aol). It is the job of the client scripts to coordinate all resources and logic required
to represent the entity on the client based on the information provided by the server.

6.3.5.1. Entity module

The client-side of an entity must derive from Bi g\Wr | d. Enti t y. The bare-bones Greeter module script
looks like this:

Geeter.py

i mport BigWrld
i mport GUI
i mport Math

class Geeter(BigWwrld. Entity):
def __init__(self):
BigWorld. Entity. __init__(self)

Basic structure of t ut ori al / res/ scripts/cel |/ G eeter. py
6.3.5.2. Prerequisites list

To avoid stalling the main thread client when the entity is created, we will use the prerequisites functionality
to load the model asynchronously in the background loading thread. This is done by implementing the
pr er equi si t es method which returns a list of resources to be loaded. This means that whenever the server
notifies the client that a Greeter entity has entered the Aol for the client, the client will first schedule the
resources to be loaded asynchronously.

40 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic NPC Entity (BASI C_NPC)

GREETER _MODEL_NAME = "char act er s/ bar bari an. nodel "

class Geeter(BigWwrld.Entity):

def prerequisites(self):
return [GREETER MODEL_NAME]

6.3.5.3. Entering and leaving the world

Once the prerequisite resources have been loaded, the onEnt er Wor | d method is called. Since the entity
class instance can leave the Aol and then re-enter the Aol, the bulk of the initialisation code will be done in
here rather thanin __i ni t __ (so it can re-initialised each time).

For the G eet er entity, the primary entity model (Ent i t y. npdel) is set, and a network filter is setup. Since
the entity will not be moving around, we can use a simple DunbFi | t er which simply snaps the entity to
the last network update.

class Geeter(BigWwrld.Entity):

def onEnterWorld(self, prereqgs):
Setup our nodel.
sel f.nodel = Bi gWorl d. Model (GREETER_MODEL _NAME)

Setup an appropriate filter.
self.filter = BigWorl d. DunbFilter()

def onLeaveWrld(self):
Cl ean up.
sel f. nodel = None
self.filter = None

6.3.5.4. Implementing greet

The bulk of the client-side logic for the Greeter entity will go in the implementation of the gr eet method.
This method is remotely called from the cell part whenever an Avat ar enters the trap.

class Greeter(Bigwrld. Entity):

def greet(self, targetlD, nsg):
Grab the entity instance, if for sone reason we don't have it just
do not hi ng.
try:
targetEntity = BigWrld.entities[target! D
except KeyError:
return

Try to play the Wave action. If it doesn't exist, print a warning.
try:
sel f. nodel . Wave()
except AttributeError:
print "WARNI NG G eeter nodel mssing Wave action (%)" %
sel f. nodel . sources

Display the greet message above our head.
addressee = targetEntity. nane

bIgW@RLD" o

A Basic NPC Entity (BASI C_NPC)

if targetl D == Bi gWrld. player().id:
addressee += "! Yes you"

sel f. _di spl ayMessage("Hey %! '%'!" % (addressee, nsg))

6.3.5.5. Displaying the message

The script that displays a text message above the Greeter's head will be implemented in a private helper
method called _di spl ayMessage (note the usage of an underscore to denote a private member - this is
not required but it is a useful convention to follow). The Text GUI Conponent class from the GUI module
will be used and will be inserted into the 3D scene using the GUI . At t achnent class (as opposed to being
rendered in screen space). The text is attached to the root node of the entity model and is positioned above
the head of the model by inspecting the model's hei ght attribute.

class Geeter(BigWwrld. Entity):

def _displayMessage(self, nsg):
First nake sure any previous nessage is cleared.
sel f. _cl ear Message()

Create our text conponent. Since we want to display it in the world
we shall explicitly set our width and height in world units.

text = QU . Text(nsg)

text.explicitSize = True

text.size = (0, 0.5) # Specifying 0 for x to auto-

cal cul ate aspect ratio.
text.colour = (255, 0, 0, 255) # Change the col our.
text.filterType = "LI NEAR" # Don't use point filtering.
text.vertical Anchor = "BOTTOM # Position relative to the bottom

of the text.

