Client Programming Guide

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

T OVEIVICW oottt et ettt ettt ettt e ettt e ettt e et et e e et e b e e e eeb e e e eab e e e eab e e e eenanes 9
1.1, CHEnt iN CONEEXEooiiiiiiiiiii ettt e e ettt e ettt e e eeati e e eeaaa e eees 9
T2, OUEIINE ..o 10
1.3. Resource search Pathiscooooiiiiiiiiiiiiiiiiiiiiii e e 10

1.3.1. paths.Xml ... 11
1.3.2. Command 1ine SWItChuiiiiiiiiiiiiiiii e 11
1.4. Configuration filescccooiiiiiiiiiiiiii 11
1.4.1. File r @S0Ur CeS. XIM i 11
1.4.2. File <engi ne_confi g>. XIM oo 12
1.4.3. File <SCri pts_confi g>. XITl i e e 13
1.4.4. File <pref @r €NCeS>. XIM oo e e aaas 13
1.5. Coordinate SYStemcocoviiiiiiiiiiiiiiiii 14

2. USer INPULooiii e 17

21 Key @VeNtsooooiiiiiiiiiii 17
2.1.1. Character eVentsccoooiiiiii 17
212, AUEO-TEPEALcoiiiiiiiiii e 17
2.1.3. Sequence Of eVENTScc.eeiiiiiiiiiiiiiiii 17
2.1.4. SInKing @Ventscccccoiiiiiiiiiiiiiiiiiii 18
2.1.5. Mouse cursor positioncccceeiiiiiii 18

220 IMIOUSE ..ottt ettt ettt et ettt eea e eanas 18
221 MOVEMENToooiiiiiiiiiiiii i 18
2.2.2. BUEONS ...oooiiiiiii 19

2.3, JOYSHCK .ovvvviiiiiiiiiii 19
2.3.1. AXIS @VEIIES ...ueiiiiiieiiiiii ettt et et et e e e e e e 19
2.3.2. BUOMS ..oiiniiiiiiii et 19
2.3.3. Controlling player directionccoooiiiiiiiiiiiiii 19
2.3.4. Avatar mOvement ... 19

T @) () ¢ T PP PPPPPIRN 21
3.1. The CUrSOT CAmIETAuuuiiiiiiiiiiiiiiiieitieitieieeeeteeaeeeeeeeeeeeee e e seseseseeese e seeenenenenens 21
3.2. The FIe@ CamIra . .c.cuuuuuuiieeiiiiiiiiiiie e e ettt e e ettt e e et ettt e e e e et eeeaaaa s e eeeeeeenanaaanns 21
3.3. THE FIEXICAIN ..euuuiiiiiiiiiiiiii ettt ettt e e e e e e et ettt e e e e e e eeettbbi e e e eeeeeees 22

L U= § - ¥ & (LTI PPPPTR 23
4.1. Advanced Terrain ...ttt 23

A1 1. OVETVIEW ..ottt ettt e e e s e e aeaeneseeeeenes 23
4.1.2. Key Features ...t 23
4.1.3. T@XEULIING ...ovviiiiiiiiiiiiiiiii e 23
474, Lightingooooiiiiiiii 23
415, SRHAAOWS ...ttt ettt et e et e eees 23
B1.6. LOD ..ottt a e aaaaaa 23
4.1.7. Memory fOOrPIINtccooiiiiiiiiiiiiiiiiii e 24
4.1.8. 1 €I M A1 N2 TESOULCESeoeveiiiiiiiiiiiiiieiieiieeeee ettt eeesenneenenenenenenes 25
4.1.9.terrai n section in SPACE. SELTT NOS t.uuiiiiiiiiiiiiiiie e e e 29

4.2, Simple Terrainooiiiiiiiiiiiiiiiiiiiiiii 31
4.2.1. Key feattresccouiiiiiiiiiiiiiiiiiiiii e 31
4.2.2. OVEIVIEWoiiiiiiiiiiiiiiiiiiitie ettt bbb e b e e b e e se b e b e s e seaebe e b esebeseaeaeeeaeseaeaaaes 31
4.2.3. Chunkingocoooo 31
4.2.4. Disk footprintccooiiiiii 31
4.2.5. Memory fOOtPrintccccciiiiiiiiiiiii 32
4.2.6. Texture Spacing 32

4.3. Terrain specular lightingccccciiiiiiiiiiiiiiii 32

5. Cloud ShadOWSooiiiiiiiiiiiiiiiiiiiiiiiii e 35
5.1, REQUITEIMENTS «..ooooiiiiiiiiiiiiiiiii ettt e e e ettt e e et et e e e e e e eeennaa e ees 35
5.2. Implementationccooiiiiiiiiiii 35
5.3. Effect File Implementationccccooiiiiiiiiiii 35

bIgW@RLED"

Client Programming Guide

5.4, TWEAKINEGoooiiiiiiiiiiiiiiiiiiiiiiiii e 36
6. CIUNKSoiiiiiiiiiii ettt ettt ettt e e e et e e ettt e e e e et et et e e e e eeeeeanaaas 37
6.1, DEfINItIONS ..eevviiiiiiieiiiiiiiii ettt e e e e ettt ettt e e e et e ettt e eeeeees 37
6.2. Implementation filescccociiiiiiii 37
6.3. Details and NOtesooooiiiiiiiiiiiiiiii e 38
6.3.1. INCIUAES ..o ettt 38
6.3.2. MOAELS ..ottt e e et en s 38
6.3.3. ENEILIES «ooooeniiiiii i et e 38
6.3.4. Boundaries and portalsccoooiiiiiii 38
6.3.5. TEANSTOTIIIS ...oeoiiiiiiiiiiieiii ittt e ettt e e e e et eatbb e e e eeeeeenbaaas 39
6.3.6. Other TtemMSooiiiiiiiiiiii e 39

6.4. Loading and eJectingcccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiee s 39
6.5. FOCUS GIId ...oooiiiiiiiiiiiiiiiiiiiii e 39
6.5.1. HUIL Tr@Eceiiiiiiiiiiiiie ettt e e e et et eeeeeeens 39
L T T N 4 (- - PSPPI 40

6.6, COLLISIONSeiiiiiiiiiii ettt ettt e et e e et e e e et e e e eaa e eeeas 40
6.7. SWAY TEEIIIS ...coiiiiiiiiiiiiiiiiiii et 40
T EIEIEIES ..oeenniiiiiiiiiiii ettt ettt e e et e e e e e e e e nn s 43
7.1 ENtity MANAQGETooviiiiiiiiiiiiiiiiiiiiiiii ettt enenes 43
7.2. Entity scripts ... 43
7.3. ENtity T@SOUICESoouiiiiiiiiiiiiiiiiiiiiiiiii bbb 44
731 PrelOads ...cooouniiiiiiiiiiii e e 44
7.3.2. PrereqUiSItescoiiiiiiiiiiiiiiiiii e 44

8. User Data Objects ... 47
8.1. .1. User Data Objects are Python script objectscccccciiiiiiiiiiiiiiiiiiiees 47
8.2. .2. Accessing from the Clientccocoiiiiii 47
9. SCriptingoooooiiiiiii 49
9.1. Functional COMPONENtSuuiiiiiiiiiiiiiiiiiiiiiiiiiii e 49
9.1.1. Entity skeleton ... 49
9.1.2. Python script object ... 50
9.1.3. Model Managementuuuuuutiiiumiiiiiiiiiieiiieeieieeeeee e 50
0,14, FAIREES ..ottt ettt ettt e e e et e et s 50
9.1.5. NAVIZALIOMNoiiiiiiiiiiiiiiiiiiii 50
9.1.6. ACHON QUEUEoiiiniiiiie ittt et e e et e et e et e et e e e e e ea e eaans 53
9.1.7. Action MatCRerc..iiiiiiiiiiiii e 58
9.1.8. TIACKETScoeiiiiiiiiiiiee ettt ettt e e ettt e e e e e eeenaaa 60
9.1.9. Timers and TIAPScuuiiiiiiiiiiiiiiiiiiiiiie e 61

9.2. Personality SCIiptcooooiiiiiiiiiii 61
0,20 T N b e 62
22 2 B o T RO 63
9.2.3. handl EKEYEVENT ..o et 64
9.2.4. handl eMDUSEEVENT ... 64
9.2.5. handl @AXT SEVENT ...t 65
9.2.6. handl €] MEEVENTooiiiiiiiiiiiiiiiiiee e enenenes 65
9.2.7. handl eLangChangeEVEeNtcooiiiiiiiiiiiie et e 65
9.2.8. ONChAaNGEENVI FONITBNT 'S oottt ettt e e 65
9.2.9. ONGEONMBL I YIVBPPEA ..ottt et e e et e et e et e e et e e et e e e eeannaes 66
9.2.10. ONReCr eat @DBVI C ... 66
9.2.11. onTi MECOF DAYLOCAl ChANQE ..covvniiiieiii et e e e e e e e aenns 66
9.212. STAIT i 67

TO. MOAEIS ittt e e e ettt ettt et bbb e e e ettt ettt e e eeeeeana 69
T0. 1. PErfOrINANCEoeiiiiiiiiiiii ettt ettt e e e e e et ettt e e e e e e e eetabb e e e eeaeeeaas 69
10.2. Hard POIntsoooiiiiiiiiiiiiiii e 69
10.2.1. Naming scheme ...t 70
10.2.2. HOW Gt WOTKS ...ooniiiiiiiiiiiie ettt e e e e 70
T0.2.30 SYNEAX .ouniiiiiiiiiii et aaaaaaa 70

iv Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Client Programming Guide

T0.2.4. DAtaooovviiiiiiiiiiiiiiee 71

10.3. SUPErMOdeloovviiiiiiiiiiiii 72
T0.3.1. D@SIGI ..oovviiiiiiiiiiiiiiiiiiiiii i 72

10.3.2. SuperModel Classesccoooiiiiiiiiiiiiiii s 73

11, Animation SyStemooiiiiiiiii e 75
11.1. Basic keyframed animationsccccciiiiiiiiiiiiiiiiiiiiiiiiiiiieeee e 75

11.2. Animation layering and blending 75

11.3. Animation data files ... 76

11.4. Animation data streamingccccoooii 77

T1.5. ACEIOMIS ..oeiiniiiiii e e 77

12. Integrating With BigWorld Servercccccciiiiiiiiiiiiiiiiiiiiiiiiiie s 79
28 B O)5 4 T P PPPPRNN 79

12.2. Generating Code With the ProcessDefs toolcccccco 79
12.2.1. ProcessDefs/GenerateCPlusPlus Operationccccccciiiiiiiiii, 80

12.2.2. Generating C++ Codeccccooiiiiiiiiiiiiiiii 81

12.3. Customising ProcessDefs Outputccccoeoiiiiiiiiiiii 83
12.3.1. Modifying the Generated Code Templatesc.cccceeeviiiiiiiiiiiiiiinnn, 83

12.3.2. Implementing a New Processing Module ..., 84

12.4. The connecti on_model Libraryccccccocoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeenenees 86
12.4.1. Dependenciescccoooviiiiiiiiiiiiiiii 87

12.4.2. BWCONNECIONoooiiiiiiiiiiiiiiiiiii 87

12.4.3. BWERNLIEY ...ooooiiiiiiii 89

12.4.4. BWEntityFactory 90

12.4.5. BWEntitiesListenerccccooiiiii 90

12.4.6. Server DISCOVEIYcooooiiiiiiiiiiiiiiiiiiii 90

12.5. Example CHentsccccccoiiiiiiiiiii i 92
12.5.1. python/simple ...t 92

12.5.2. c_plus_plus/sdlccocoiiiiiiiiiiiii 92

12.5.3. C_PIuS_PIUS/IOS «oooeiiiiiiiiiiiiiiiiiiii 92

13. Server CommuNIcationscoiiiiiiiiiiiiiii 93
T3 LOGIN oo 93

13.2. ONLINE oo 93

13.3. FATEWALLS ...oooiiiiiiiiiiiiiiiie ettt 94

T4, Particlesoooooimmiiiiiii e 95
14.1. Particle SYStEIMSuuiiiiiiiiiiiiiiiiiiiiiiiiii i aaaae 95

14.2. Particle ACHONScccooiiiiiiiiiiii 96
14.2.1. Source actions ... 96

14.2.2. Movement actionscooiiiiiiiiiiiiiiii 97

14.2.3. SINK ACIOMSouuiiiiiiiiiiiiiiiie e 97

14.2.4. Alteration actions ..., 97

14.3. Particle tYPesooooiiiiiiiiiiiiiiiiiiiiiiiiiii i 97

14.4. Attaching particle systems t0 bomnesccccoiiiiiiiiiiiiiiiiiii e 98

15. Detail ODJECESooooiiiiiiiiiiiiiiiiiiiii e 101
I5.1. FIOTQ .oooiiiiiiiiiiiiiiiii i 101
15.1.1. PIACEIMENTooiiiiiiiiiiiiiiiiii e 101

15.1.2. Implementationccccccooii 101

15.1.3. Frame cOherencyccccccocoo 102

15.1.4. ANIMAtionccccviiiiiiiiii e 102

15.1.5. LIGhtingooooiiiiiiiiii 102

15.1.6. File fOrMAtoouiiiiiiiiiiiiiiiiiiii e 102

T6. WALET ...oooiiiiiii e 103
16.1. COde OVEIVIEWoiiiiiiiiiiiiii et 103
16.2. Scene generationcoooiiiiiiiiiiiiiiii s 104
16.3. Render settings ... 104
16.3.1. Setting the quality ... 104

16.4. SIMUIation ... 105

bigw@RLD" v

Client Programming Guide

T6.5. RAIN .oooiiiiiiiiiiiiii e 105

16.6. Water depthcooiiiiiiiiiii 105

T6.7. WALCHETSeuiiiiiiiiiiiiiitititee ettt ettt ettt nenene 106

17. Graphical User Interface (GUI)ccocoiiiiiiiiiiiii 107
17.1. CH+ GUI SUPPOTIE .coovnniiiiiiiii e 107
17.1.1. SIMPleGUICOMPONENTcooiiiiiiiiiiiiiiiiiiiiiiie e e 107

17.1.2. GUISRAEToooiiiiiiiiiiiiiiiii 107

17.1.3. SIMPIeGUI ... 108

17.2. Python GUI SUPPOTtoooviiiiiiiiiiiiiiiiii 108

T7.3. XIMIL oo 110

17.4. XML and Pythoncccccccoiiiiiiiiiiiiiiii 110
17.4.1. onLoad(Sel f, SECLT ON) ciruiiiiiiii e e e e e eaens 110

17.4.2. ONBOUNA(Sl f) it e et e et e e e e et e e er e e bt e e aaneeeaens 110

17.4.3. 0NSaVe(Sl f, SECLT ON) couiiiiiiiii et e e e e e eeaes 111

17.5. INput @VENtSoooiiiiii e 111
17.5.1. Keyboard Events 112

17.5.2. Axis Events ..., 112

17.5.3. Mouse EVeNtSooiiiiiiiiiiiiiiiiiii 113

17.5.4. Drag-and-drop eVentscccccccoci 115

17.5.5. Component PyGUI ... 117

17.6. MIOUS@ CUISOToovvnniiiiiiiniiiiii ittt e e a e e s e e s aaaa e raaaa e raaes 118

T8 FONES ..ot 121
18.1. Creating and Using FONES ... 121
18.1.1. Creating a Font Definition File 121

18.1.2. Preloading GLyphisoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee 122

18.1.3. Specifying the widest characterccccoocc 122

18.1.4. Displaying Textcccoooiiiiiiiiiiiiiii 122

18.2. Artist modified FONS ... 123
18.2.1. Generating a Snapshot of a Font's Glyph Cacheccccooeiiiiiin, 123

18.2.2. Modifying the Font Texture 123

18.2.3. Explaining the Font Grid .dds Filecccccccooiiiiiee, 123

19. Input Method Editors (IME)cccoiiiiiiiiiiiiiiiiiii 125
19.1. Components of an IME interfacecccccoiiiiiiii 125
19,11, EXAMPIES ...oooiiiiiiiiiiiiiiiiiiiiiiiiiii i 126

19.1.2. Recommended Reading ..o 126

19.2. IME Python API ... 126
19.2.1. Enabling IME ... 127

19.2.2. Receiving IME @Ventsooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 127

19.2.3. Displaying the IMEcccoiiiiiiiiiiii 127

20. BigWorld Web Integrationo 129
20.1. ATChIteCtUTeooiiiiiiiiiiiiiii e 129

20.2. Using the Web Integrationcccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 130
20.2.1. In Game Web GUI Component ... 130

20.2.2. In Game Web SCreencccccccciiiiiiiiiiiiiiiiii 130

20.2.3. Texture Mapping of Web Pages into a world objectccccccciiiiin 131

20, SOUIAS .oviiiiii e e e e e eeees 133
22, 3D ENGINE (IM00)ouiiiiiiiiiiiiiiiiiiiiiieie ittt a e aaae e 135
22,1 FAMUTESooiiiiiiiiiiiiiiiiitie e 135
22.1.1. D3DXEffects vertex and pixel shader supportc 135

22.1.2. Cubic environment mMapsccccoeeviiiiiiiiiiiiiiiiiii 135

22.1.3. Render targetscooouviiiiiiiiiiiiiiiiii 136

2214, Lighting ... 136

22.1.5. Normal mapping/bump mappingocccoiiiiiiiiiiiiiiiiiiiiiieiniie e 137

22.0.6. TeITAINooooiiiiiiiiiiiii e 137

22.1.7. ANIMAtiONooooiiiiiiiii 137

22.1.8. Vertex MOTPRINGcccccoiiiiiiiiiiiiiiiiiii 137

Vi

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Client Programming Guide

22.2. Supported video cards ... 137
22.3. Hardware requirements for special effectsccocooii 138
22,8 VESUAL ..o s 138
22.5. EffectIMaterialuuiiimiiiiiiiiiiiiiiiiiiei e 138
22.5.1. FOrmatcooooiiiiiiiii 139
22.5.2. Automatic variables/Globalsccccciiiiiiii 139
22.5.3. Artist-editable/tweakable variablesccccooiiii 143
22.5.4. Multiple-layered effects per materialccoiiiiiiii 144
22.5.5. Recording material statescccoccoiiiii 144
22.5.6. Using BigWorld . f x files with 3ds Maxcccoeiiiiiiiiiii . 144

22.6. Visual chanmnelscccooiiiiiiiiiiiiiiiiiiii 145
22.6.1. Sorted chanmnelccoooiiii 145
22.6.2. Internal sorted chanmelcooooi 145
22.6.3. Shimmer channel ..., 146
22.6.4. Sorted shimmer channelccccccc 146
22.6.5. Distortion chanmnel ... 146

22.7. TeXEUT@Soovviiiiiiiiiiiiiii e 146
22.7.1. Texture detail 1evels/COMPIESSIONuuuuuiruiiiiiiiiiiiiiiiiiiiiiiiitiiiiieeeeeeeeeeeeees 146
22.7.2. Animated texturescccoooiiii 148
22.7.3. Applying a code-generated texture to a characterccocoivi 148

22.8. Vertex declarationccccccoiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 152
22.8.1. File fOrmat 152

22.9. Graphics SettNGScooouiiiiiiiiiiiiiiii e 154
22.9.1. Customising options 157
22.9.2. USING SEHINGSoviiiiiiiiiiiiiiiiiiiiiiieiiii ettt 160
22.10. Taking Screenshotsccccooviiiiiiiiiiiiiii 162
22.10.1. High Resolution Screenshotsccccoiiiiiiii, 163
22.11. Dynamic Entity Shadows 164
22111, SPIOAEES ..o 164
22.11.2. SRAAOW IMAPS ...eenieiiiiiiiiiii ettt e e e et eeeeeees 165