The origin of our nodel is at our feet. To place the text above
our head, nove it up on the Y by our nodel's height.
text.position = (0, self.nodel.height + 0.1, 0)

Setup our QU ->World attachnent. Tell it that we want the GU
conponent to always face the canera.

atch = QU . Attachnent ()

at ch. conponent = text

atch. faceCanera = True

Attach to our nodel's root node.
sel f.nodel .root.attach(atch)

Save a reference to the attachnent so we can clean it up later.
sel f. _messageAttachnent = atch

Setup the tinmer.

sel f._set MessageHi deTi mer ()
To make the message disappear after a certain amount of time, the Bi gWr | d. cal | back function is used.
The hide message timer functionality is wrapped up in some additional helper methods.
* _cl ear Message clears any existing message attachment above the entity's head.

° _set MessageH deTi mer sets up the timer, while first cancelling any existing timer.

e _cancel MessageTi mer cancels the timer by passing the previously created timer handle into
Bi gwor | d. cancel Cal | back.

42 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic NPC Entity (BASI C_NPC)

* _handl eMessageH deTi mer is the Python callable that is given to Bi gWor | d. cal | back. Itis executed
after the timer has elapsed, clearing the stored timer handle and removing the current message.

class Greeter(BigWwrld.Entity):

def _cl earMessage(self):
sel f. _cancel MessageTi ner ()
if self. _nessageAttachnent is not None:
sel f. nodel . root. detach(sel f._nessageAttachnent)
sel f. _messageAttachnent = None

def _set MessageHi deTiner(self, tineout=5.0):
sel f. _cancel MessageTi ner ()
sel f. _messageTi nerHandl e =\
Bi gWorl d. cal | back(tineout, self. _handl eMessageH deTi ner)

def _cancel MessageTi ner(self):
if self. _nessageTi merHandl e is not None:
Bi gWor | d. cancel Cal | back(sel f. _nessageTi ner Handl e)
sel f. _messageTi ner Handl e = None

def _handl eMessageHi deTi ner (self):
sel f. _messageTi ner Handl e = None
sel f. _cl ear Message()

6.3.5.6. Handling activation change

The engine will automatically notify the entity script whenever a property has been changed by the server.
It does this by looking for a method on the entity class named set _pr oper t yNarme which is expected to
take a single parameter for the previous value of the property. The Greeter script will take advantage of this
notification and display a message whenever the act i vat ed state has changed.

def set_activated(self, oldValue):
if self.activated:
sel f. _di spl ayMessage("Alright! I'mnow ready to GREET.")
el se:
sel f. _di spl ayMessage("Shutting up now. ")

6.3.6. Editor script

The editor script for an entity allows programmatic control over how the entity behaves in the World Editor.
For the Greeter entity, the script will simply override the default model used to represent the entity in the
editor (it otherwise defaults to a red box).

Editor scripts are located inr es/ scri pt s/ edi tor.

class Geeter:
def nodel Nane(self, props):
return "characters/ barbarian. nodel "

6.4. Testing

To test the entity it will first need to be placed into a space in World Editor. Open the spaces/ mai n and
place the entity by dragging the Greeter entity into the scene from the Resources tab. Save the space.

bIgW@RLD" -

A Basic NPC Entity (BASI C_NPC)

If you are not using a Windows mount, update the resources on the server side and then restart the server.
If all is well, you should be able to connect as per-normal and see the Greeter in the space.

M BigWorld Client Hybrid Version

Greeter entity in action

If you do not see the entity, there are a couple of things to check:
* Check the server startup logs for any Python exceptions.

* Check the cell logs to make sure the entity is actually being created. You should see a message along the
lines of:

Cell App INFO Cel | ::createEntity: New Greeter
(2)

* Check the client for any client-side Python errors (e.g. bring up the in-game client console or use Debug
View).