23. POSt PrOCESSINGoovuuiiiiiiiiiiiiiiiiii 167
23.1. Pipeline OVeIVIEWccccciiiiiiiiiiiiiiiiiiii i 167
23.2. Creating a Custom Post-Processing Effectccooooiiiiiii 167
23.2.1. Creating the Custom Pixel Shaderccccooiiiiiiiiiiiiiiis 167
23.2.2. Previewing the Results 169
23.2.3. Writing a Custom Pixel Shader for Previewing the Resultsccccccoiiiis 169
23.2.4. Authoring a Post-Processing Effect in Python 169

23.3. Render Targetscooouiiiiiiiiiiiiiiiiiiiii i 171
2314, PIfOTINATICE ... s 171
23.4.1. Measuring the Time Spent on the GPUoccooo 171
23.4.2. Background Loadingccccocoiiiiiiiiiiiiiiiiiii 171

24, Job System ... 173
241, OVEIVIEW ...oiiiiiiiiiiiiiiii i e aa e 173
24.2. Under the Hoodooooiiiiiiiiiiii 173
24.3. Wrapper APL ... 173
24.4. Job System APIL ...ttt 174
24.5. AN EXAMPLE ...ooiiiiiiii e 174
24.6. Implementing itcccooiiiiiiiiiiiiiiiiiiii e 174
25. DebUGGINGooooiiiiiiiiiiiiiiiiii 177
25.1. Build configuration — conditional feature inclusionccoccooii 177
25,20 WALCHETSuiiiiiiiiiiiiiiit ittt ettt ettt ettt nenene 177
25.2.1. Watcher types ...ttt 177
25.2.2. USINg WatChersoiiiiiiiiiiiiiiiiiiiiiiiii e 178
25.2.3. Watcher Consoleccccoiiiiiiiiiiiii 178
25.2.4. Remote Watcher accesscccccviiiiiiiiiiiiiii 178

25.3. Memory trackingccccooviiiiiiiiiiiiiiiiii 179

bigw@RLD’

Client Programming Guide

25.3.1. ResourceCounters OVEIVIEWcccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiicee e 179
25.3.2. Memory allocation taxomomyccoeevviiiiiiiiiiiiiiii 179
25.3.3. €ase StUAIESooeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 180
25.3.4. Displaying the memory tracking console 188

254, SCIIPLS .ot eees 189
25.4.1. Python CONSOIeoouiiiiiiiiiiiiiiiiiiiiii e 189
25.4.2. Remote Python COnSoleoouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenes 190
25.4.3. Script reloadingooooiii 191
25.4.4. COIMIMOMN EITOTSoooiiiiiiinniiiiiiiiii e e ettt e e e e et et e e e s e e aab e e e e e e eeaaaaaaas 191

25.5. Script interactive debugging 191
25.6. Client Access Tool (CAT)ooooviiiiiiiiiiii 192
25.6.1. Connecting to the clientccccooiiiiiiiiiiiieeeeee 192
25.6.2. CAT SCIIPES .oooeviiiiiiiiiiiiiiiiiiiiiee e 193
25.6.3. Creating scripts for CATcccccoiiiiiiiiii s 194

25.7. THIMIILG «.ooviiiiiiiiiie bbb aaaaaae 200
26. Releasing The Game 201
26.1. Configure the engine for limited user accOUNtSiiiiiiiiiiiiiiiiiiiiiee 201
26.2. Prepare the @SSEtScooeiiiiiiiiiiiiiii ettt eeeeens 201
b3 2 U o T T o o] 4 V=T g S 201
26.2.2. T €S _PACKET ettt e et e e et e e et e aara s 202
26.2.3. Processing done in bi n_convert and res_packerccoooeeiiiiiiiiiiiiiiiiieeeeee, 204
26.2.4. Files and folders that do not need to be shipped to the end user............................ 205
26.2.5. Font Licensing issues with bi n_convert and res_packer 205

26.3. Zip assets and specify paths 205
26.4. Prepare the game executablecccccoiiiiiiiiiiiiiiiiiiiii e 207
27. Shared Development Environmentscccccccoiiiiiiiiii 209
27.1. Windows and Linux cross platform developmentcccooooiiiiii . 209
27.1.1. Sharing resources from Windowscccocoiiiiii 210
27.1.2. Accessing Windows share from Linuxccccoiiiiiii e, 210

27.2. Using BigWorld with a Version Control Systemcccccccc. 213
27.2.1. Customers using the Commercial Edition ..., 213
27.2.2. Customers using the Indie Editionoooii 213
27.2.3. Files to exclude from version controloooooeiiiiiiiiiiiiiiieee, 213

27.3. DBMgr database cOnflictscccceeiiiiiiiiiiiiiiiiiiii 215

viii Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 1. Overview

This document is a technical design overview for the Client Engine for 3d engine Technology. It is part of a
larger set of documentation describing the whole system. It only includes references to the BigWorld Server
in order to provide context. Readers interested only in the workings of the BigWorld Client may ignore the
server information.

The intended audience is technical-typically MMOG developers and designers.

For API-level information, please refer to the online documentation.

For details on BigWorld terminology, see the document Glossary of Terms.

1.1. Client in context

The BigWorld Client provides the end-user experience of the BigWorld client/server architecture. In a Big-
World client/server implementation, the client connects to the server using UDP/IP over the Internet.

The BigWorld Client presents the user with a realistic and immersive 3D environment. The contents of that
environment are a combination of static data stored with the client, and dynamic data sent from the server.
The user interacts with the world through an avatar (character) that he or she controls. The movement and
actions of that avatar are relayed to the server. The avatars controlled by other connected users are part of
the dynamic data sent from the server.

Bigwiorld Bigwiorld Bigworld
Client Client Client

N | /"
\ Intelrnet
UDF | UDF/

Bigorld
Senrer

uop

Client perspective of BigWorld system. Note that the BigWorld server is not just one machine, although the client can treat it as such.

Developers may choose to integrate the client with their own server technology, but if they do, they will have
to address problems already tackled by the BigWorld architecture, like:

* Uniform collision scene (used on client and server).
* Uniform client/server scripting (used on client and server).
* Tools that produce server and client content.

* Optimised low bandwidth communication protocol.

bigw@RLD"

#dest=

Overview

1.2. Outline

The client initialises itself, connects to the server, and then runs in its main thread a standard game loop (each
iteration of which is known as a frame):

¢ Receive input

* Update world

* Draw world

Each step of the frame is described below:
¢ Input

Input is received from attached input devices using DirectInput. In a BigWorld client/server implementa-
tion, input is also received over the network from the server using WinSock 2.

e Update
The world is updated to account for the time that has passed since the last update.
* Draw

The world is drawn with the 3D engine Moo, which uses Direct3D (version 9c). For details, see 3D Engine
(Moo) on page 135.

A number of other objects also fall into the world's 'update then draw' system. These include a dozen related
to the weather and atmospheric effects (rain, stars, fog, clouds, etc.), various script assistance systems (tar-
geting, combat), pools of water, footprints, and shadows.

There are other threads for background scene loading and other asynchronous tasks.

1.3. Resource search paths

The BigWorld client is a generic executable that is fully configurable via the game specific resources. The
location of these resources must be supplied to the client so that it can initialise correctly.

Typically, at least two resource paths need to be specified - your project specific resource path and the Big-
World resource path (which supplies common resources such as standard shaders, fonts, scripts, etc). For
example, if your game was located in "my_game", the two resource paths you would define are:

e ny_gane/res

* bigworld/res

When the engine tries to access a resource, it will look in each resource tree in the order that they are given
to the engine. As an example, if the client scripts request the resource named set s/ nodel s/ f oo. nodel
it tries the following locations:

e ny_gane/ res/ set s/ nodel s/ f 0oo. nodel

* bi gworl d/ res/ set s/ nodel s/ foo. nodel

The search will stop at the first valid file found. As such, it is possible to override resources specified in
bi gwor | d/ r es by placing it in the same location within ny_gane/ res.

There are two ways search paths can be specified:

10 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Overview

1.3.1. paths.xml

pat hs. xm is an XML file which the engine will look for on startup and contains a list of resource paths.
The client will first try to open pat hs. xm in the current working directory. If it cannot be found in the
current directory, then it will try to open pat hs. xm in the same folder as the client executable. The schema
of pat hs. xm looks like this:

<r oot >
<Pat hs>
<Pat h>../../nmy_gane/res</ Pat h>
<Pat h>../../bigworl d/res</Pat h>
</ Pat hs>
</root>

Paths are defined relative to the location of pat hs. xmi .

1.3.2. Command line switch

By default the client will look for the pat hs. xml illustrated above. However, this can be overridden via the
command line using the - - r es switch. Multiple paths are semi-colon separated. For example,

"bwclient.exe" --res ../../..Iny_ganme/res;../../../bigworld/res

These paths must be defined relative to the executable location, ot the current working
directory.

1.4. Configuration files

Configuration files are defined relatively to one of the entries in the resources folders list (or <r es>). For
details on how BigWorld compiles this list, see “Resource search paths” on page 10

1.4.1. Fileresour ces. xni

This file defines game-specific resources that are needed by the client engine to run.

The entries in resources.xml are read from the various entries in the resources folders list (or <r €s>), in the
order in which they are listed. Only missing entries will have their values read in subsequent folders.

A default file exists under folder bigworld/res, and any of its resources may be overridden by creating your
own file <r es>/r esources. xn .

The example below illustrates this mechanism:

bigw@RLD"

Overview

SEEF> = E:.I':rrgf_gmm.l’:l::s; C: Mt /bigwerldfzes

c: .I':rr:_fg_g'a:me fres frazourocss uml

<rerource s . xml x>

<erwi ronment -
2floralHL= | HY flora.muml < /florafHL>

C:fmf/bigworld /res/resoaroes 3onl
<rerource s . xml x>
<erirorment -
<1 1o & HL = EW floza .mml <0 £ Lo radHL =
Sz1mF lareHL = lﬁ?_gmﬂue :u:mll Sl mFlare¥HL =

Walues uzed l"

<f 1o &aHL = Hf_ﬂ-:-:l:a..:u:ml < fflorasHL =
< sunFlar =¥HL- B"i'i"_su.nfla:l:i: ol = fesamnF lareFHL =

Precedence of your game's r esour ces. xn file over BigWorld's ones

For a complete list of the resources and values used by BigWorld, refer to the r esour ces. xni file provided
with the distribution.

1.4.2. File <engi ne_confi g>. xm

The XML file <engi ne_conf i g>. xni lists several engine configuration options.

The actual name and location of this file is defined by the r esour ces. xm 's <engi neConf i gXM_> tag.
The location of the r esour ces. xm file is always defined relative to one of the entries in the resources
directories list (or <r es>), which will be searched in the order in which they are listed.

An example follows below:

SEmARr = E:.I‘m_vg_game.l'::es; C:/mtf/bigworld/res
E:M_gme.l’:es.-"res-:-urces.mﬂ. (] C:/mf/bigworld/res /resonroes 3onl
“<rerource s . xml -

<ryrtoemi
fengineConfigfHL: engine config.iml < fengineContigdHL =
-c:.'tl:r:i.Pt-sEn:-nfig:{!-I[.}I:riPt-s_:-:-nfig.:-crnl <froriptsConfi g¥ML>-

C:fmy game fres fengine config.aond OR C:fmf bigworld fres fengine config. ol

<engine_config. »ml:-

<preferences> options.xml <fpreference s>

Locating <engi neConf i gXM_>'s file

Under the main section of the XML file, a personality tag must be included, naming the personality script
to use.

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Overview

Several other tags are used by BigWorld to customise the way the client runs. For a complete list of the
supported tags and a description of their functions, refer to the engi ne_confi g. xm file provided with
the distribution. Additional information can also be found in the Client Python APL

The data contained in this file is passed to the personality script as the second argument to the i ni t method
(for details, see “i ni t ” on page 62), in the form of a Dat aSect i on object.

1.4.3. File <scri pts_confi g>. xm

The XML file <scri pt s_conf i g>. xnl can be used to configure the game scripts. It has no fixed grammar,
and its form can be freely defined by the script programmer.

The actual name and location of this file is defined by the r esour ces. xm 's scri pt sConf i gXM. tag —
its location is always defined relative to one of the entries in the resources folders list (or <r es>), which will
be searched in the order in which they are listed.

<EmE® = E:.I‘:Tc_':r_g'me.l'res; C:/mt/bigworld/rexs

c: .I':I'I'IZ_':"_g'EITl.t jresoureces ond OF C Jimffbigworldfres e soarces . wml

<rerources.xml-

<EysteEm-
ZengineConfigfHLs angine config.iml =/ engineCont igdHL =
<rreripbslonfigiML>-scripts_ronfig. wml <fscriptslonfigiMLe-

C:fmy_game fseripts config.aond OR C: mEfbigworldfres/soripts_config. sml

<rcripts_config. =ml >

Locating scri pt sConfi gXM.'s file

The data contained in this file is passed to the personality script as the first argument to the i ni t method
(for details, see “i ni t ” on page 62), in the form of a Dat aSect i on object.

1.4.4. File <pr ef erences>. xni

The XML file <pr ef er ences>. xml is used to save user preferences for video and graphics settings, with
a pre-defined grammar.

The file also embeds a data section (called scr i pt sPr ef er ence) that can be used by scripts to persist game
preferences — there is no fixed grammar for this section.

The actual name and location of this file is defined in file specified by r esour ces. xmi 'sengi neConf i gXM.
tag, in the pr ef er ences tag.

bIgW@RLD" 5

api_python/client/index.html#dest=Client_Python_API

Overview

CEEE» = E:.l':my_gmn.e.l’:l:es; C:fmf/bigworld fres

E:hg_gmf:esou:ces.:mﬂ. DHE:,fmf,fbig'mrld,f:es,f:esmrces.ml
<resource:s.xml >
“EyrtEmn-
Zengine ConfigfHL: engine config.ioml </ enginelont igdHL =
<scripbsConfigiML-scripts_config. sml <f scriptsConfi gL

¥
C: fmg game fengine config.aml OR C: fmf /bigworldfres fengine config.ml
<engine_config. sml>
<preferences> options. sml

<pathBare:> EXE|PATH <fpathEase:
“<fpreference s>

“gAwme_execeatable folderr foptions . wml
<options. xml -

<scriptsPreferencer

Locating engi neConf i gXM.'s preferences' file

By default the preferences XML file is relative to the client executable location, but this can be changed to
a number of other base paths by specifying a pat hBase subtag (e.g. it can be defined to be relative to the
user's My Documents directory). The base path can be defined as an optional sub-tag of the preferences tag.
The available path bases for <preferences>.xml are:

* EXE_PATH — The preferences XML file will be stored relative to the location of the client executable. This
is the default location if none is supplied.

* CWD — The preferences XML file will be stored relative to the current working directory. Note that if the
working directory changes during runtime, it will save in the new working directory.

* ROAM NG_APP_DATA — The preferences XML file will be stored relative to the current user's roaming
AppData directory. In other words, if the user is on a domain the data will be syncronised with the domain
controller when the user logs in and out of Windows.

* LOCAL_APP_DATA — The preferences XML file will be stored relative to the current user's local AppData
directory.

e APP_DATA — This is the same as ROAM NG_APP_DATA.
* MY_DQCS — The preferences XML file will be stored relative to the current user's My Documents directory.

* MY_PI CTURES — The preferences XML file will be stored relative to the current user's My Pictures direc-
tory.

* RES_TREE — The preferences XML file will be stored relative to the first resource path found in
pat hs. xm .

The data contained in the scri pt sPr ef er ence of this file is passed to the personality script as the third
argument to the i ni t method (for details, see “i ni t ” on page 62), in the form of a Dat aSect i on object.

The current user preferences can be saved back into the file (including changes to the Dat aSect i on that rep-
resents the script preferences) by calling Bi gWor | d. savePr ef er ences. For details, see the Client Python
API.

1.5. Coordinate System

BigWorld uses a left-handed coordinate system. The x-axis points “left”, the y-axis points “up” and the z-
axis points “forward”.

14

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

api_python/client/index.html#dest=Client_Python_API
api_python/client/index.html#dest=Client_Python_API

Overview

yaw is rotation around the y-axis. Positive is to the right, negative is to the left.
pitch is rotation around the x-axis. Positive is nose pointing down, negative is nose pointing up.

roll is rotation around the z-axis. Positive is to the left, negative is to the right.

bIgW@RED =

Chapter 2. User Input

The BigWorld client uses a combination of Windows messages and the Windows raw input API for keyboard
and mouse input. It reads key-up, key-down, and character press events from the keyboard as well as high
resolution movement events from the mouse. It uses the DirectInput API to read button and axis movement
events from joysticks.

2.1. Key events

Key events, encapsulated by the KeyEvent object (Bi g\WWr | d. KeyEvent in Python), are generated by de-
vices that have keys or buttons. This includes the keyboard, mouse buttons, and joystick buttons.

The two basic types of key events are key-down and key-up.

2.1.1. Character events

If a KeyEvent is generated by the keyboard, it may have a character attached to it. The character generated
by a particular key is determined by the currently set locale and input language in the operating system, and
is represented by the KeyEvent . char act er member (a Unicode string).

Dead character keys are supported (e.g. in Spanish, a user can type the letter é by first pressing the apostrophe
key followed by the e key). In this case the first key press will not have a character associated with it, and
the second key press will have the final character.

The BigWorld client supports advanced Input Method Editors (IME). See Input Method Editors (IME) on page
125 for details on using an IME in your game.

2.1.2. Auto-repeat

The keyboard will generate auto-repeat events when keys are held down, based on the user's operating
system settings (e.g. repeat delay). The mouse and joystick do not generate auto-repeat events.

Auto-repeat events are sent as additional key-down events, however scripts that do not want to handle repeat
events can call the KeyEvent . i sRepeat edEvent method to determine whther or not it is an auto-repeat
event.

2.1.3. Sequence of events

When the user presses a button (keyboard, mouse or joystick), the sequence of events are:

* The first key-down event.

o If the key is held down, multiple key-down events are raised due to auto-repeat (keyboard only).

* A key-up event is triggered when the user releases the button.

The output from the user input module is processed by a number of other modules, which take it in turn to
examine events and either consume or ignore them. If an event is not consumed by any module then it is
discarded. The order of modules that get a turn at the events is as follows:

* Debug — Special keys, consoles, etc.

* Personality script — Global keys.

* Application — Hard-coded keys such as QUI T.

* Player script — The rest, which is the major part of the processing.

bIgW@RLD" .

Note that the GUI system does not automatically receive input, instead it is up to the
script write to choose when. This could be either in the personality script, or in the
player script. The most obvious place is in the personality script callbacks, for example
in the personality script's handleKeyEvent, you should call GUI . handl eKeyEvent ()
and check the return value.

Similarly, the active camera also does not automatically receive input events. It is up to
the Python scripts to decide when and where the camera receives user input.

2.1.4. Sinking events

The BigWorld client performs event matching to ensure consistent module behaviour. If a key-down event is
consumed by a module, that module's identifier is recorded as the sink of the event's key number. When the
corresponding auto-repeat and key-up event arrives, it is delivered directly to that module. For example, if a
chat console is brought up (and inserted into the list) while the player is running, and the user subsequently
releases the run key, then the player script will still get the key-up event for that key, and be able to stop
the run action.

In some cases it may be desired to temporarily block certain key events from being passed into the scripts. For
example, the GUI scripts may handle a key down event by removing the current GUI screen and replacing
it with a new GUI screen. By default, since the new GUI screen has become the active screen by the time
handl eKeyEvent returns, any associated auto-repeat and key-up events will be posted to the new GUI
screen creating possibly unwanted behaviour.

The Bi gWor | d. si nkKeyEvent s function can be used to stop all key events for the given key-code from
reaching the scripts until (and including) the next key-up. See the Python API guide for details.

2.1.5. Mouse cursor position

It is often a requirement to know where the mouse was when a key event occured (i.e. rather than where
the mouse is at the time of handling the event), especially when processing mouse button events. Therefore,
the mouse cursor position is available via the KeyEvent . cur sor Posi ti on property, and should be used
instead of GUI . ntur sor (). posi ti on where ever possible.

2.2. Mouse

2.2.1. Movement

High resolution mouse movement events are sent to the scripts as a MouseEvent . This object exposes three
direction deltas.

* The dx and dy members are signed integers indicating movement of the mouse in the X and Y directions.

* The dz member represents movement of the mouse wheel.

If multiple mouse deltas arrive from the driver within a single frame, they are accu-
mulated into a single MouseEvent .

Similar to the KeyEvent object, the mouse cursor position for when the event occured is available as a mem-
ber of the MouseEvent object.

User Input

2.2.2. Buttons

Mouse buttons are sent as a KeyEvent, however they do not generate auto-repeat events. See “Key
events” on page 17 for details.

2.3. Joystick

The BigWorld client will automatically detect the first joystick device attached to the system, and is been
designed to be used with dual-stick style joypads.

2.3.1. Axis events

When axis events occur, they will be sent to the scripts as an Axi SEvent object via the handl eAxi sEvent
personality script function.

2.3.2. Buttons

Joystick buttons are sent as a KeyEvent, however they do not generate auto-repeat events. See “Key
events” on page 17 for details.

2.3.3. Controlling player direction

The C++ engine will automatically pass axis events to the active cursor, so the direction cursor can be joystick
controlled by setting it as the active cursor using Bi gWor | d. set Cur sor . The direction cursor will process
any events generated by the right axis.

2.3.4. Avatar movement

The C++ engine will also give the physics subsystem a chance to handle axis events. The physics treats axis
input as a special case and will scale movement speed by how far the user as pushed the joystick forward.

In order to enable joystick support on movement physics, set the Physi cs. j oysti ckEnabl ed property to
True and be sure to set j oyst i ckFwdSpeed and j oyst i ckBackSpeed properties to values appropriate
for your game.

bIgW@RLED" .

Chapter 3. Cameras

The placement of the camera update within the general update process is a delicate matter, because the
camera depends on some components having been updated before it, whilst other components depend on
the camera being updated before them.

Conceptually, there are four types of camera: fixed camera, FlexiCam, cursor camera, and free camera. The
first three are client-controlled views, ranging from minimum user interaction to maximum user interaction.
The last camera is completely user-controlled, but is not part of actual game play.

There are however just three camera classes: FI exi Cam Cur sor Carrer a, and Fr eeCarner a. The fixed cam-
era is implemented with a FI exi Camobject. They all derive from a common BaseCaner a class.

There is only ever one active camera at a time. The personality script usually handles camera management,
since the camera is a global, but any script can also manipulate the camera, and the player script often does
(although usually indirectly, through the personality script)

The base class and all the derived classes are fully accessible to Python. Any camera can be created and set
to whatever position a script desires, including to the position of another camera. This is particularly useful
when switching camera types to remove any unwanted 'jump-cuts'.

3.1. The Cursor Camera

The cursor camera is a camera that follows the character in the game world. It always positions itself on a
sphere centred on the character's head. It works primarily with the direction cursor so as to face the camera
in the direction of the character's head. You may use any MatrixProvider in place of the direction cursor, and
you may use any MatrixProvider in place of the player's head.

The direction cursor is an input handler that translates device input from the user into the manipulation of an
imaginary cursor that travels on an invisible sphere. This cursor is described by its pitch and yaw. It produces
a pointing vector extending from the head position of the player's avatar in world space, in the direction of
the cursor's pitch and yaw. The direction cursor is a useful tool to allow a targeting method across different
devices. Rather than have each device affect the camera and character mesh, each device talks to the direction
cursor, affecting its look-at vector in the world. The cursor camera, target tracker, and action matcher then
read the direction cursor for information on what needs to be done.

The cursor camera takes the position of the direction cursor on the sphere, extends the line back towards the
character's head, and follows that line until it intersects with the sphere on the other side. This intersection
point is the cursor camera's position. The direction of the camera is always that of the direction cursor.

The cursor camera is an instance of the abstract concept InputCursor. There can be only one active InputCur-
sor at any time, and BigWorld automatically forwards keyboard, joystick, and mouse events to it. Upon start-
up, the cursor camera is the active InputCursor by default. You can change the active InputCursor at any
time, using the method BigWorld.setCursor (for example to change the InputCursor to be a mouse pointer
instead).

3.2. The Free Camera

The Free Camera is a free roaming camera that is neither tied to a fixed point in space nor following the
player's avatar. It is controlled by the mouse (for direction) and keyboard (for movement), and allows the
user to fly about the world. The free camera has inertia in order to provide smooth, gradual transitions in
movement. It is not a gameplay camera, but is useful for debugging, development, and demonstration of
the game.

bigw@RLD"

Cameras

3.3. The FlexiCam

The FlexiCam is a flexible camera that follows the character in the game world. It always positions itself at
a specified point, relative to the character orientation, and always looks at a specified orientation, relative
to the character's feet direction.

It is called FlexiCam because it has a certain amount of elasticity to its movement, allowing the sensation of
speed to be visualised. This makes it especially useful for chasing vehicles.

22 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 4. Terrain

The terrain system employed by the BigWorld client integrates neatly with the chunking system. It allows a
wide variety of terrains to be created in an artistic manner and managed efficiently. There are two different
terrain renderers available that target different machine specifications. They are called Advanced Terrain
and Simple Terrain.

4.1. Advanced Terrain

4.1.1. Overview

The advanced terrain engine uses a height map split up into blocks of 100 by 100 metres. Each block consists
of height and texture information, normals, a hole map and LOD information.

4.1.2. Key Features

* Configurable height map resolution

* Unlimited number of texture levels with configurable blend resolution and projection angles
¢ Configurable normal map resolution

¢ Configurable hole map resolution

* Per pixel lighting

LOD System

* Geo mip-mapping with geo-morphing
* Normal map LOD

¢ Texture LOD

* Height map LOD

4.1.3. Texturing

Texturing is done by blending multiple textures layers together, each texture layer has its own projection
angle and blend values for blending with other texture layers. The resolution of the blend values is config-
urable per space and the layers themselves are stored per chunk. The textures are assumed to be rgba with
the alpha channel used for the specular value.

4.1.4. Lighting

The lighting of the advanced terrain is performed per pixel. A normal map is stored per block, which is used
in the lighting calculations, this is combined with the blended texture to output the final colour. The terrain
allows up to 8 diffuse and 6 specular lights per block. For details of how the specular lighting is calculated
see “Terrain specular lighting” on page 32

4.1.5. Shadows

The terrain uses a horizon shadow map for shadowing, this map stores two angles (east-west) between which
there is an unobstructed view of the sky from the terrain. In the terrain shader, these angles are checked
against the sun angle and the sun light is only applied if the sun angle falls between the horizon angles.

4.1.6. LOD

The purpose of the LOD system is to reduce the amount of cpu and gpu time spent rendering terrain and to
reduce the memory footprint of the terrain. The terrain LOD system achieves this by reducing geometric and

bIgW@RLD" 7

Terrain

texture detail in the distance and loading/unloading high resolution resources as they are needed. The LOD-
ing is broken up by resource so that texture and geometric detail can be streamed separately. The LOD dis-
tances are configurable in the space.settings file, please see “t er r ai n sectionin space. setti ngs” on page
29 for more information.

4.1.6.1. Geometry

Geometry LOD is achieved by using geo- i pmaps and geo- nor phi ng. Geo- m praps are generated from
the high resolution normal map for the terrain block. Depending on the x/z distance from the camera a lower
resolution version of the terrain block is displayed. To avoid popping when changing between the different
resolutions of the height map, geo-morphing is used, this allows the engine to smoothly interpolate between
two height map levels. Degenerate triangles are inserted between blocks of differing sizes to avoid sparkles.

4.1.6.2. Collision Geometry

Collision geometry is streamed in using two distinct resolutions. The low resolution collisions are always
available, whereas the higher resolution collisions are streamed in depending on their x-z distance from the
camera.

4.1.6.3. Texture

Texture LOD is performed by substituting the multi-layer blending with a single top-down image of the
terrain block. The LOD image is smoothly blended in based on the x-z distance from the camera. The top-
down image is generated in the World Editor.

4.1.6.4. Normal maps

Normal map LOD is performed by using low-resolution and high resolution maps. The low resolution nor-
mal map is always available and the high resolution map is streamed in and blended based on the x-z dis-
tance from the camera. The normal maps are generated in the World Editor. The size of the LOD normal map
is a 16th of the resolution of the normal map or 32x32 whichever value is larger.

4.1.7. Memory footprint

Since the advanced terrain allows for a number of configuration options the memory footprint of the terrain
depends on the options selected.

In the Fantasydemo example provided, the terrain overhead is as follows (this information was captured
using the resource counters in the Fantasydemo client, the graphics settings were set to high and the far
plane was set to 1500 metres):

(this includes the textures used by the texture layers, which may also be used by other assets)

Collision data 42,453,517
Vertex buffers 6,169,008
Index buffers 536,352
Texture layers 57,541,905
Shadow maps 26,361,856
LOD textures 35,148,605
Hole maps 4,096
Normal maps 6,572,032
Total 174,787,371

Terrain memory usage

24 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Terrain

4.1.8.terrai n2resources

At errai n2 section is contained in a chunk's . cdat a file. It contains all the resources for the terrain in a
chunk. The different types of terrain data are described in BNF format in the following chapter.

4.1.8.1. hei ght s sections

The hei ght s sections stores the height map for the terrain block. Multiple hei ght s sections are stored in
the block, one for each LOD level, each hei ght s section stores data at half the resolution of the previous
one. The hei ght s sections are named as " hei ght s? " where ? is replaced by a number. The highest res
height map is stored in a section named heights the second highest in a section called heights1 all the way
down to a map that stores 2x2 heights. This way if the height map resolution is 128x128, 7 height maps are
stored in the file (heights, heightsl, ... heights6)

<hei ght Map> :: = <header ><hei ght Dat a>
<header> ::=
<magi c><wi dt h><hei ght ><conpr essi on><ver si on><ni nHei ght ><maxHei ght ><paddi ng>

° <magi c>
uint32 0x00706d68 (string "hmp\0")
° <wi dt h>
uint32 containing the width of the data
* <hei ght >
uint32 containing the height of the data
e <conpressi on>
(unused) uint32 containing the compression type
e <version>
uint32 containing the version of the data, currently 4
° <m nHei ght >
float containing the minimum height of this block
e <maxHei ght >
float containing the maximum height of this block
e <paddi ng>
4 bytes of padding to make the header 16-byte aligned
* <hei ght Dat a>

PNG compressed block of int32 storing the height in millimetres, dimensions = width * height from the
header

4.1.8.2.1 ayer sections

The | ayer sections store the texture layers for the terrain block. Multiple | ayer sections are stored in the
terrain block. Each section describes one texture layer. The | ayer sections are named "| ayer ? " where ?

bIgW@RLED" -~

Terrain

is replaced by a number greater than 1. Le if the block has 3 layers, three layer sections will be stored ("layer
1", "layer 2", "layer 3")

<t exturelLayer> ::= <header ><t ext ur eNane><bl endDat a>
<header> ::=
<magi c><wi dt h><hei ght ><bpp><uPr oj ect i on><vPr oj ecti on><ver si on><paddi ng>
<t extureNanme> ::= <l ength><string>
° <magi c>

uint32 0x00646¢62 (string bld/0")
° <wi dt h>
uint32 containing the width of the data
e <hei ght >
uint32 containing the height of the data
* <bpp>
(unused) uint32 containing the size of the entries in the layer data
e <uProj ecti on>
Vector4 containing the projection of the u coordinate of the texture layer
e <vProjection>
Vector4 containing the projection of the v coordinate of the texture layer
e <version>
uint32 containing the version of the data, currently 2
e <paddi ng>
12 bytes of padding to make the header 16-byte aligned
* <| engt h>
the length of the texturename string
e <string>
the name of the texture used by this layer
* <bl endDat a>

png compressed block of uint8 defining the strength of this texture layer at each x/z position
4.1.8.3. nor mal s & | odNor nal s sections

The nor mal s section stores the high resolution normal map for the terrain block. The | odNor mal s section
stores the LOD normals for the height block, the LOD normals are generally 1/16th of the size of the normals.

<normal s> :: = <header ><dat a>
<header > ::= <mmgi c><ver si on><paddi ng>

26 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Terrain

* <magi c>
uint32 0x006d726e (string "nrm/0")
e <version>
uint32 containing the version of the data, currently 1
* <paddi ng>
8 bytes of padding to make the header 16-byte aligned
¢ <dat a>

png compressed block storing 2 signed bytes per entry for the x and z components of the normal the y
component is calculate in the shader

4.1.8.4. hol es section

The hol es section stores the holemap for the terrain block, this section is only stored when a terrain block
has holes in it.

<hol es> :: = <header ><dat a>
<header > ::= <magi c><wi dt h><hei ght ><ver si on>
e <magi c>

uint32 0x006c6£68 (string "hol/0")
e <wi dt h>
uint32 containing the width of the data
* <hei ght >
uint32 containing the height of the data
e <version>
uint32 containing the version of the data, currently 1
* <dat a>

The hole data stored in a bit field of width * height, each row in the data is rounded up to 1 byte. If a bit
is set to 1 it denotes a hole in the map.

4.1.8.5. hori zonShadows section

The hor i zonShadows section stores the horizon shadows for the terrain block.

<shadows> ::= <header ><dat a>
<header > :: = <nmmgi c><w dt h><hei ght ><bpp><ver si on><paddi ng>
° <magi c>

uint32 0x00646873 (string "shd/0")

e <wi dt h>

DIgGW@RLD 7

Terrain

uint32 containing the width of the data
e <hei ght >

uint32 containing the height of the data
* <bpp>

(unused)uint32 containing the bits per entry in the data
e <version>

uint32 containing the version of the data, currently 1
e <paddi ng>

12 bytes of padding to make the header 16-byte aligned
¢ <dat a>

The shadow data, (uint16,uint16) * width * height, the horizon shadow data stores two angles between
which there is no occlusion from any terrain or objects.

4.1.8.6.1 odText ur e. dds section

The | odText ur e. dds section stores the LOD texture for the terrain block. The LOD texture is a low reso-
lution snapshot of all the texture layers blended together. The texture is stored in the DXT5 format. For more
information about the dds texture format please refer to the DirectX documentation.

4.1.8.7. dom nant Text ur es section

The domi nant Text ur es section stores the dominant texture map. The dominant texture map stores the
texture with the highest blend for each x/z location in the terrain block.

<dom nant > :: =<header ><t exNanes><dat a>
<header> :: =
<magi c><ver si on><nuniText ur es><t exNaneSi ze><w dt h><hei ght ><paddi ng>

* <magi c>
uint32 0x0074616d (string "mat/0")
e <version>
uint32 containing the version of the data, currently 1
e <nunifext ur es>
uint32 containing the number of textures referenced by the dominant texture map
e <t exNaneSi ze>
uint32 containing the size of the texture entries
° <wi dt h>
uint32 containing the width of the data

e <hei ght >

28 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Terrain

uint32 containing the height of the data
e <paddi ng>

8 bytes of padding to make the header 16-byte aligned
e <t exNanes>

nunText ur es entries of t exNanmeSi ze size containing the names of the dominant textures referred to in
this map. Texture names shorter than t exNameSi ze are padded with 0

e <dat a>

stored as a compressed bin section. byte array of width * height, each entry is an index into the texture
names which indexes the dominant texture at the x/z location of the entry

4.1.9.terrainsectionin space. settings

The terrain section in the space. set t i ngs file contains the configuration options for the terrain. The values
in the | odl nf 0 and ser ver sections can be modified, but the root level values should only be modified
by the World Editor.

<version> 200 (int) </version>
<hei ght MapSi ze> ui nt </ hei ght MapSi ze>
<nor mal MapSi ze> ui nt </ nor mal MapSi ze>
<hol eMapSi ze> ui nt </ hol eMapSi ze>
<shadowVapSi ze> ui nt </ shadowvapSi ze>
<bl endMapSi ze> ui nt </ bl endMapSi ze>
<| odl nf 0>
<startBias> fl oat </startBi as>
<endBi as> fl oat </endBi as>
<l odTextureStart> float </l|odTextureStart>
<| odText ureDi st ance> fl oat </| odTextureDi stance>
<bl endPr el oadDi st ance> fl oat </ bl endPrel oadDi st ance>
<l odNormal Start> fl oat </|odNornal Start >
<| odNor mal Di st ance> fl oat </| odNor mal Di st ance>
<nor nal Prel oadDi st ance> fl oat </nornal Prel oadDi st ance>
<def aul t Hei ght MapLod> ui nt </ def aul t Hei ght MapLod>
<det ai | Hei ght MapDi st ance> fl oat </detail Hei ght MapDi st ance>
<| odDi st ances>
+<di stance?> float </di stance?>
</ | odDi st ances>
<server>
<hei ght MapLod> ui nt </ hei ght MapLod>
</ server >
</| odl nf 0>

e <version>
The version of the terrain, this value is 200 for advanced terrain
e <hei ght MapSi ze>
The size of the height map per terrain block, this value is a power of 2 between 4 and 256
e <nor mal MapSi ze>
The size of the normal map per terrain block, this value is a power of 2 between 32 and 256

e <hol eMapSi ze>

bIgW@RLD" %

Terrain

The size of the hole map per terrain block, this can be any value up to 256

<shadowapSi ze>

The size of the shadow map per terrain block, this value is a power of 2 between 32 and 256
<bl endMapSi ze>

The size of the blend maps per terrain block, this value is a power of 2 between 32 and 256
<l odl nf 0>

This section contains the configurations for the terrain LOD system

<startBi as>

This value is the bias value for the start of geo-morphing, this value defines where a LOD level starts fading
out to the next one. This value is a factor of the difference between two lodDistances.

<endBi as>

This value is the bias value for the end of geo-morphing, this value defines where a LOD level has fully
faded out to the next one. This value is a factor of the difference between two lodDistances.

<l odTextureStart >

This is the start distance for blending in the LOD texture, up until this distance, the blended layers are
used for rendering the terrain.

<| odText ur eDi st ance>
This is the distance the lodtexture is blended in over, this value relative to | odText ureSt art .
<bl endPr el oadDi st ance>

This is the distance at which the blends are preloaded, this value is relative to lodTextureDistance and
lodTextureStart

<l odNor nal Start >

This is the start distance for blending in the LOD normals

<l odNor nal Di st ance>

This is the distance the full normal map is blended in over, this value relative to | odNor mal Start .
<nor mal Pr el oadDi st ance>

This is the distance at which the full normal maps are preloaded. This value is relative to| odNor mal St ar t
and | odNor nal Di st ance

<def aul t Hei ght MapLod>

This is the default LOD level of height map to load, 0 = the full height map, 1 = half resolution, 2 = quarter
resolution etc.

<det ai | Hei ght MapDi st ance>
This is the distance at which the full height map is loaded

<l odDi st ances>

30

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Terrain

This section contains the geometry LOD distances.
¢ <di st ance>

The di st ance sections define the distances at which each geometry LOD level is blended out. di st ance0
is for the first LOD|evel, distancel for the second LOD | evel etc. The di stance
between LOD levels nust be at least half the diagonal distance of a terrain
bl ock (~71), this is because we only support a difference of 1 LOD | evel between
nei ghbouring bl ocks.

e <server>
This section contains the information used by the server
e <hei ght MapLod>

This defines which LOD level to load on the server, this value is used to speed up loading on the server.
4.2. Simple Terrain
4.2.1. Key features

* Works with the chunking system.
¢ Individual grid squares addressable from disk and memory.
* Based on a 4x4 metre grid (tiles), which matches portal dimensions.

* Low memory footprint.

Low disk footprint.

Fast rendering.

Automatic blending.
* Easy tool integration.
* Layered terrain with tiled textures for easy strip creation.

* Uses texture projection to apply texture coordinates to save vertex memory.

4.2.2. Overview

The terrain is a huge height map defined by a regular grid of height poles, every 4x4 metres. Terrain is
organised into terrain blocks of 100x100 metres. Each of these blocks can have up to four textures, which are
blended on a per-vertex (i.e., per-pole) basis. The terrain also is self-shadowing, and allows holes to be cut
out of it, for things like cave openings. The terrain also contains detail information, so that the detail objects
can be matched to the terrain type.