Note that at this point the only way to toggle the activation state is to use the in-game Python console. For
example, on the client,

>>> $B.entities.itens() # Find the ID for the Geeter

[(2402, Greeter at Ox088CFFE8), (2405, PlayerAvatar at 0x088CFC10)]
>>> greeter = $B.entities[2402]

>>> greeter.cell.toggl eActive()

44

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

A Basic NPC Entity (BASI C_NPC)

6.5. Possible improvements

While the entity satisfies the basic requirements, there are some improvements that could be made.

* The most obvious improvement would be to allow the user to toggle the active state of the Greeter entity
by clicking on the entity. This could be achieved by leveraging the entity targeting system of the client. See
the Client Python API documentation for Bi g\Wr | d. t ar get .

e If many player entities enter the trap at the same time, the client will try to greet everyone at once. Instead
of simply playing the wave animation immediately when the gr eet method is called on the client, the
client-side script could be designed so that greets are queued up so that the next greet will not commence
until the previous greet has completed. This could be achieved by passing a callback into nodel . ave()
so that the scripts get notified when the current action has completed. See the Client Python API for
ActionQueuer.__cal | __ for information on how you can use action callbacks.

* Currently the Greeter entity simply plays the Wave action. It would be nice if the entity looked towards
you while it is greeting you. A head tracker can be created by using the Bi gWor | d. Tr acker class coupled
with the Bi gWor | d. Tr acker Nodel nf o class.

* The player can cause the Greeter to spam greetings if they quickly move in and out of the trap radius.
To avoid this problem, the cell part of the entity should keep track of recent greets (associate an enti-
ty ID with a time stamp). It should only re-greet a player if some time has elapsed since the previous
greeting. This list should be added as a new property in G eet er . def, and additional logic placed in
G eeter.onEnterTrap.

bIgW@RLD" -

api_python/client/index.html#dest=Client_Python_API
api_python/client/index.html#dest=Client_Python_API

	Tutorial
	Table of Contents
	Chapter 1. Overview
	1.1. Conventions
	1.1.1. Files and directories
	1.1.2. Linux development environment

	1.2. Provided files
	1.3. Debugging

	Chapter 2. A Basic Client-Only Game (CLIENT_ONLY)
	2.1. Creating a new project
	2.2. Defining resource paths
	2.3. Creating the resources directory
	2.4. Creating our first entity
	2.4.1. entities.xml
	2.4.2. Defining the Avatar entity type
	2.4.2.1. Volatile properties
	2.4.2.2. Non-volatile properties

	2.4.3. Implementing the Avatar entity type

	2.5. The personality script
	2.6. XML configuration files
	2.7. A simple space
	2.8. Running the client for the first time

	Chapter 3. A basic client-server game (CLIENT_SERVER)
	3.1. Server Installation and Configuration
	3.2. A Space entity.
	3.2.1. entities.xml
	3.2.2. Entity definition
	3.2.3. Base part
	3.2.4. Cell part

	3.3. Server-side personality scripts
	3.4. The server-side Avatar scripts
	3.5. Connecting the client to the server
	3.6. Going 3rd person
	3.7. Server-side XML configuration
	3.8. Starting and connecting to the server
	3.8.1. Indie Edition
	3.8.2. Commercial/Indie Source Edition
	3.8.3. Starting a Server

	Chapter 4. Implementing a chat system (CHAT_CONSOLE)
	4.1. GUI text console
	4.2. Modifications to the Avatar entity

	Chapter 5. EntityLoader (ENTITY_LOADER)
	5.1. Implementation

	Chapter 6. A Basic NPC Entity (BASIC_NPC)
	6.1. Design
	6.2. Art
	6.2.1. Exporting the model
	6.2.2. Configuring the model

	6.3. Scripts
	6.3.1. entities.xml
	6.3.2. Entity definition
	6.3.3. Base part
	6.3.4. Cell part
	6.3.5. Client part
	6.3.5.1. Entity module
	6.3.5.2. Prerequisites list
	6.3.5.3. Entering and leaving the world
	6.3.5.4. Implementing greet
	6.3.5.5. Displaying the message
	6.3.5.6. Handling activation change

	6.3.6. Editor script

	6.4. Testing
	6.5. Possible improvements