4.2.3. Chunking

The terrain integrates properly with the chunking: each terrain block is 100x100 metres, which is the size of
the outside chunks. The terrain blocks are stored in separate files, so that they can be opened as needed.

4.2.4. Disk footprint

Each terrain block covers one chunk, each with dimension of 100x100 metres. It contains 28x28 height, blend,
shadow, and detail values (there are two extra rows and one column to allow for boundary interpolation).
Each terrain block also stores 25x25 hole values, one for each 4x4m tile.

bIgW@RLD" &

Terrain

The table below display the terrain cost per chunk.

Component Size calculation Size
Headers 256 (header) + 128 x 4 (texture names) 768
Height 28 x 28 x sizeof(float) 3,136
Blend 28 x 28 x sizeof(dword) 3,136
Shadow 28 x 28 x sizeof(word) 1,568
Detail 28 x 28 x sizeof(byte) 784
Hole 25 x 25 x sizeof(bool) 625
Total 10,017

Terrain cost per chunk

For example, for a 15x15 km world the total disk size of the terrain would be: 10,017 x 150 x 150 ~ 215MB.

4.2.5. Memory footprint

With a field of view of 500m, and each terrain block covering 100x100 metres, a typical scene would require
roughly 160 terrain blocks in memory at any one time.

The memory usage of this much terrain is about 2MB, plus data management overheads.

4.2.6. Texture spacing

The Ter r ai nText ur eSpaci ng tag included in the envi r onment section of file <r es>/ r esour ces. xni
(for details on the precedence of entries in the various copies of file resources.xml, see “File
resour ces. xm ” on page 11) determines the size (in metres) to which texture map will be stretched/shrunk
when applied to the terrain.

This value determines both the length and height of the texture tile.

4.3. Terrain specular lighting
The equation for the specular lighting is:
SpeClr = TerSpeAmt * ((SpeDfsAmt * TerDfsClr) + SunClr) * SpeRfl

The list below describes each variable:
* Sped r (Specular colour)

Final colour reflected.
* Ter SpeAnt (Specular amount)

Value is given by the weighted blend of the alpha channel of the 4 terrain textures.
* SpeDf sAnt (Specular diffuse amount)

Initial value is stored in the variable specul ar Di f f useAnpunt in the effect file bi gwor | d/ res/
shaders/terrain/terrain.fx.

Its value can be tweaked during runtime via the watcherr ender / t er r ai n/ specul ar Di f f useAmount .

Once the desired result is achieved, the new value can be stored in the effect file.

Terrain

e Ter Df sCl r (Terrain diffuse colour)
Value is given by the weighted blend of the RGB channels of the 4 terrain textures.
* SunC r (Sunlight colour)
Colour impinged by sunlight.
e SpeFl r (Specular reflection)
Specular reflection value at the given pixel, adjusted by the Specular power coefficient

As a result of the formula, a small amount of the Terrain diffuse colour (Ter Df sC r) is added to the Sun-
light colour (SunCl r) to give the Specular colour (SpeC r).

The initial value of the power of specular lighting is stored in the variable specul ar Power in the effect
file bi gwor | d/ res/ shaders/terrain/terrain. fx. Its value can be tweaked during runtime via the
watcher render/ t er r ai n/ specul ar Power . Once the desired result is achieved, the new value can be
stored in the effect file.

Note that the Specular power can only be adjusted for shader hardware version 2.0 and later. Earlier versions
of shader hardware are limited to a Specular power value of 4 (which is the default for shader hardware
version 2.0 and later).

The final amount of specular lighting applied to the terrain is affected by the variable
specMul ti pli er in file bi gwor | d/ res/ shaders/terrain/terrain.fx.

Set it to anything other than 1 to rescale the specular lighting, or 0 to completely disable
it.

Terrain specular lighting can be turned off via TERRAI N_SPECUL AR graphics settings.

For details, see “Graphics settings” on page 154 .

™

I___
d

bigw®R

Chapter 5. Cloud shadows

All objects in the BigWorld client engine that are drawn outside are affected by cloud shadows. This effect is
applied per-pixel, and is performed using a light map-stored as a texture feed in the engine that is projected
onto the world.

This light map is exposed to the effects system via macros defined in the file bi gwor | d/ r es/ shader s/
std_effects/stdinclude. fxh.

By default, the texture feed is named skyLi ght Map, and therefore is accessible to Python via the command:
Bi gWor | d. get Text ureFeed("skyLi ght Map")

Information for the sky light map is found in the sky XML file, which is defined in the file <r es>/ spaces/
<space>/ space. setti ngs (for details on this file's grammar, see the document File Grammar Guide's
section space. set ti ngs) for the given space. The parameters are the same as in any BigWorld light map.

5.1. Requirements

Cloud shadowing requires one extra texture layer per material. While the fixed-function pipeline supports
this for most materials, cloud shadowing on bump-mapped and specular objects requires more than four sets
of texture coordinates, meaning that for bump-mapped objects it will only work on Pixel Shader 2 and above.

5.2. Implementation

The sky light map is calculated by the code in C++ file src/ | i b/ ronp/ sky_| i ght _map. cpp, and is up-
dated by the sky module during draw.

It is exposed to the effect engine via automatic effect constants. The light map is updated only when a new
cloud is created, or the current set of clouds has moved more than 25% downwind.

Between updates, the projection texture coordinates are slid by the wind speed so that the cloud shadows
appear to move with the clouds. All effect files incorporate the cloud shadowing effect, including the terrain
and flora.

5.3. Effect File Implementation

There are two effect constants exposed to effect files to aid with sky light mapping:
e SkyLi ght MapTransform

Sets the "World to SkyLightMap" texture projection.Use this constant to convert x,z world vertex positions
to u,v texture coordinates.

e SkyLi ght Map
Exposes the sky light map texture to effect files.

There are several macros in file bi gwor | d/ r es/ shader s/ st d_ef f ect s/ st di ncl ude. f xh that assist
with integrating cloud shadowing into your effect files.

These macros are described in the list below:
e BW SKY_LI GHT_MAP_OBJECT SPACE, BW SKY LI GHT_MAP_WORLD SPACE

These macros declare the variables and constants required for the texture projection, including;

bigw@RLD" -

#dest=
#dest=

Cloud shadows

* World space camera position.
* Sky light map transform.
e The sky light map itself.

When using an effect file that performs lighting in object space (for example, if you are also using the
macro DI FFUSE_L| GHTI NG_OBJECT_SPACE), use the variation BW SKY_L| GHT_MAP_OBJECT_SPACE,
and that will have the world matrix declared.

* BW SKY_LI GHT_MAP_SAMPLER
This macro declares a sampler object that is used when implementing cloud shadows in a pixel shader.
* BW SKY_NMAP_COORDS_OBJECT_SPACE, BW SKY_NMAP_COORDS_WORLD_SPACE

These macros perform the texture projection on the given vertex position, and set the texture coordinates
into the given register.

Be sure to pass the positions in the appropriate reference frame, depending on which set of macros you
are using.

* BW TEXTURESTAGE_CLOUDVAP

This macro defines a texture stage that multiplies the previous stage's result by the appropriate cloud
shadowing value.

It should be used after any diffuse lighting calculation, and before any reflection or specular lighting.
* SAMPLE_SKY_MAP

This macro samples the sky light map in a pixel shader, and returns a 1D-float value representing the
amount by which you should multiply your diffuse lighting value.

5.4. Tweaking

After the light map is calculated based on the current clouds, it is clamped to a maximum value. This means
that the cloud map can never get too dark, or have too great an effect on the world.

For example, even if the sun is completely obscured by clouds during the day, there will still be enough
ambient lighting and illumination from the cloud layer itself such that sunlight still takes effect.

The BigWorld watcher O i ent Setti ngs/ C ouds/ max sky |ight map dar kness sets the maximum
value that the sky light map can have. A value of 1 means that the sky light map is able to completely obscure
the sun (full shadowing). The default value of 0.65 represents the BigWorld artists' best guess at the optimal
value for cloud shadowing. A value of 0 would mean there is never any effect of cloud shadows on the world.

This value is also read from the file sky.xml in the light map settings. It is represented by the maxDarkness
tag. For details on the sky light map settings file, see “Sky light map” on page 136 .

36 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 6. Chunks

The scene graph drawn by the BigWorld client is built from small convex chunks of space. This has many
benefits including easy streaming, reduced loading times, concurrent world editing, and facilitation of server
scene updates and physics checking.

The concepts and implementation of the chunking system are described in the following sections.

6.1. Definitions

The following terms are related to the BigWorld chunking system:

A space is a continuous three-dimensional Cartesian medium. Each space is divided piecewise into chunks,
which occupy the entire space but do not overlap. Every point in the space is in exactly one chunk. A space
is split into columns of 100x100 metres in the horizontal dimensions, and total vertical range. Examples of
separate spaces include planets, parallel spaces, space stations, and 'detached’ apartment/dungeon levels.

A chunk is a convex three-dimensional volume. It contains a description of the scene objects that reside inside
it. Scene objects include models, lights, entities, terrain blocks, etc, known as chunk items. It also defines the
set of planes that form its boundary.

The outside chunk of a column is exempt from this — it needs only define the four
planes to adjacent column. The boundary planes of other chunks overlapping that grid
square are used to build a complete picture of the division of space inside it.

Some planes have portals defined on them, indicating that a neighbouring chunk is visible through them.

A portal is a polygon plus a reference to the chunk that is visible through that polygon. It includes a flag to
indicate whether it permits objects to pass through it. Some portals may be named so that scripts can address
them, and change their permissivity.

6.2. Implementation files

The following files are used by the chunking system:
* One space. set ti ngs file for each space in the universe (XML format)
For details on this file's grammar, see the document File Grammar Guide's section space. setti ngs.
e <res>/ spaces/ <space>/ space. settings
e Environment settings
* Bounding rectangle of grid squares
* Multiple . chunk files for each space (XML format)
For details on this file's grammar, see the document File Grammar Guide's section . chunk.
* <res>/ spaces/ <space>/ XXXXZZZZo. chunk (o = outside)
° <res>/ spaces/ <space>/ CCCCCCCG . chunk (i = inside)
e List of scene objects

e Texture sets used

bigw@RLD"

#dest=
#dest=
#dest=
#dest=

* Boundary planes and portals (including references to visible chunks)

¢ Collision scene
* Multiple . cdat a files for each space (binary format)
° <res>/ spaces/ <space>/ XXXXZZZZ. cdat a

e Terrain data such as:
¢ Height map data
¢ Overlay data
¢ Textures used

— or —

* Multiple instances of lighting data for each object in the chunk:
e Static lighting data

e A colour value for each vertex in the model

6.3. Details and notes

6.3.1. Includes

Includes are transparent after being loaded (to client, server, and scripts). Label clashes are handled by ap-
pending '_n' to labels, where Nis the number of objects with that label already.

Includes are expanded inline where they are encountered, and do not need to have a bounding box for the
purposes of the client or server.

The World Editor does not generate includes.

6.3.2. Models

Material overrides and animation declarations remain the domain of model files. For more details, see Mod-
els on page 69 .

6.3.3. Entities

Only entities that are implicitly instantiated need to have their ID field filled in. If it is zero or is missing,
then the entity is assigned a unique ID from either the client's pool (if it is a client-instantiated entity) or the
creating cell's pool (if it is a server-instantiated entity).

If an entity needs a label, it must include the label as a property in its formal type definition.

6.3.4. Boundaries and portals

The special chunk identifier heaven may be used if only the sky (gradient, clouds, sun, moon, stars, etc...) is
to be drawn there. Similarly with earth, if the terrain ought to be drawn. Therefore, outside chunks will have
six sides, with the heaven chunk on the top and the earth chunk on the bottom.

The absence of a chunk reference in a portal means it is unconnected and that nothing will be drawn there.

If a chunk is included inside another, then its boundary planes are ignored — only things like its includes,
models, lights, and sounds are used.

38

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chunks

An internal portal means that the specified boundary is not an actual boundary, but instead that the space
occupied by the chunk it connects to (and all chunks that that chunk connects to) should be logically sub-
tracted from the space owned by this chunk, as defined by its non-internal boundaries. This was originally
intended only for 'outside' chunks to connect to 'inside’ chunks, but it may be readily adapted for 'interior
portals’, the complement to 'boundary portals'.

In a portal definition, the vAxis for the 2D polygon points is found by the cross product of the normal with
uAxis.

In boundary definitions, the normals should point inward.

6.3.5. Transforms

Everything in the chunk except the bounding box is interpreted in the local space of the chunk (as specified
in the top-level transform section).

6.3.6. Other items

The following items can also exist in chunks:
* Spot Light

* Ambient Light

¢ Directional Light

* Water (body of water)

e Flare (lens flare)

e Particle System

6.4. Loading and ejecting

Atevery frame, the Chunk Manager performs a simple graph traversal of all the chunks it has loaded, looking
for new chunks to load. It follows the portals between chunks, keeping track of how far it has 'travelled' in
its scan. Its scan is limited to the maximum visible distance, i.e., a little further than the far plane distance.

The closest unloaded chunk it finds on this traversal is the chunk that is loaded next. Loading is done in a
separate thread, so it does not interfere with the running of the game. Similarly, any chunks that are beyond
the reach of the scan are candidates for ejecting (unloading).

6.5. Focus grid

The focus grid is a set of columns surrounding the camera position. Each column is 100x100metres and is
aligned to the terrain squares and outside chunks. The focus grid is sized to just exceed the far plane.

For a far plane of 500m, for example, the focus grid goes 700m in each direction, making for 14 x 14 = 196
columns total.

The set of columns in the focus grid is dependent on the camera position. As the camera moves, the focus grid
disposes columns that are no longer under the grid and 'focuses' on ones that have just come close enough.

Each column contains a hull tree and a quad tree.

6.5.1. Hull tree

A hull tree is a kind of binary-space partitioning tree for convex hulls. It can handle hulls that overlap. It can
do point tests and proper line traversals.

bIgW@RLD" &

Chunks

The hull tree is formed from the boundaries of all the chunks that overlap the column. From this tree, the
chunk that any given point lies in can be quickly determined. (e.g., the location of the camera)

6.5.2. Quad tree

The quad tree is made up of the bounding boxes (or, potentially, any other bounding convex hull) of all the
obstacles that overlap the column. This tree is used for collision scene tests. Chunk items are responsible for
adding and implementing obstacles. Currently only model and terrain chunk items add any obstacles.

If a chunk or obstacle is in more than one column, it is added to the trees of both columns.

6.6. Collisions

Using its focus grid of obstacle quad trees, the chunk space class can sweep any 3D shape through its space,
and report all the triangle collisions to a callback object. The currently supported 3D shapes are points and
triangles, but any other could be added with very little difficulty.

The bottommost level of collision checking is handled by a generic obstacle interface, so any conceivable
obstacle could be added to this collision scene, as long as it can quickly determine when another shape
collides with it (in its own local coordinates).

For more details, see file bi gwor | d/ src/client/ physics. cpp.

6.7. Sway items

A sway item is a chunk item that is swayed by the passage of other chunk items. Whenever a dynamic chunk
item moves, any sway items in that chunk get the sway method called on them, specifying source and destiny
of movement.

Currently the only user of this is ChunkWat er . It uses movements that pass through its surface to make rip-
ples in the water. This is why the ripples work for any kind of dynamic item — from dynamic obstacles/mov-
ing platforms to player models to small bullets.

e Innf/src/lib/chunk/ chunk_wat er. cpp:

/**

* Constructor
*/

ChunkWat er : : ChunkWat er ()
Chunklten(5),
pWat er _(NULL)

{

}

[*x

* Apply a disturbance to this body of water

*/
voi d ChunkWater::sway(const Vector3 & src, const Vector3 & dst)
{

if (pwater_ !'= NULL)

{

pWat er _- >addMovenent (src, dst);

}

}

Calls Chunkl| t emconstructor with want Fl ags =5:

e 1 — want sDraw

40 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

° 4 — want sSway

e Innf/src/lib/chunk/chunk_item hpp:

class Chunkltem : public Special Chunkltem

{
public:

H

Chunkltem(int wantFlags = 0)

Speci al Chunkltem(wantFlags) { }

typedef dient Chunkltem Speci al Chunkltem

class CientChunkltem: public ChunkltenBase

{
public:

H

Cli ent Chunkl tem(int wantFl ags

Chunkl t emBase(int wantFl ags =

bool want sDraw()
bool want sTi ck()
bool want sSway/()
bool want sNest ()

const
const
const
const

-

return
return
return
return

= 0) : ChunkltenBase(wantFlags) { }

0);

I''(want Fl ags_ & 1);
I''(want Fl ags_ & 2);
I'''(want Fl ags_ & 4);
I'''(want Fl ags_ & 8);

}
}
}
}

bIgW@RLED"

41

Chapter 7. Entities

Entities are a key BigWorld concept, and involve a large system in their own right. They are the link between
the client and the server and are the feature most particular to BigWorld Technology, in comparison to other
3D game systems.

This section deals only with the management aspects of entities on the client.

For details on the environment in which entity scripts are placed, and the system that supports them, see
Scripting on page 49. For details on the definition of an entity, which is shared between the server and
the client, see the document Server Programming Guide's section Directory Structure for Entity Scripting —
“The Entity Definition File”.

Depending on the entity type, it can exist in different parts of BigWorld, as listed below:
¢ Client-only

For example, a security camera prop, or an information icon. Client-only entities are created by setting
World Editor's Properties' panel Client-Only attribute to true. (for details on this panel, see the document
Content Tools Reference Guide 's section World Editor = “Panel summary” — “Properties panel”). Client-
only entities should not have cell or base scripts.

¢ Client and server

The entity will exist in both parts at the same position. For example, the player Avatar, NPCs, a vending
machine.

* Server-only

The entity will be instantiated on the server only. For example, a NPC spawn point or teleportation desti-
nation point. Server-only entities do not have any scripts on the client side.

7.1. Entity Manager

The Entity Manager stores two lists of entities:

* Active List — Contains the entities that are currently in the world, as relayed by the server or indicated
by the chunk files.

* Cached List — Contains the entities that have recently been in the world, but are now just outside the
client's 500m radius area of interest (Aol).

Entities are cached so that if they come back into the client's Aol shortly after they have left it, the server does
not have to resend all the data associated with that entity; only the fields that have changed.

Since messages may be received from the server out of order, the Entity Manager is not sensitive to their
order. For example, if an entity enters the player's Aol then quickly leaves it, the BigWorld client behaves
correctly even if it receives the entity's 'leave Aol' message before its 'enter Aol' message.

The Entity Manager can always determine the relative time that it should have received a message from the
sequence number of the packet, since packets are sent at regular intervals.

7.2. Entity scripts

Entity scripts on the client are Python classes that derive from the Bi g\Wr | d. Ent i t y class. This base class
exposes a number of methods and attributes which allow the script to control the behaviour of the entity
(e.g. position, orientation, and the entity model are all exposed via the Bi gWor | d. Ent i t y interface).

bigw@RLD" -

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Entities

7.

In addition exposing to methods and attributes, the client engine will notify the entity scripts when certain
events occur via named event handlers.

See Scripting on page 49 and the Client Python API reference guide for details on what methods, at-
tributes, and event handlers are available.

3. Entity resources

Generally, each entity type require some resources in order to operate, for example models, textures, shaders,
sounds, or particle systems. The BigWorld client provides a couple of ways to make sure these resources are
available when the entity enters the world, avoiding stalling the main thread.

7.3.1. Preloads

When the client starts up, it will query each entity Python module for a function named pr el oad. Resource
names returned by this function will be loaded on client startup and kept in memory for the entire life-time
of the client (i.e. it will be instantly available for use at any time). This is useful for commonly used assets
to avoid potentially loading and re-loading at a later time. The tradeoff, however, is that the client will take
longer to start and will use more memory (if the resource isn't actually being used at some point).

To use the preloads mechanism, create a global function called pr el oad in the relevant entity module. It
must take a single parameter which is a Python list containing resource to preload. Modify this list in place
(e.g. using list.append or list concatenation), inserting the string names of each resource to be preloaded by
the client.

For example,

Door . py
i mport BigWwrld

class Door(Bigwrld.Entity):
def __init__(self):

def preload(list):
|'ist.append("doors/nodel s/ generic_door. nodel ")
|'ist.append("doors/maps/door_highlight.tga")

The type of resources which can be preloaded are,
* Fonts

¢ Textures

* Shaders

* Models

7.3.2. Prerequisites

When an entity is about to appear in the world on the client, the engine will execute a callback on the entity
script called prer equi si t es. This allows entity scripts to return a list of resources that must be loaded
before the entity may enter the world. These resources are loaded by the loading thread, so as to not interrupt
the rendering pipeline.

It is recommended practice for an entity to expose its required resources as pre-requisites, and load them in
the method onEnt er Wor | d. Unlike using preloads, prerequisites do not leak a reference, so when the entity
leaves the world, it will free its resources.

44

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

[SES

The Entity Manager calls Enti ty: : checkPr er equi si t es before allowing an entity to enter the world.
This method checks whether the pre-requisites for this entity entering the world are satisfied. If they are not,
then it starts the process of satisfying them (if not yet started).

Note that when the pr er equi si t es method is called on the entity, its script has already been initialised

and its properties have been set up. The entity thus may specialise its pre-requisites list based on the specific
instance of that entity. For example:

def Door(BigWrld.Entity):

def prerequisites(self):
return [DoorResources|[self.nodel Type].nodel Nane]

bIgW@RLD" =

Chapter 8. User Data Objects

User data objects are a way of embedding user defined data in Chunk files. Each user data object type is
implemented as a collection of Python scripts, and an XML-based definition file that ties the scripts together.
These scripts are located in the resource tree under the folder scri pt s.

User data objects differ from entities in that they are immutable (i.e. their properties don't change), and that
they are not propagated to other cells or clients. This makes them a lot lighter than entities.

A key feature of user data objects is their linkability. Entities are able to link to user data objects, and user
data objects are able to link to other user data objects. This is achieved by including a UDO_REF property in
the definition file for the user data object or entity that wishes to link to another user data object.

For more information about linking, please refer to Server Programming Guide's section “User Data Object
Linking With UDO_REF Properties”.

For details on the definition of a user data object, which is shared between the server and the client, see the
document Server Programming Guide's section Directory Structure for User Data Object Scripting = “The User
Data Object Definition File”.

1. .1. User Data Objects are Python script objects

Each user data object is a Python script object (PyQbj ect). Depending on the user data object type, it can
exist in different parts of BigWorld, as listed below:

* Client only

Client only user data objects are created by using the CLI ENT domain in the Domai n tag inside its defini-
tion file. Client-only user data objects should not have cell or base scripts

For an example of a client-only user data object, please refer to the Camer aNode user data ob-
ject, implemented in the <res>/scripts/client/CaneraNode. py and the <res>/scripts/
user _dat a_obj ect _def s/ Canmer aNode. def files.

* Server only

Server only user data objects are instantiated on the server only, and will be instantiated in the cell if its
Donai n tag is CELL, or in the base if the Domai n tag is set to BASE.

For an example of a server user data object, please refer to the Patrol Node user data
object, implemented in the <res>/scripts/cell/Patrol Node. py and the <res>/scripts/
user _dat a_obj ect _def s/ Patrol Node. def files.

8.2. .2. Accessing from the Client

The client can access all client-only user data objects using the command:

>>> Bi gWor | d. user Dat albj ect s
<WeakVal ueDi ctionary at 3075900908>

This will return a Python dictionary, using the user data object’s unique identifier as the key, and its Py Qb-
j ect representation as its value. The attributes and script methods of the user data object can be accessed
using the standard dot syntax:

>>> pat r ol Node. pat rol Li nks

bigw@RLD" -

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

User Data Objects

[User Dat aCbj ect at 2358353012, User Dat aCbj ect at 2358383771]

48 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 9. Scripting

The facilities provided to scripts are of extreme importance, as they determine the generality and extensibility
of the client. To a script programmer this environment is the client; just as to an ordinary user, the windowing
system is the computer.

The scripting environment offers a great temptation to try to write the whole of a program in it. This can
quickly make for slow and incomprehensible programs (especially if the same programming discipline is not
applied to the scripting language as is to C++). Therefore, we recommend that a functionality should only be
written in script when it does not need to be called at every frame. Furthermore, where it is global, it should
be implemented in the personality script. So, for example, a global chat console would be implemented in
the personality script, whilst a targeting system, which needs to check the collision scene at every frame, is
best implemented in C++.

Importantly, the extensive integration of Python throughout BigWorld Technology allows for both rapid
development of game code, and enormous flexibility.

Garbage collection is disabled in BigWorld's Python integration, because garbage col-
lection is an expensive operation that can occur at any time, blocking the main thread
and causing frame rate spikes for example.

9.1. Functional components

This section describes the contents and services of the (general) C++ entity, from the point of view of a script
that uses these facilities. The functional components of an entity, described in the following sections are:

* Entity Skeleton

¢ Python Script Object
* Model Management
e Filters

e Action Queue

e Action Matcher

e Trackers (IK)

* Timers and Traps

9.1.1. Entity skeleton

The Entity class (entity.cpp) is the C++ container that brings together whatever components are in use for a
particular entity. It is derived from Python object and intercepts certain accesses, and passes those it does not
understand on to the user script. This allows scripts to call C++ functions on themselves (and other entities)
transparently, using the 'self' reference. The same technique of integration has been used in the cell and base
components of the server.

This class handles any housekeeping or glue required by the component classes — it is the public face of an
entity as far as other C++ modules are concerned.

The data members of this class include id, type, and position.

bigw@RLD"

Scripting

9.1.2. Python script object

This is the instance of the user-supplied script class. The type of the entity selects the class. It stores type-
specific data defined in the XML description of the entity type, as well as any other internally used data that
the script wishes to store.

When field data is sent from the server, this class has its fields automatically updated (and it is notified of the
change). When messages are received from the server (or another script on the client), the message handlers
are called automatically. The entity class performs this automation — it appears to be automatic from the
script's point of view.

9.1.3. Model management

A model is BigWorld's term for a mesh, plus the animations and actions used on it.

The model management component allows an entity to manage the models that are drawn and animated at
its position. Models can be attached to each other at well-defined attachment points (hard points), or they
can exist independently. A model is not automatically added to the scene when it is loaded — it must be
explicitly put in it.

An entity may use any number of independent (disconnected) models, but most will use zero or one. Those
that use more require special filters to behave sensibly. For details, see “Filters” on page 50 .

The best way to understand models is t'o be acquainted to their Python interface, which is described in
the Client Python API's entry Main — Client - BigWorld — Classes — PyMdel . For more details, see
Models on page 69 .

9.1.4. Filters

Filters take time-stamped position updates and interpolate them to produce the position for an entity at an
arbitrary time.

BigWorld provides only the Filter base class. The game developer would derive game-specific filters from
this. Each entity can then select one type of filter for itself from the variations available. It can dynamically
change its filter if it so desires.

Whenever a movement update comes from the server, it is handed over to the selected filter, along with the
time that the (existing) game time reconstruction logic calculated for that event.

The filter can also be provided with gaps in time and transform, i.e., 'at game-time x there was a forward
movement of y metres and a rotation of z radians lasting t seconds'. The filter (if it is smart enough) can then
incorporate this into its interpolation.

The filter can also execute script callbacks at a given time in the stream.

Filters are fully accessible from Python.

9.1.5. Navigation

BigWorld provides access to some navigation methods by the client scripts.
Bi gWor | d. navi gat ePat hPoi nt s() will return a list of points along the path between the giv-
en source and destination points, and Bi g\Wr | d. fi ndRandomNei ghbour Poi nt () and the related
Bi gWor I d. fi ndRandomNei ghbour Poi nt Wt hRange() will return a random point in a connected
navmesh, which will be navigable from the given point.

These methods are provided for the client in order to allow some processing to be moved away from the
server, and to allow movement to be more responsive, removing the need to wait for the server to provide
a path.

50

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

api_python/client/index.html#dest=Client_Python_API

Scripting

For more details about navigation in BigWorld, refer to the Server Programming Guide's section “Navigation
System”.

9.1.5.1. Configuring a Space to Use Navigation

If the client-side navigation methods are not used, loading the navmeshes would cause unnecessary ad-
ditional memory usage (usually 10-50mb). For this reason, navigation meshes will not be loaded by de-
fault. Each space that will use navigation must be configured to do so. Add the following section to the
space. set ti ngs file of any space that will use client-side navigation:

<cl i ent Navi gati on>
<enabl e> true </enable>
</ cl i ent Navi gati on>

This will ensure that the client will load any navigation meshes stored with the chunk data.

For more details about this space.settings option, see the File Grammar Guide's section
space. settings.

9.1.5.2. Distributing Navigation Meshes with the Client

If client-side navigation is not enabled for a space, then ResPacker will strip the nav-
igation meshes from the cdata files for the client package. This is to keep the chunk
resource files as small as possible for distribution.

9.1.5.3. Bi g\Wor | d. navi gat ePat hPoi nt s()

Bi gWor | d. navi gat ePat hPoi nt s() will take source and destination points, and return a path of points
between them, such that moving to each in turn will result in an entity successfully navigating to the des-
tination.

The method has the following syntax:
navi gat ePat hPoi nts(src, dst, maxSearchDi stance, girth)

The arguments are as follows:
¢ src
Vector3 containing the source point in the current space.
¢ dest
Vector3 containing the destination point in the current space.
* maxSear chDi st ance

float containing the maximum distance that will be searched for a path, from the source point. This deaf-
aults to 500.

egirth

float containing the navigation girth grid to use. This defaults to 0.5 if not supplied. The girth is the mini-
mum width of the path, and is used to ensure that large entities can not navigate through areas that are too

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=

Scripting

narrow for them. This value must correspond to one of the girth entries in the girths file, which is located
at bi gwor | d/ res/ hel pers/girths. xm by default.

Bi gWor | d. navi gat ePat hPoi nt s() returns a list of Vector3 points containing the path. If a path can not
be found it will raise an exception.

For example, the following call will return a list of points along the path between (100,10,200) and (150,20,50)
if it exists. The path must be at least 4m wide at all points, and must be less than 300m in total:

Bi gWor | d. navi gat ePat hPoi nts((100, 10, 200), (150, 20, 50), 300, 4)

The path will be returned as a list:

[(100, 10, 200), (121,3,148), (133,9,87), (144,8,61), (150, 20,50)]

9.1.5.4. Bi gWor | d. fi ndRandomNei ghbour Poi nt ()

Bi gWor | d. fi ndRandomNei ghbour Poi nt () will take a source point, and return a random point in a con-
nected navmesh. The resulting point is guaranteed to be connected to the source.

The method has the following syntax:

fi ndRandonmNei ghbour Poi nt (position, radius, girth)

The arguments are as follows:
® position
Vector3 containing the source point in the current space.
e radius
float containing the maximum distance that will be searched for a path, from the source point.
egirth

float containing the navigation girth grid to use. This defaults to 0.5 if not supplied. The girth is the mini-
mum width of the path, and is used to ensure that large entities can not navigate through areas that are too
narrow for them. This value must correspond to one of the girth entries in the girths file, which is located
at bi gwor | d/ res/ hel pers/girths. xm by default.

Bi gWor | d. fi ndRandomNei ghbour Poi nt () returns a Vector3 containing the random point. If an appro-
priate point can not be found it will raise an exception.

For example, the following call will return a random point within 300m of the point (100,10,200). The path
to this point must be at least 0.5m wide at all points.

Bi gWor | d. fi ndRandonNei ghbour Poi nt ((100, 10, 200), 300, 0.5)

9.1.5.5. Bi gWwor | d. fi ndRandonmNei ghbour Poi nt Wt hRange()

This method performs the same functionality as Bi gWor | d. f i ndRandonNei ghbour Poi nt (), but takes
an additional argument specifying a minimum radius. This allows the caller to specify a specific range for
the distance to the random point.

The method has the following syntax:

52 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

fi ndRandomNei ghbour Poi nt (position, m nRadius, nmaxRadius, girth)

The arguments are as follows:
* position

Vector3 containing the source point in the current space.
* m nRadi us

float containing the minimum distance that will be searched for a path, from the source point.
* maxRadi us

float containing the maximum distance that will be searched for a path, from the source point.
egirth

float containing the navigation girth grid to use. This defaults to 0.5 if not supplied. The girth is the mini-
mum width of the path, and is used to ensure that large entities can not navigate through areas that are too
narrow for them. This value must correspond to one of the girth entries in the girths file, which is located
at bi gwor | d/ res/ hel pers/girths. xm by default.

Bi gWor | d. fi ndRandormNei ghbour Poi nt () returns a Vector3 containing the random point. If an appro-
priate point can not be found it will raise an exception.

For example, the following call will return a random point further than 200m, but within 400m of the point
(150, 20, 50). The path to this point must be at least 4m wide at all points.

Bi gWr | d. f i ndRandonNei ghbour Poi nt ((150, 20, 50), 200, 400, 4)

9.1.6. Action Queue

The action queue is the structure within the BigWorld Technology framework that controls the queue of
actions in effect on a model (actions are wrapped by ActionQueuer objects that are contained by the action
queue).

The ActionQueue deals with the combining of layers and also applying the appropriate blend in and blend
out times.

The ActionQueue also deals with any scripted callback functions that are linked to the playing of an action,
like for example calling sound-playing callbacks at particular frames in an action.

An action is described in XML as illustrated the example . nodel file below (model files are located in any
of the various sub-folders under the resource tree <r es>, such as for example, <r es>/ envi ronnents,
<res>/flora, <res>/sets/vehicles,etc..):

<action>
<nane> ACTI ON_NAME </ nanme>

?<ani mati on> ANl MATI ON_NAME </ ani mat i on>
?<bl endl nTi ne> fl oat </ bl endl nTi ne>
?<bl endQut Ti ne> f | oat </ bl endQut Ti ne>
?<filler> [true|fal se] </filler>
?<track> i nt </track>
?<i sMbvenent > [true| fal se] </i sMovenent >
?<i sCoor di nated> [true|fal se] </i sCoor di nat ed>
?<i sl npacti ng> [true|fal se] </i sl npacting>

bIgW@RLED" _

Scripting

?<mat ch>

?<trigger>
?<mi nEntitySpeed> float </m nEntitySpeed>
?<maxEntitySpeed> float </ nmaxEntitySpeed>
?<mi nEntityAux1> float </mnEntityAuxl>
?<maxEntityAux1l> float </nmaxEntityAuxl>
?<m nModel Yaw> float </ m nMdel Yaw>
?<maxModel Yaw> float </ nmaxModel Yaw>Coor
?<capsOn> capabilities </capsOn>
?<capsOf> capabilities </capsOf>

</trigger>

?<cancel >
?<mi nEntitySpeed> float </m nEntitySpeed>
?<maxEntitySpeed> float </ nmaxEntitySpeed>
?<mi nEntityAux1> float </mnEntityAuxl>
?<maxEntityAux1l> float </nmaxEntityAuxl>
?<m nMbdel Yaw> float </ m nMdel Yaw>
?<maxModel Yaw> float </ nmaxModel Yaw>Coor
?<capsOn> capabilities </capsOn>
?<capsOf> capabilities </capsOf>

</ cancel >
?<scal ePl aybackSpeed> [true|false] </scal ePl aybackSpeed>
?<feetFol l owDi rection> [true|fal se] </feetFollowDirection>

?<oneShot > [true| fal se] </oneShot >En
?<pr onot eMot i on> [true| fal se] </pronoteMtion>
</ mat ch>
</ action>

Example . nodel file describing action
The list below describes some of the tags in the XML file:
° name
Name of that action as used by a script.
These are available as named 'constants' off the model object returned by the Model Manager.
e ani mation
The base animation whence the frame data is sourced.
* bl endl nTi e
Time in seconds the action takes to completely blend in.
* bl endQut Ti ne
Time in seconds the action takes to completely blend out.
efiller
Specifies if the action is just padding and can be interrupted if anything else comes on the queue.
e track
Track number in which the action should be played.

If the action has a track, then the animation is blended on top of whatever other animations exist — i.e.,
it bypasses the queue.

* i shbvemnment

54 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

Specifies that the action uses a simple movement animation such as walk, run, side-step, etc. The translation
must be linear, and is subtracted from the action when played (so a run animation which moves from
the origin will now appear to run on the spot). This setting requires the PromoteMotion flag to be set,
and doing so means this translation then moves the model accordingly. If the model is owned by a client-
controlled Entity, then the server-side entity's position will be updated accordingly. This setting allows the
use of scalePlaybackSpeed. This setting cannot be used with isCoordinated and isImpacting.

* i sCoor di nat ed

Specifies that the action's animation starts from an offset position. Used for actions that require coordina-
tion with a non-player character (NPC), which needs to be positioned relative to the player's character for
the purpose of matching contact points (e.g. shaking hands). This setting cannot be used with isMovement
and isImpacting.

e i sl nmpacting

Specifies that the action is a complex (non-linear) movement animation. If the entity is client-controlled,
then its position on the server will also be updated. Examples of animations used with isimpacting are
jumping, combat and knockdowns, interacting with entities, etc. This setting requires PromoteMotion and
cannot be used with isMovement and isCoordinated.

° mat ch
If this section is present, it means the Action Matcher can automatically select the action (see below).
e trigger (section mat ch)
This section defines criteria used to determine when to start an action.
e m nEntitySpeed (sectiontri gger)
Determines the minimum velocity of the entity for the action to start.
° maxEnt it ySpeed (sectiontri gger)
Determines the maximum velocity of the entity for the action to start.
* m nEntityAuxl (sectiontrigger)

Determines the minimum pitch of the entity for the action to start.

maxEntit yAux1l (sectiontri gger)

Determines the maximum pitch of the entity for the action to start.

m nMbdel Yaw (sectiontri gger)

Determines the minimum yaw of the model for the action to start.

maxEntityYaw (sectiontri gger)

Determines the maximum yaw of the model for the action to start.

capsOn (sectiont ri gger)
Determines which special case character states need to be on for the action to start.
e capsOf f (sectiontri gger)

Determines which special case character states need to be off for the action to start.

bIgW@RLD" =

Scripting

* cancel (section mat ch)
This section defines the criteria used to determine when to stop an action.
e m nEntitySpeed (section cancel)
Determines the minimum velocity of the entity for the action to stop.
e maxEnt it ySpeed (section cancel)
Determines the maximum velocity of the entity for the action to stop.
e m nEntityAuxl (section cancel)
Determines the minimum pitch of the entity for the action to stop.
e maxEnt it yAux1 (section cancel)
Determines the maximum pitch of the entity for the action to stop.
* m nhbdel Yaw (section cancel)
Determines the minimum yaw of the model for the action to stop.
e maxEnti t yYaw (section cancel)
Determines the maximum yaw of the model for the action to stop.
* capsOn (section cancel)
Determines which special case character states need to be on for the action to stop.
e capsO f (section cancel)
Determines which special case character states need to be off for the action to stop.
* scal ePl aybackSpeed (section nat ch)

Specifies that the animation playback speed should be scaled as a function of the entity's speed. This setting
requires isMovement.

e feet Fol | owDi recti on (section mat ch)

Specifies that the model should turn to track the Entity. In practice this means while this action is matched,
the model rotates on the spot instead of playing a turning action.

* oneShot (section mat ch)

Specifies that the action will only be selected for playing once in a row by the action matcher. Note the
distinction between this and filler, where filler is not related to the action matcher.

° pronot eMdti on (section mat ch)

Specifies that the motion of the root node within the animation should affect the model's position (and the
owner entity's position, if the entity is client-controlled). This setting must be enabled for islmpacting or
isMovement actions to work correctly. This setting cannot be used with filler.

The Python interface to a model's action queue allows actions to be played directly on that model, or a set
of actions to be queued and played in sequence. Callback functions can be defined and played when actions
are finished.

56 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

In Python, a model can be easily created and an action played on it, as illustrated in the example below:

class Jogger(BigWorld.Entity):

def _init_ (self):
sel f.nodel = Bi gWorl d. Model ("] ogger. nodel ")

def warmp(self):
sel f. nodel . action("StretchLegs")()

Model creation in Python
9.1.6.1. Debugging animations

If a model is not being animated as it is supposed to, it is useful to display the Action Queue graph in the
Python console.

This is can be done by calling Bi gWor | d. debugAQ() method, which can receive two kinds of arguments:

* PyMbodel

Displays the graph for the specified model, with the blend weight of each action. Each action is represented
in a different, arbitrarily chosen, colour.

* None

Switches off the graph display.

TurnLeft

F

Python console displaying Action Queue's debugging graph

bIgW@RLED" =

The graph in the picture above displays the execution on the TurnLeft animation (in green) and the Idle one
(in red). We can determine the animations that were being played in each labelled point in the graph:

* A — 100% of the | dl e animation is being played.

* Between A and B — | dl e animation is being blended in with Tur nLef t animation.

* B — 50% of the | dl e animation is being played, and 50% of the Tur nLef t animation is being played.
* C — 100% of the Tur nLef t animation is being played.

For more details, see the Client Python API.

Model Editor offers the same functionality for the model. For details, see the document
Content Tools Reference Guide's section Model Editor = “Panel summary” — “Actions
panel”.

9.1.7. Action Matcher

Given a model, an action queue, and a set of actions, all behaviour of a game object/character can be specified
by event-driven calls on the Action Queuer. This ends up with a heavy overhead, as many changes in object
state need to directly call the object and solve which animation should be played.

The solution to this problem is to internalise most of the behaviour of a character in a system called the Action
Matcher, which automatically updates an object's motion based on the object's state. It is a simple pattern
matcher, picking an animation based on model's attributes such as speed, direction, etc.

State parameters such as speed, rotation, or power are exposed to the Action Matcher, which then selects
the action that best maps to these parameters. This frees the game from having to handle many aspects of
animation, allowing it to only have to update state parameters, such as position.

When there are no (unblended) actions in the Action Queue for a model (within the player's Aol), the Action
Matcher takes over and plays an 'idle' action. It triggers these 'idle' animations to give the game world more
life, since real living things are not still. It can also be used to automate menial animation tasks.

This class looks at all the actions that have a match section (see XML example in section “Action
Queue” on page 53 , whose constraints are satisfied for the Action Matcher object controlling the model.

Scriptable constraints are tested against the capabilities bit fields capsOn and capsf f . The Action Matcher
for a model has a set of capability bits, which value is controlled by script. An action will only be matched if
all the capsOn bits are on and all the capsOff bits are off in the Action Matcher's set.

It then looks at the change in pose (position and orientation — as set by the filter) and selects the first action
that matches this change for the time over which the change occurred. The trigger constraints are used to
test most actions. The cancel constraints are used if the action that matched last frame is encountered. This
feature is intended primarily to reduce action hysteresis.

The update function of an action-matched object takes the previous updated position of the object, chooses
the best matched action from its matched action list, then plays the animation back at the correct speed to
smoothly link action with speed. As a game character starts moving faster, the Action Matcher may choose a
faster running cycle to play back and increase its playback speed to precisely match speed so no foot sliding
is seen.

This method allows an Al system to define behaviour with respect to a few variables such as orientation,
speed, and aiming direction, and the Action Matcher will convert these updated parameters into a smoothly
moving character.

api_python/client/index.html#dest=Client_Python_API
#dest=
#dest=
#dest=
#dest=
#dest=

Scripting

In a client/server architecture where position and orientation are updated over a network, the Action Matcher
(combined with a filter) can automatically compensate for position jumps caused by network lag by having
characters realistically run faster to the latest updated position.

When an action is loaded, its data is augmented with the effect on pose that performing the action would
have on the root node. This information is used for the matching described above.

Now that an action has been selected, it is passed to the Action Queue. If the action supplied is the same
as the previous action, it continues to be played in the normal fashion (i.e., frame += fps*del taTi me).
Otherwise, it is blended in over a few frames while the other is blended out.

9.1.7.1. Using the Action Matcher

Each action designed to be matched must define a <match> section. These are added via Model Editor using
the Actions window. The matching parameters are divided in two:

¢ Trigger parameters — Define when an action can be started, and
¢ Cancel section — Defines when an action should be stopped.

The minEntitySpeed and minEntitySpeed tags in each section define the velocities in which actions can and
cannot be triggered or cancelled.

The auxiliary parameters can be used to define a pitch range that is used to match action. The minModel Yaw
and maxModelYaw tags define a yaw range. The main matching parameters define speed and orientation
ranges that the action applies to, and also a user-defined set of matching flags that are used with special case
character states. These flags can be used to set whether a game character is not using the basic action set,
such as being injured or being angry.

The BigWorld engine uses the matchCaps parameter to store the bitwise flag set of an action. At any given
time, the model itself will have an on/off flag set representing the state of these states, and this is tested
against each action's matchCaps per frame.

A set of user-defined action states should be defined (created as a text file or as comment section in model
file). A simple example is given in the list below:

* Capability flag: 1 — State: Angry
* Capability flag: 2 — State: Happy
* Capability flag: 3 — State: Sad

A set of angry animation can now be accessed using the action matcher by just adding the angry flag to the
current matchCaps.

In Python code, a simple example of a character that should now move and behave in an angry manner is
shown below:

class AngryMan(BigWrld.Entity):

def onEnterWsrld(self, preregs):
sel f.am = Bi gWorl d. Acti onMat cher(self)

def enter AngryMode(self):
sel f.am mat chCaps = sel f.am mat chCaps + [1]

Python implementation of character in angry mode

bIgW@RLD" &

Scripting

By using the Action Matcher this way, a character's natural motion can be fleshed out without having to
explicitly call any function to play animations. Specific event-based actions should still be called directly via
the Action Queue structure, but the background behaviour of the character can be completely defined using
the Model Editor tool and setting matching flags appropriately in the code base.

9.1.8. Trackers

A tracker applies inverse kinematics to nodes in the entity's model so that they appear to point to a position
defined by a given 'target' entity. An entity may have any number of trackers.

To add a tracker to an entity, use a script call like this:

tracker = Bi gWrl d. Tracker ()
tracker.dirProvider = DiffDirProvider(
sel f.focal Matrix, target.focal Matrix)
tracker.nodel nfo = Bi gWorl d. Tracker Nodel nf o(
nodel ,
pri mar yNode,
secondar yNodelLi st
poi nti ngNodeNane,
m nPi tch, maxPitch,
m nYaw, maxYaw,
angul ar Vel ocity)
sel f. nodel . tracker = tracker

Adding tracker in Python
The parameters for the Bi gWor | d. Tr acker Nodel nf 0 method are described below:
* nmodel
PyModel that owns the nodes that the tracker will affect.
e pri mar yNode
Primary node reference.

Node references are built up from the entity's independent model (the first one if there are multiple) fol-
lowing a path of attachment points and ending in a node name. This allows trackers to transparently work
through attached models (i.e., they are treated as if they are welded onto the model's skeleton).

This is more important for Supermodels (for more details, see “SuperModel” on page 72), where
characters are built out of multiple model parts.

e secondar yNodelLi st
List of secondary nodes, containing tuples of the form (node, weight).

These have the same transform performed on them as on the primary node, in proportion with the weight
amount. Actually, all the weights (including the primary node, with a weight of 1.0) are summed, and each
node gets their weight proportion of this total applied to them.

e poi nti ngNodeNane
Name of the node providing the frame of reference used for tracker manipulations.
If the node specified is not present, then the model's scene root is used.

e m nPi t ch, maxPi t ch, mi nYaw, naxYaw

60 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

Limits on the turn that the tracker is permitted to apply, in degrees.

e angul ar Vel ocity
Speed at which a tracker will turn the PyModelNode instances that it influences, in degrees per second.

9.1.9. Timers and Traps

These are generic helper services provided to entity scripts.

A script can set timers to have itself called-back at a certain time, as illustrated in the example below:

Bi gWor | d. cal | back(afterTime, fn)
Traps use a slightly different interface:

trapRef = self.addTrap(radius, function)

A trap goes off if any entity wanders within the given radius of the entity it is created on, and can be cancelled
with the self.delTrap method.

There are two other types of trap, optimised for their specific need, as discussed in the following sections.

9.1.9.1. Pot

A Pot is a 'player-only-trap’, and is triggered only by the player entity. Due to this, it is a lot cheaper to use
than a general trap.

A Pot is added given a matrix provider, a radius, and a script callback for triggering.

pot Handl e = Bi gWorl d. addPot (trapMatrix, radius, callback)

9.1.9.2. Mat

A Mat is a 'matrix trap', and is triggered when an area is triggered by another. This makes sense only because
matrix providers are dynamic. The areas are defined as:

* Source-matrix translation and a bounding area given by the scale of the x-, y- and z-axes in that matrix.
¢ Destination-matrix translation of destination matrix (treated as a point).

A Mat is defined in Python as listed below:

mat Handl e = Bi gWorl d. addvat (sourceMatri x, call back, destMatrix)

9.2. Personality script

The personality script is a Python script used to handle several callbacks from the BigWorld engine for ini-
tialisation, cleanup, input handling, and environment changes. It can also implement client functionality that
does not belong to any particular entity in the game, such as the game start screen.

Its name is defined in the file specified by the r esour ces. xnl 's engi neConf i gXM. tag, in the per son-
al i ty tag — for more details, see “File <engi ne_confi g>. xm ” on page 12..

bIgW@RLED" _

Scripting

The personality script generally declares a class to contain all data to be shared by functions in the script, and
declares a global variable using the constructor of that class. For example, a personality script may include
the following code:

cl ass Shar edDat a:
def __init__(self):
self.settings = ""

initialise the shared data object for this personality script
sd = SharedDat a()

This callback is called by BigWwrld when initialising
def init(configSect):

save the configSect object for |ater use
sd. configSect = confi gSect

Example of personality script

The sections below describe the available personality callbacks.

9.21.init

The callback has the following syntax:
init(scriptsConfig, engineConfig, preferences, |oadingScreenGJ = None)

The script is called once, when the engine initialises, and receives the arguments below:
e scriptsConfig

PyDat aSect i on object containing data from XML file defined in resources. xm 's scri pt sCon-
fi gXM tag (for details, see “File <scri pts_confi g>. xm ” on page 13).

* engi neConfig

PyDat aSect i on object containing data from XML file defined inr esour ces. xml 'sengi neConf i gXM
tag (for details, see “File <scri pt s_confi g>. xm ” on page 13).

e preferences
PyDat aSect i on object containing data from the scri pt sPref er ence section of the file specified in
the pr ef er ences tag of the file specified in r esour ces. xm 's engi neConf i gXM. tag (for details, see
“File <pr ef er ences>. xm ” on page 13).

e | oadi ngScr eenGUI

Optional argument representing the loading screen GUI, if one was defined in r esour ces. xm (for de-
tails, see “File <pr ef er ences>. xm ” on page 13).

The available read functions are listed below:
* r eadBool

* r eadFl oat

* readFl oat's

* readl nt

62

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

e readlnts

e readvat ri x34
e readString

e readStrings
e readVector 2
° readVect or 2s
° readVector3
e readVect or 3s
° readVector4
° readVect or 4s

e readWdeString

readW deStri ngs

To read data from PyDataSection, call the read function that relates to the data type, passing in the section
name as the first argument, and the default value as the second argument. The plural read functions (ending
in's') read the contents of all matching subsections of the specified section, and return the results as tuple of
values. You can refer to sub-sections by using the forward slash.

For example:
usernane = userPreferences.readString("l ogin/usernane", "guest")

You can also reference to subsections of a PyDataSection by calling the section name prefixed with an un-
derscore.

For example:

usernane = userPreferences. | ogin._usernane.asString

9.2.2.fini

The callback has the following syntax:
fini()
This is script is called when the client engine shuts down. It is used to do any cleanup required before the

client exits. This is a good place to perform a logout procedure on the player to logout gracefully.

For example:

note: you nmust set up a logOf nethod as a base nethod in the
def file of the class that the player is using.
def fini():

try:

bIgW@RLD" &

Scripting

Bi gWor | d. pl ayer (). base. | ogOfif ()
except:
pass

Example of fi ni () implementation

9.2.3. handl eKeyEvent

The callback has the following syntax:
handl eKeyEvent (event)

The event argument is a PyKeyEvent which contains information about the key event. See the Python Client
API document for details.

Generally, several systems can process keyboard input, so the arguments are passed to a handl eKeyEvent
method on each system in turn, until one returns a Boolean value of True, indicating that it has processed
the key event.

For example:

def handl eKeyEvent (event):
gl obal rds

give the chat console a go first
if rds.chat.editing:
i f rds.chat. handl eKeyEvent (event):
return True
try the gui
i f GUl.handl eKeyEvent (event):
return 1
now do our custom keys
if not event.isKeyDown(): return False # we are not interested in key
rel eases
if event.key == KEY_RETURN and event.nodifiers ==
rds.chat.edit(True) # bring up the chat console
return True

return Fal se because the key event has not been handl ed
return Fal se
Example of handl eKeyEvent () implementation

Note that the engine also calls the handl eKeyEvent method on the entity that the player is controlling. All
keys related to player control are handled there.

9.2.4. handl eMouseEvent

The callback has the following syntax:
handl eMbuseEvent (event)

This script is called whenever the mouse moves, and is given an instance of PyMouseEvent. It operates
similarly to handleKeyEvent.

For example:

64 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

def handl eMouseEvent (event):
try the gui
i f GUl .handl eMbuseEvent (event):
return True

return Fal se because the nobuse event has not been handl ed
return Fal se

Example of handl eMbuseEvent () implementation

9.2.5. handl eAxi sEvent

The callback has the following syntax:
handl eAxi sEvent (event)

This script is called whenever a joystick axis event occurs, and is given an instance of PyAxisEvent.

For example:

def handl eAxi sEvent(event):
try the QU
i f QU .handl eAxi sEvent (event):
return True

return Fal se because the axis event has not been handl ed
return Fal se

Example of handl eAxi sEvent () implementation

9.2.6. handl el MEEvent

The callback has the following syntax:
handl el MEEvent (event)

This is called when an Input Method Editor (IME) related event occurs and is used to update the GUI re-
spectively, and is given a Pyl MEEvent object as it's first parameter. See Input Method Editors (IME) on page
125 for details on IME support.

9.2.7. handl eLangChangeEvent

The callback has the following syntax:

handl eLangChangeEvent ()

This event occurs whenever the current input language has been changed by the user. It is useful for tasks
such as updating language indicators on GUI edit fields.

9.2.8. onChangeEnvi r onnent s

The callback has the following syntax:

bIgW@RLD" &

Scripting

onChangeEnvi ronnment s(i nside)

This script is a callback acknowledging the environment type the player is currently in.

Currently there are only inside and outside environment types. The argument is a Boolean value indicating
whether the player is inside or not. This may be useful for modifying the behaviour of the camera in third
person mode.

For example:

def onChangeEnvironnents(inside):
gl obal sd
sd.inside = inside
sd. updat ePi vot Di st ()

9.2.9. onGeonet r yMapped

The callback has the following syntax:
onCeonet r yMapped(spacel D, spacePat h)

This callback method tells the player entity about changes to the geometry in a space. It is called when
geometry is mapped into any of the currently existing spaces on the client. The space ID and the name of
the space geometry are passed as parameters.

The first parameter is the ID of the space the geometry is being mapped in to. The second parameter is the
name describing the space's geometry.

9.2.10. onRecr eat eDevi ce

The callback has the following syntax:

onRecr eat eDevi ce ()

This script is a callback alerting the scripts that the Direct3D device has been recreated. This often occurs
when the screen resolution is changed.

This callback was introduced primarily so that scripts can re-layout their GUI component scripts, but it is
also useful for recreating any static PyMbdel Render er textures (since these do not automatically update,
unless they are dynamic).

For example:

def onRecreateDevice():
(wi dth, height) = GUl.screenResol ution()
myCGui Control |l er. doLayout (wi dth, height)
myRender ers. recreat eText ures()

9.2.11. onTi meXF DayLocal Change

The callback has the following syntax:

66 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Scripting

onTi meOf DayLocal Change(ganeTi ne, secondsPer GameHour)

This script is a callback to allow scripts to be notified of changes in the game time.

It is passed two floats as arguments: the first one is the game time in seconds, and the second is the number
of real-time seconds per game hour.

9.2.12. start

The callback has the following syntax:
start()

This script is called after the engine has initialised, and used to start the game. It may be used to bring up
a start menu, or login screen.

bIgW@RLD" =

Chapter 10. Models

For the purposes of the BigWorld client, a model is a self-contained unit of geometry that can draw itself into
a 3D scene at the location of a world-space transform matrix. Moreover, all models may have animations
that alter their appearance over time — some models explicitly support animations of their nodes (which are
skinned), whereas the others are animated by displaying alternate geometries.

Moo, the BigWorld 3D engine, currently exports three kinds of objects that may be used as models:
* Meshes with skeletons.

* Meshes without skeletons.

* Billboards (a special form of simple geometry).

However, the model concept in the BigWorld client encapsulates anything that fits into the definition above,
and the implementation is easily extended to incorporate new kinds of objects.

Moo names its meshes visuals (visuals actually include a good deal more than a simple polygon mesh. They
can have groups of meshes, bones, envelopes, materials, and a hierarchical skeleton too) and . vi sual files
can be readily created from a 3ds Max model using a BigWorld exporter. Node-based animations can also
be created with the exporter. A .model file can then be created with the tool Model Editor, so that the visual
and its animations are tied together. Model files that are billboards or static meshes (and their animations)
can also be created with Model Editor.

A model file can also specify a simpler parent file to be used when drawn in the distance. Chains of parent
model files thus formed are known as level-of-detail (LOD) chains.

10.1. Performance

In order to improve rendering performance, a model can be flagged in Model Editor to be batch rendered,
which results in the creation of the bat ched tag in the generated model file (for details, see the document
Content Tools Reference Guide's section Model Editor = “Panel summary” = “Object Properties panel”).

The batch rendering works by caching per-instance data (essentially lighting conditions and transforms) at
traverse time, and once the scene has been traversed, rendering all instances at the same time, only updating
the data necessary for each render. This saves the engine from setting vertices, indices, and textures multiple
times for batched models. It does use a bit more memory, but gives a considerable performance boost.

It is advisable to use the batch flag on models with many instances of it in the scene. In FantasyDemo, the
batch flag is used on trees, guards, striffs, chickens, and the guard's guns. Please note that the flag does not
affect models that use tints.

10.2. Hard Points

Hard points, or attachment points, can be conceived as logical patches of Velcro that allow us to stick a gun
in a hand, sling a backpack over a shoulder, or place a security camera on a turret. The artists must embed
hard points in their .visual files using dummy nodes.

Hard points use well-defined names, preceded by 'HP_' prefix, so that entities can scan for hard point nodes.
The significant information is:

* Name.
* Position.
¢ QOrientation.

This information allows the developer to attach any object to any other, within the constraints of game logic.

bigw@RLD" &

#dest=
#dest=
#dest=
#dest=

Models

Examples of hard points include:
e HP_Left Hand

e HP_Ri ght Hand

e HP_Shoul der

* HP_Bel t 1

10.2.1. Naming scheme

In order to avoid the need for an intermediate step, there needs to be an explicit pairing between character
hard points and item hard points. Every item needs a hard point for every specific way that it can be held.

As an example, listed below are the hard points for a human character and a gun.
* In human. nodel :

° HP_Left_Hand

e HP_Ri ght _Hand

° HP_Belt_1

* HP_Bel t_2

* HP_Belt_3

* HP_Belt_4

e HP_Shoul der

e HP_Bl ade_Lower

* HP_BI ade_Upper
e In gun. nodel :

e HP_Left Hand

* HP_Ri ght _Hand

* HP_Bel t_2

e HP_Shoul der

10.2.2. How it works

The (client-side) Entity class provides a list of hard points, but only if asked by the specializing class. For
example, when a model is loaded, it will find all nodes prefixed with (for instance) 'HP_'. These are then
stored in a hardPoint list that is owned by the model.

When an item is equipped, the entity/game arbiter will be asked to match up the item with the correct hard
point. For example, if the 'next weapon' button is pressed, the next weapon in the inventory can be attached
to the right hand hard point.

10.2.3. Syntax

The syntax for using hard points from Python is elegant and powerful. To attach model gun to model avatar
on hard point hand, use the following syntax:

70

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

avat ar. hand = gun

A model is checked when it is attached to ensure that it is not attached elsewhere. To retrieve the model
attached to avatar's hand, simply use:

nodel = avatar. hand

If no model is attached, then None is returned.

The model is attached by reference, not by copy, so anything that can be done to the original model reference
can be done to the reference retrieved from a hard point.

For example, gun.Shoot() and avatar.hand.Shoot() have the same effect.

10.2.4. Data

A model definition is an XML file specifying:

* A base model definition reference (optional).

* The visual defining the mesh.

* The animations the mesh can use.

* The actions that the model can perform (for more details, see “Action Queue” on page 53).

The Model Editor tool is used to create a .model file that links an object's geometry to its animations and
defines the sets of animations/actions that are possible to play on this object.

As with all resource files in the BigWorld framework, .model files are in XML format. They are hierarchical
and inherit data from their parent(s), in this way basic animations that apply to a large set of characters can
be isolated from more character-specific animations without having to be duplicated.

The example below defines a very simple model:

<j ogger . nodel >

<nodeful | Vi sual > jogger </nodefull Visual>
<par ent > bi ped </ parent >

<ani mati on>

<nane> j og </ nane>
<franeRate> 30.0 </ franeRat e>
<nodes> j 0gAni m </ nodes>

<al pha>

<Tor so> 0.0 </Torso>
<Pelvis> 1.0 </Pelvis>
</ al pha>
</ ani mati on>

<action>
<nane> Bl PED_JOG </ nane>
<ani mati on> j og </ ani mati on>

<bl endl nTi me> 0. 300000 </ bl endl nTi ne>
<bl endQut Ti nre> 0. 300000 </ bl endCQut Ti me>

<filler> fal se </[filler>
<bl ended> fal se </ bl ended>
<i sMovenent > true </ i sMovenent >

bIgW@RLED" =

<i sCoordi nat ed> fal se </ i sCoor di nat ed>
<i slnmpacting> true </i sl npacting>
<mat ch>
<trigger>
<m nEntitySpeed> 1.0 </ninEntitySpeed>
<maxEntitySpeed> 3.0 </naxEntitySpeed>
<capsOn> 16 </ capsOn>
</trigger>
</ mat ch>
</ action>
<j ogger . nodel >

Example of . nodel file

This file describes a character (j ogger) which has a geometry defined by the visual file jogger and has a
standard set of biped actions via the <par ent > tag, which may include walk, run, and jump animations,
but also specifies a jog animation.

The animation section includes:

* Name of the animation.

* Frame rate at which the animation should normally be played at.

* Tag <nodes>, which refers to the name of the animation file that contains the raw keyframe data.

The <act i on> section describes the action name that is used to play this action from the Python code.

10.3. SuperModel

A SuperModel is a collection of models that need to function as one. The SuperModel class is a utility class
that forms a flexible basis for modules that want to use models. It is used for the static models specified in
chunks, and the dynamic models that entities can manipulate.

The SuperModel provides an efficient representation (both in memory and in CPU) of a conceptual model.
The supermodel is made up of selectable parts, and these parts have an inheritance tree for specifying an-
imations, actions, material overrides, and most importantly, lower level of detail (LOD) parts that may be
substituted at appropriate distances.

The supermodel brings all these parts and their adornments together into one conceptual model that auto-
matically takes care of the complexity that arises from the multi-part and LODing features.

An example of the most basic SuperModel is a single mesh, which has been exported from 3ds Max using
the BigWorld exporter; into the format understood by the 3D engine Moo.

SuperModels do not live in the scene graph or in chunks, and provide no interfaces to the scripting system.
These matters are left up to higher-level classes, which are encouraged to use SuperModel for all their model
needs.

10.3.1. Design

There are model files, with the .model extension, but there are no explicit SuperModel files.

There is the SuperModel class, which holds together and controls the animation and rendering of a number
of models. A SuperModel is created based on information in chunk and model files (these are instance-like
classes — there is nothing analogous to PyModellnfo.).

Using LOD ratios, the SuperModel class can manage the transition between, say, an avatar being rendered
at a high LOD using three separate models, to it being rendered at a low LOD using just one.

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Models

Animations are accumulated on the same inheritance hierarchy, and the animation most appropriate to the
current LOD level is used. All the animations for all the LOD levels are interpreted and selected from a flat
namespace. Attempting to play an animation that does not exist (or does not exist at the current LOD level)
selects an infinite length animation of the model's initial pose. Care must be taken to ensure that multi-model
SuperModels do not waste time animating unnecessarily (e.g., when all the small parts have an animation
overriding the whole part's animation, it would be a waste of time to apply the whole part's animation).

The mesh files themselves specify how a part is connected to others for multi-part supermodels.

10.3.2. SuperModel classes

The SuperModel class implements the basic functionality of the BigWorld model definition, using the objects
provided by Moo. It combines a number of the .model files created by Model Editor (but usually just one)
into one conceptual model, managing any animations and level-of-detail chains. The SuperModel class is
detailed in “SuperModel” on page 72 .

Two classes currently use SuperModels in the BigWorld client, for two different needs:
* ChunkModel
* PyModel

Both are described in the following subsections.
10.3.2.1. ChunkModel

A ChunkModel is a model that inhabits the static scene base (e.g., rocks, trees). Together with the terrain, it
populates the client world and forms the majority of interesting scenery.

All ChunkModels are added to the collision scene for their chunk, unless flagged otherwise. They may op-
tionally play one animation, at a specified speed multiplier — otherwise they are static.

They depend heavily upon the services of their SuperModel, supplying only the interface required to live in
a chunk, and the simple instructions to play back their single animation.

10.3.2.2. PyModel
This class implements the model as it appears to the scripting environment.
It allows scripts to perform the following operations:
* Fetch bound actions sourced from the model's definition.
* Reference hard points (for details, see “Hard Points” on page 69).

* Specify position, rotation, and scaling.

Add motors to move itself around in the scene (such as an Action Matcher).

Add trackers for inverse kinematics.

Add particle systems tied to any node.

Control the generation of footsteps and dust particles.

Control visibility and shadows.

bIgW@RLED" 73

Chapter 11. Animation System

The animation system in the BigWorld engine combines many sophisticated techniques that are accessed via
an easy-to-use interface. This system allows game developers to quickly create lifelike characters and envi-
ronments. The problem this system solves is taking the raw content that is created by artists and integrating
it into a believable dynamic game world.

Artists working on design tools such as 3ds Max or Maya can create models and animations, then use the
BigWorld Exporter plug-in to export them into data files of a format understandable by the graphics engine.

The Model Editor tool can be used to view these models and play back animations. It is then used to create
a list of actions from these animations that are the Python-accessible interfaces within the game engine.

11.1. Basic keyframed animations

The motions of an object over time can be stored as an array of keyframes that describe the position, rotation,
and scale of an object (or part of one) at different points in time. These keyframes are then used as reference
values and intermediate positions and rotations are calculated by interpolating between keyframe data.

More realistic intricate objects are described as nodal trees representing a bone hierarchy. An example is a
simple biped character that would have a typical hierarchy shown below:

Tarso
Meck Upperfmleft || Upper®mRight Pelvis
I | | | —
Head LowerAmmibleft || LowerSmmRight UpperlegLett UpperLeg Right
LeftHand Right Hand Lenwer Leq Left Lawer Leg Right
LeftF oot Righit F oot

Typical biped hierarchy

Each node represents the spatial state of a part of an object. These can map to rendered geometry either
directly for rigid objects such as a hydraulic machine or as bone transforms that are used to update a skinned
mesh (each geometry vertex having a set of weights that define how each bone influences its movement).

11.2. Animation layering and blending

A simple animation such as a man waving may consists of keyframe arrays from a subset of the whole bone
tree, e.g., only for Tor so, Upper Ar nRi ght and Lower Ar nRi ght .

A different animation of the man walking may include only the Tor so and Pel vi s sub-tree. These two an-
imations can be seen as different layers of the total movement. Within the BigWorld framework, this layering
is achieved via setting nodal alpha values with the Model Editor tool, as illustrated below:

bigw@RLD" E

Animation System

~Blending
biped [0.07) 1|
= biped Pelviz [0.0]
. biped Spine [0.0]
=- biped Spinel (0.0)
= bipsd Spine2 [0.0]
= beped Meck (0.0
biped Head [1.0%) y

+ biped A Clasacle (0.0
HP_shoulder 0.0)
HP_shoulder2 (0.0
+ biped L Thigh [0.0]
+ biped P Thigh (0.0) m
HP_sheeid (0.0 v

950.0 Rf000 * W

Model Editor '‘Blending' fields

Within the engine, different layers can be seen to be played on different animation tracks, which control the
stopping and starting of animations for particular parts of the body (the usual separation into upper and
lower body allows motion and action to be dealt with smoothly yet independently within a game).

It is possible to play an arbitrary number of animations at once and have the resulting motion be a blended
interpolation of all the animations. This is essentially the same procedure as keyframed interpolation, as we
are interpolating position, rotation, and scale data. When the different animation layers need to be combined
into a single motion, the nodes that overlap in the different tracks need to be blended together.

Transitions between animations could be achieved by creating all possible animation transitions and allowing
all animations to complete their cycle before starting a new animation.

A much more adaptable and robust method is to blend out ending animations and blend in starting anima-
tions over a period of time. As long as the animation list is large enough to account for possible jarring tran-
sitions. For example, instead of having only stand and run animations, include also walk and jog ones, then
this system combined with good animations creates smooth lifelike behaviour in game characters.

11.3. Animation data files

The BigWorld exporter outputs the following data files (all file types exported to the resource tree <r es>):
e .visual files

Define an object's bone structure and material data.
e .primtive files

Define the vertex data such as offset and weighting values for a skinned object, and contain BSP data where
appropriate.

e . ani mati on files

Define the keyframe data of an animation.

76 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Animation System

11.4. Animation data streaming

Animation data is stored as a series of blocks that are asynchronously streamed into memory on demand.

The sum of all these blocks is referred to as the streamed block cache, which size is constrained to prevent
excessive memory usage. To specify the size of the cache, set the ani mat i on/ st r eanChacheSi zeKB tag
in <engi ne_confi g>. xm (for details, see “File <engi ne_conf i g>. xm ” on page 12)

The watchers Menor y/ St r eanedBl ocks_CacheSi ze and Menor y/ St r eamredBl ocks_CacheMaxSi ze
display the current size and the limit of the cache in bytes, respectively.

11.5. Actions

An action is a wrapper object that links an animation to in-game behaviour and events. Action objects differ
from animation ones in the information they hold, as described below:

* Animation object

* Raw keyframe data.

* Information on frame rate.

* Functionality on how to play itself on a model.
* Action object

* Blending time information.

Information on whether action is loop.

Information on whether an animation is movement.

* Animation-matching data specifying particular object state values for when a particular action should
be played.

The raw data describing an action is defined in a . nodel file in XML format (located in any of the various
sub-folders under the resource tree <r es>, such as for example, <r es>/ envi ronnents, <res>/fl ora,
<res>/ set s/ vehi cl es, etc...).. This data is produced from the Model Editor tool.

For details, see “Action Matcher” on page 58 .

bIgW@RLED" =

Chapter 12. Integrating With BigWorld Server

12.1. Overview

This chapter describes how to integrate arbitrary clients with the BigWorld Server.

A tool called Pr ocessDef s parses the entity definitions and generates C++ code for interacting with a Big-
World server that uses those same entity definitions. The entity behaviour can then be implemented in C
++, or glue code can be written to allow the entity behaviour to be implemented in another language, for
example, Lua, or Objective-C. This allows for client applications that do not use Python as their game script-
ing language by generating code that contains all the entity type data (method calls and properties) that is
normally read from the entity definitions files.

To implement entity-specific behaviours, the generated stub classes for each entity type can be extended to
provide the specific behaviours in response to method call requests or property updates from the server.
More general behaviours common to all entity types can be implemented in the user-defined superclass that
derives from BWEntity.

Base class for all entities. BWEntity

i

Per-game entity superclass

{user-defined). MyEntity
T Handle for calling remote server-side
Generated class with stubs ._..-"""'_;i' CellMB::Avatar | methods on the cell entity.
for client-side methods and Avatar Stub

methods an the base entity.

properties. x
Handle for calling remote server-side
T BaseMB::Avatar ;

User-defined concrete entity Avatar
class.

For example, the above class diagram shows an entity type called Avatar from a set of entity definitions. The
code generator will generate stub files for the Avat ar _St ub, Cel | MB: : Avat ar and BaselMB: : Avat ar
classes, which encapsulate all the accessors and members for accessing properties and calling remote meth-
ods. Concrete implementations of the Avatar entity type on the client are implemented in the user-defined
Avat ar class (a template that can be used as a basis for this is also generated).

All entity classes must have BWENt i t y as one of their inherited ancestor superclasses, but they can also
inherit from a user-defined custom class that provides general game-specific functionality that is common
to all entity classes. For example, Avat ar _St ub derives from MyEnt i t y instead of BWENt i t y in the above
example, allowing for the Avat ar class to use inherited member methods and data from MyEnt i t y as well.

The connect i on library provides C++ classes that can be used to connect and authenticate to the BigWorld
Server. Once connected, volatile data, property updates, method calls can be sent and received between the
client and server.

12.2. Generating Code With the ProcessDefs tool

At the most basic level, the ProcessDefs command line tool parses a set of entity definition files and calls
through to a processing function defined in a Python module with a data structure that represents the parsed
entity definitions.

By default, it will use the Pr ocessDef s Python module located in the same directory as the pr ocess_def s
executable, which simply outputs the entity definitions to the standard output stream and exits.

bigw@RLD" &

Integrating With BigWorld Server

For generating C++ source files, the supplied Gener at eCPl usPl us module is used.

The desired Python module can be specifying the module name with the - m/- - nodul e switch. For example,
for selecting the Gener at eCPl usPl us module:

$./process_defs -m GenerateCPlusPlus ...

12.2.1. ProcessDefs/GenerateCPlusPlus Operation

Running the pr ocess_def s executable with the - - hel p switch will give you general options as well as a
list of module-specific options supported by the selected Python module.

$./process_defs -m GenerateCPl usPlus --help
usage: process_defs [OPTION] scriptArgs

This program parses the BigWrld entity definition files. A Python object is
then created representing the entity descriptions. This is passed to a Python
cal | back nmodul eNane. functi onName. By default, this is ProcessDefs. process.

Thi s modul e (ProcessDefs. py) should be placed in nodul ePath. This is the
current working directory by default.

Opt i ons:

-r directory Specifies a resource path. Can be used
multiple times, in order of deccreasing
priority.

-f, --function funcNane The Python function to call. "process" by
defaul t.

-m --nodul e nodul eNane The Python nodule to | oad. "ProcessDefs"
by default.

-p, --path directory The directory to find the nodul e. Current
wor ki ng directory by default.

-v, --verbose Di spl ays nore verbose out put.

-h, --help Di spl ays this nessage.

Script Options:

-h, --help show this hel p nessage and exit

-0 FILE, --output=FILE
Directory to output generated files. Defaults to
" Cener at edCPl usPl us".

- - base- cl ass- header =CLASS_NAME_| NCLUDE_PATH
Path to a header file containing the declaration for
the base class for generated entity classes. Defaults
to "connection/bw entity. hpp".

-b CLASS_NAME, --base-cl ass=CLASS_NAME
The base class for generated entity classes. Defaults
to "BVENtity".

- - gener at ed- header - pat h=HEADERPATH
This indicates the directory of where to find the
generated sources, and is used for generating the
#include lines for generated headers. Defaults to
"CeneratedEntities".

--entity-header - pat h=HEADERPATH
This indicates the directory of where to find your
entity class header files, and is used for generating
the #include lines for entity header files. Defaults
to "Entities"

--entity-tenpl at e- sour ce- ext ensi on=EXT
Speci fies the extension suffix given to generated
entity stub and tenplate C++ source files. Defaults to

80 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

n n

cpp .

ProcessDefs requires the location of the resource directories be specified as command line options, so it can
find the relevant entity definition files to parse. The resource directories can be specified by using the -
r option, followed by the path to the resource directory. To specify multiple directories, the option can be
used multiple times, specifying resource paths in descending order of priority. Typically, the bi gwor | d/ r es
directory is specified as the last resource path.

Typically, the generated sources are compiled as part of a larger project, and are placed in their own directory
within the project directory structure. You can use the ProcessDefs tool to compile straight to their target
directory by using the - 0 / - - out put command line option.

Once the sources are in place, you will also need to include them into your project using a common include
line path prefix. The generated source files will also include other generated header files, and so it is necessary
to also add this common include line path prefix in the generated source files themselves. This prefix is
specified using the - - gener at ed- header - pat h option, and is usually determined by where the output
directory is in relation to your project source directories.

Concrete entity implementations will typically be in their own directory. Since the generated source files
require the inclusion of those entity class header files in order to construct them in the entity factory, the
location of the entity class header files needs to be specified using the - - ent i t y- header - pat h option.

It can be useful to also modify the file extension of the entity class template source files that are generated.
For example, Objective-C++ requires its source files to have a . nmextension.This can be specified using the
--entity-tenpl at e- sour ce- ext ensi on option.

As an example, the ios client project directory (located at bi gworl d/src/exam
ples/client_integration/c_plus_plus/ios)containsaC asses directory, which in turn contains
anEnti ti es directory, which in turn contains a Gener at edSour ce directory. The O asses directory con-
tains source files for general game Objective-C and Objective-C++ classes, including the general FDEnti ty
class which is used as the entity super-class, which implements functionality common to all entity classes.
FDENt i ty itself derives from BWENtity.

The Ent i ti es directory contains the implementation source files of the concrete entity classes. These classes
derive directly from their corresponding stub classes, so for example, Avat ar derives from Avat ar _St ub.

The Gener at edSour ce directory contains all the generated sources output from ProcessDefs. It contains
the non-entity-specific source files, for example, the sources for generated FI XED_DI CT types, as well as
each entity type's stub class and the server-side entity classes.

With these requirements in mind, we use the following command as part of the build process in XCode:

./ process_defs. nacosx \
-r "${SRCROOT}/../../../../fantasydeno/res" \
-r "${SRCROOT}/../../../lres" \
--nmodul e "CGener at eCPl usPl us" \
--out put "${SRCROOT}/ O asses/ Entiti es/ Gener at edSour ce" \
--base-class "FDEntity" \
- -base-cl ass- header "FDEntity.h" \
--entity-header-path "Cl asses/Entities" \
--gener at ed- header-path "C asses/Entiti es/ Generat edSource" \
--entity-tenpl at e- sour ce-ext ensi on "mf

12.2.2. Generating C++ Code

The Gener at eCPl usPl us module takes the entity definitions descriptor object and writes out several gen-
erated files that can be used for connecting to a server that runs those same entity definitions.

bigw@RLD" &

Integrating With BigWorld Server

For each entity type, the GenerateCPlusPlus module will generate a stub class which incorporates the entity
type name in the class name. This stub class implements the entity property streaming and client-side method
dispatch.

The GenerateCPlusPlus module will also generate, if needed, remote entity classes used for calling remote
methods on the server side, if they are defined in that entity type's definition file.

The files generated are:

Entity_Stub. hppand Entity_Stub. cpp

The Avat ar _St ub class derives indirectly from BVENt i t y, and contains property member variables and
accessors, as well as implementing the streaming operators for each of its property members that are pop-
ulated from the server-side.

It contains accessors to the cell and base (if applicable) via a Ser ver Ent i t yMai | Box subclass, which
contains methods to call remote base and cell methods declared in the entity definitions.

It contains pure virtual method declarations of client-side methods that can be remotely called from the
server-side.

The concrete Avat ar class derives directly from Avat ar _St ub, and implements the pure virtual methods
and inherits the property accessors and the base and cell remote entity handles.

Entity_Cel | MB. hppand Entity_Cel | MB. cpp

The Cel | MB: : Avat ar class implements the remote method calls from the client-side to the cell entity
on the server-side. This may not be available if the entity definitions for the Avat ar entity type do not
declare any exposed Cel | Met hods.

Entity BaseMB. hppand Entity_ BaseMB. cpp

The BaseMB: : Avat ar class implements the remote method calls from the client-side to the base entity
on the server-side. This may not be available if the entity definitions for the Avat ar entity type do not
declare any exposed BaseMet hods.

Entity. hppandEntity. cpp

A template for the concrete Avat ar entity class will also be generated that can be used as a basis for
the actual concrete Avat ar entity class implementation. It provides empty implementations of required
client-side methods and property setter callbacks. These concrete entity template sources are located in a
sub-directory of the output directory called t enpl at es.

The Gener at eCPl usPl us module will also output several general source files as listed below:

Def sDi gest . hpp and Def sDi gest . cpp

The Def sDi gest namespace holds a single method that returns the string value of the digest of the entity
definitions. This digest value is used when logging into the server to verify that the server entity definitions
match the client's entity definitions.

EntityFactory. hppand EntityFactory. cpp

The Ent i t yFact ory class implements the BWENt i t yFact or y interface, and creates a new instance of
BVENt i ty that is named the same as the entity type that the given entity type ID refers to (for example,
the Account class for the Account entity type).

Gener at edTypes. hpp and Gener at edTypes. cpp

This header and source file describe generated types that were derived from FI XED_DI CT data types.
These are labelled in the definition of the FI XED_DI CT data type where they appear in either the

82

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

scripts/entity_defs/alias.xm file orinthe <EntityType>. def file using the <Label > tag in
order to name the generated class for that FI XED_DI CT type. For example:

<r oot >

<l nventoryEntry> FI XED_DI CT
<TypeName> | nventoryEntry </ TypeNane>
<Properties>
<i tenType>
<Type> | TEMIYPE </ Type>
</itenType>
<serial >
<Type> | TEMSERI AL </ Type>
</ serial >
<l ockHandl| e>
<Type> LOCKHANDLE </ Type>
</l ockHandl| e>
</ Properties>
</InventoryEntry>

The above example will result in a class called | nvent or yEnt ry to be generated and used as the type
for member data in stub classes for entity types that have the | nvent or yEnt ry type as a type for one
of their client-visible properties.

It is important to label all FI XED_DI CT types, as failure to do so will cause issues due to the arbitrary
numeric label that is assigned to unlabelled FI XED_DI CT types (for example, Fi xedDi ct O, Fi xedDi ct 1,
and so on). If the parse order changes at all, entity source files that refer to those unlablled FI XED_DI CT
types may be referring to incorrect types in the new parse order, causing compile errors when using sub-
property accessors.

12.3. Customising ProcessDefs Output

It may be necessary to change the generated code output to customise it for specific game development
needs. This can be done by modifying the templates that the GenerateCPlusPlus module uses for generating
source, or implementing a whole new processing module for the ProcessDefs tool.

12.3.1. Modifying the Generated Code Templates

The GenerateCPlusPlus module uses the supplied jinja2 Python templating library to generate the code. The
jinja templates are located inside the module directory under the directory called t enpl at es. The templates
used are:
* Def sDi gest. hpp and Def sDi gest . cpp

Template used for generating the definitions digest accessor function.
e EntityFactory. hppand EntityFactory. cpp

Template used for generating the entity factory class.

* EntityMail BoxTenpl ate. hpp and Enti t yMai | BoxTenpl at e. cpp

Template used for generating the base and cell mailbox objects, for calling remote methods on the serv-
er-side.

* EntityStubTenpl ate. hppand EntityStubTenpl ate. cpp

bIgW@RLD" =

Integrating With BigWorld Server

Template used for generating the entity stub classes that implement the functionality for client-side entity
method dispatch and client-side entity property streaming.

e EntityTenpl ate. hppand EntityTenpl ate. cpp
Template used for generating the empty entity class templates.
* Gener at edTypes. hpp and Gener at edTypes. cpp

Template used for generating the FI XED_DI CT equivalent types.

12.3.2. Implementing a New Processing Module

For ultimate control over the code generation process, a new processing module can be used with Process-
Defs.

Each ProcessDefs processing module implements a function that is passed a data structure that describes the
entity definitions that are parsed by ProcessDefs. The function is called pr ocess() by default; a command
line option on ProcessDefs can change which module function is called.
The data structure passed to the processing function is a Python dictionary with the following keys:
° constants

This is a dictionary of constants used for connection to the server. In particular, it contains:

e di gest

This value is a string of the entity definitions digest, used to verify the client-side resources are consistent
with those resources on the server.

e maxd i ent Ser ver Propert yCount
This value is the maximum count of client-server properties across all entity types.
° maxExposedBaseMet hodCount
This value is the maximum count of exposed base methods across all entity types.
° maxExposedCel | Met hodCount
This value is the maximum count of exposed cell methods across all entity types.
* maxExposedd i ent Met hodCount
This value is the maximum count of client methods across all entity types.
e entityTypes

This value is a sequence of dictionary objects, each of which describes an entity type. Each entity type
dictionary has the following keys:

e client Met hods
This value contains a sequence of dictionaries describing each of the client methods for this entity type.
* baseMet hods

This value contains a sequence of dictionaries describing each of the base methods for this entity type.

84 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

e cel | Met hods

This value contains a sequence of dictionaries describing each of the cell methods for this entity type.
e allProperties

This value contains a sequence of property description dictionaries for all properties.
e clientProperties

This value contains a sequence of property description dictionaries for all client-side properties propa-
gated from the server.

* baseTod i ent Properties
This value contains a sequence of property description dictionaries for BASE_AND_CL| ENT properties.
e cell TodientProperties

This value contains a sequence of property description dictionaries for OAN_CLI ENT, OTHER_CL| ENT
and ALL_CLI ENT properties.

Each method description dictionary object contains the following keys:
° nanme

The name of the method.
* i sExposed

Whether the method is exposed for client-side initiated remote calls.
e internal | ndex

The internal index of the method - only important for debugging.
e exposedl| ndex

If this is an exposed method, this is the index used to identify this method in communications between the
server and client. This value is set to -1 for non-exposed methods.

Each property description dictionary object contains the following keys:
° nane
The name of the property.
° i ndex
The index of the property - only important for debugging.
e clientServerFul |l | ndex
The index of the property used to identify this property in communications between the server and client.
* i sGhost edDat a
ALL_CLI ENTS, OTHER CLI ENTSor CELL_PUBLI Cproperties have this value set to True, otherwise False.

e isGherdientData

bIgW@RLED" _

Integrating With BigWorld Server

ALL_CLI ENTS and OTHER _CLI ENTS properties have this value set to True, otherwise False.

i sOmd i ent Dat a

OMN_CLI ENT properties have this value set to True, otherwise False.

i sCel | Dat a

ALL_CLI ENT, OAN_CLI ENTS, OTHER CLI ENTS, CELL_PRI VATEand CELL_ PUBLI Cproperties have this
value set to True, otherwise False.

* i sBaseDat a
BASE and BASE_AND_CLI ENT properties have this value set to True, otherwise False.
e isCientServerData

BASE_AND_CLI ENT, ALL_CLI ENTS, OTHER_CLI ENTS, OAN_CLI ENT properties have this value set to
True, otherwise False.

* i sPersistent
If this is a persistent property, this value is set to True, otherwise False.
eisldentifier
If this property is the identifier property for its entity type, this value is set to True, otherwise False.
* i sl ndexed
If this property is indexed in the database, this value is set to True, otherwise False.
e i sUni que

If this property is marked as unique in the database, this value is set to True, otherwise False.

12.4. The connecti on_nodel Library

The connect i on_nodel library contains classes for connecting to the BigWorld Server. It makes use of the
lower-level connect i on library.

The BWConnect i on class contains most of the functionality for connecting to a BigWorld server, and pro-
vides a simple API for connecting. Connections are performed asynchronously, and require that the connec-
tion object is ticked frequently (typically once per game tick), to process events from the network.

The BVEENt i t y class is the base class for entity types. Typically, a particular game will have its own base class
that extends the BWENnt i t y class, and each entity type will then further derive from the BWENt i t y-derived
base class to implement entity-type-specific behaviours.

For example, the example sdl client (located at bi gwor | d/ src/ exanpl es/ c_pl us_pl us/ sdl) contains
a MyEnti ty class which derives from BWENt i t y. The Account entity class derives from MyEnti ty.

A class implementing the BWENt i t yFact or y interface is required when constructing a BWConnect i on
instance. This factory is responsible for creating a new instance of BWENt i t y based on an entity type ID sent
down from the server. The entity type ID reflects the order in which a particular entity type appears in the
entities.xm file.

When using code generation, a subclass of BWENt i t yFact or y will be generated which contains the logic to
instantiate the particular BWENt i t y class that is named after the entity type identified by the entity type ID.

86 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

12.4.1. Dependencies

The connecti on_nodel library depends on:

e The connect i on library, low-level classes and interfaces for connecting to the server.
* The cst dnf library, a general utility library used in BigWorld.

* The net wor k library, a networking library used to implement the Mercury protocol.
* The mat h library, a general math library.

* The OpenSSL library

12.4.2. BWConnection

This class represents a connection to the server. The BWConnect i on class's simple interface allows applica-
tions to connect to a server and populate BWEntity objects with position and direction data, property updates
and handling of remote method calls.

12.4.2.1. LoginApp Public Key

In order to communicate with the server, the public key used to encrypt login details for a server must
be configured and set on the connection object. This is done via a call to either set Logi nAppPubl i cK-
eyString() ortheset Logi nAppPubl i cKeyPat h() method.

The set Logi nAppPubl i cKeySt ri ng() method sets the LoginApp public key based on a string contain-
ing the public key. For example:

static const char g_publicKeyString[] = "----- BEG N PUBLI C KEY----- \n" \
"M | Bl | ANBgkqghki GOWOBAQEFAACCAQBAM | BCgKCAQEA7/ MNyWDdFpXhpFTOILHz\ n*
" CUQPYV2YP5r qJj Uox AFa3uKi PKbRvVFj UQI GHyj Cnt i xBbBqCTvDWI6Zh9I mu3x\ n"
" KgCIh6NPSkddH3Il +C+51FNt u3dGnt bSLWiwi 6 AulEr Npy Spdx+Le7YEcFvi Y/ C Z\ n"
"ayvVdAOt ch5NVJI4Axul3NvsuOQUMHXxz CZRXCebny p6phFP2dQQZj 8QZp0VsMFvhh\ n"
"MsZ4sr dFL@sd8ql i YzSql yEQkwOBTQ eHzf YYZ9OWPTCOVMMe5+z CHOi PIM sP\ n"
"YB60u6! K9cvDEeuhPHI5TPpz LNUFgn) u9FU8PkcKA53bj OLWZR7v860co6vFg6W n"
"sQ DAQAB\ n"

Moo END PUBLI C KEY---- - \n"

— - - - — —

BWConnecti on connection(...);

connection. set Logi nAppPubl i cKeyString(g_publicKeyString);
The set Logi nAppPubl i cKeyPat h() method sets the LoginApp public key based on a file located at the
given path. The path itself is a normal file-system path; it is not resolved through the resource file system.

Please refer to the Encrypting Client-Server Traffic for more information about the encryption used between
the client and the server.

12.4.2.2. Entity Definitions Digest

The entity definitions is required to be identical between the client and the server for methods and properties
to be able to be streamed over the network. In order to guard against inconsistent entity definitions, the
server and the client take a digest of the entity definitions, and the client sends its digest when logging in
for the server to compare against.

The BWConnect i on object requires that the digest be set using the set Di gest () method.

bIgW@RLED" =

#dest=

Integrating With BigWorld Server

When using ProcessDefs/GenerateCPlusPlus to generate code, the function Def sDi gest : : const ant s() is
generated, which returns a constants object that contains the definitions digest string, along with other con-
stants important for streaming properties and methods.

For example:

#i ncl ude " CGener at edSour ce/ Def sDi gest . hpp"

#i ncl ude "connecti on/ bw_connecti on. hpp"

BWConnection * pConnection = new Connection(*pEntityFactory,
Def sDi gest::constants());

12.4.2.3. Ticking the Connection Instance
Clients will generally have a render loop in which rendering occurs each frame. As part of each frame, the
BWConnect i on instance should be ticked regularly, by calling the BWConnect i on: : updat e() method
periodically.
The updat e() method requires that the amount of time elapsed since the last update be passed in.
Under certain frameworks, timers may be set up to call updat e() . For example, under Apple Objective-C

under iOS, NSTi mer can be used to tick the connection instance periodically. Cocos2D also has a similar
timer.

12.4.2.4. Logging Into a Server

After setting up the LoginApp public key, the entity definitions digest and ticking the connection instance,
the connection can be started by logging into the server using the | ogOnTo() method.

std::string serverAddress = "10.1.1.1";
std::sttring usernane = "MUser";
std::string password = "pass";

pConnecti on- >l ogOnTo(server Address, usernane, password);

The ser ver Addr ess string parameter specifies the address and port to connect to. If no port is specified,
the default port of 20013 is assumed. To specify a port, use the <i p_addr ess>: <por t > format.

Log-on success, failures and disconnection events can be handled by setting a Ser ver Connect i onHandl er
object on the connection. The Ser ver Connect i onHandl er interface in the connect i on library allows
you to catch the following events:
e onLoggedOn()

Called when a connection attempt succeeds.
e onLoggedOr f ()

Called when a connection has been disconnected.

e onLogOnFai | ure()

Called when a connection attempt fails. A string error message is supplied as a parameter.

88 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

The handler can be set on a connection object before calling | ogOnTo() :

MyConnect i onHandl er handl er;
pConnecti on- >set Handl er (&andl er);

12.4.3. BWEntity

The BVENt i t y class is the superclass of all entity classes. Instances of the BWENt i t y class are created using
the BWENt i t yFact or y instance registered with the BWConnect i on at construction time.

12.4.3.1. Avatar Filtering

Each BVEnt i t y instance can have an associated filter object that is used whenever position and direction
data is received from the server. This filter object is then used to output positions and directions each frame
based on the received inputs from the server.

There are pre-defined filters that can be used, for example the Avat ar Fi | t er class, which is the generic
filter used for most entities in the Windows-based BWClient. You can simply initialise the entity's filter object
by calling the pFi | t er () method.

M/Entity:: MEntity()

{

this->pFilter(new AvatarFilter(environment));

A filter environment object (deriving from the Fi | t er Envi r onment interface class) is required when con-
structing a Fi | t er Base subclass. This is often engine-specific, and so a particular Fi | t er Envi r onment
is required for each particular game engine.

AFil terEnvironment (found in the connect i on library) implements these virtual methods:

e voi d updat eCoordi nateSysten{ EntityBase * pEntity, SpacelD spacelD, EntitylD
vehiclel D)

This method is called whenever an entity has changed its coordinate system, typically by boarding or
alighting a vehicle. It is also called when a player entity teleports and changes space. This method is used
to perform any bookkeeping on the passed in entity in order to support the new updated coordinate space,
as well as handling the vehicle change.

e void transform ntoComon(Spacel D spacelD, EntitylD vehiclelD, Position3D &
position, Vector3 & direction)

voi d transfornfFromCommon(Spacel D spacel D, EntitylD vehiclelD, Position3D &
position, Vector3 & direction)

These two methods are used to transform coordinates from vehicle-space coordinates to the common
world-space coordinates.

* bool filterDropPoint(EntityBase * pEntity, const Position3D & fall, Position3D
& land, Vector3 * pG oundNornal)

This method is used to getting the drop position onto the closest terrain or other obstacle in the scene. The
ground normal should also be supplied in the pG oundNor mal parameter if it is non-NULL.

* bool resol veOnG oundPosition(Position3D & position, bool & isOnG ound)

bIgW@RLD" &

Integrating With BigWorld Server

This method is used to determine whether a particular point can be considered to be "on-ground". This
is used to optimise the network communication between the client and server if both sides agree that a
player entity is on the ground, as this allows for the y-position to be omitted from sending.

For creating new filters, new sub-classes of the FilterBase interface class can be implemented. Each filter
object is required to implement the following methods:

e void input(double time, Spacel D spacel D, EntitylD vehiclelD, const Position3D
& position, const Vector3 & positionError, float * auxFiltered)

This method is called to receive a position and direction update from the server, specific to a particular time.
The auxFi | t er ed parameter points to a 3-element array containing the yaw, pitch and roll respectively.

e void output(double tine)

This method is called to set the filter's best estimate for the position and direction of an entity for the given
time. This is typically called each frame to set the entity position before it is visually rendered.

e void reset()

This method is called when a filter state needs to be reset. This is typically when an entity first comes into
the area of interest, or when it has teleported.

* void getLastlnput()

This method is called to retrieve the last input that was received from the server.

12.4.4. BWENntityFactory

Subclasses of the BWENt i t yFact or y interface class are responsible for creating instances of BWENt i t y that
are appropriate to the entity type ID given to the creation method.

Generated code will include a concrete class that implements BWENt i t yFact ory, called Enti t yFact ory,
which creates the appropriate concrete BWENt i t y class that has the same name as the entity type name.

A BVENt it yFact ory instance is required to construct a BWConnect i on instance.

12.4.5. BWEntitiesListener

When the player is inside a space, entities in that space will enter and leave the client's area of interest, and the
server will inform the client when this occurs. It is useful to catch when this happens, and so BWConnect i on
allows fora BWENt i t i esLi st ener object to be registered which receives entity enter and leave events.

A BWEntitiesListener subclass implements the following methods:
e void onEntityEnter(BWEntity * pEntity)

This is called when an entity has entered the client's Aol.
e void onEntitylLeave(BWEntity * pEntity)

This is called when an entity has left the client's Aol.

12.4.6. Server Discovery

Server discovery is used during development to find a locally running server on the same LAN segment and
get details for starting a connection. It is not intended to be used for production clients.

A subclass of the abstract Ser ver Fi nder class is used for this purpose. By implementing a new concrete
subclasss of Ser ver Fi nder, instantiating it and passing it to BWConnecti on's f i ndSer ver s() method,

90 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Integrating With BigWorld Server

a search for locally running servers will be performed. The t i meout parameterin fi ndServers() canbe
used to set the time-out duration for searches; it defaults to 10 seconds.

Virtual method callbacks are called when servers are found, when the search is completed or has timed out.
Ser ver Fi nder subclasses should implement the following methods:

* onSer ver Found() is called when a single server has been found. Itis passed a Ser ver | nf o object, which
contains an address and port for connection, as well as the Unix user ID of the user running the server.

* onFi ni shed() is called when the search process has completed successfully.

* onRel ease() is called when the search is completed or when it has timed out. This is typically used to
clean up the object.

12.4.6.1. Probing a Running Server
The information from ServerFinder only gives you numeric address and port to pass into
BWConnect i on: : [ogOnTo(), and the numeric Unix user ID of the user running the server instance. It is
possible to probe the server to provide more information, such as the name of the machine running Logi-
nApp, and the username of the user running the server. This can be done by sending a server probe using
the Ser ver Fi nder's sendPr obe() method.

Server probe results are handled by a subclass of the Ser ver Pr obeHand| er interface class. The relevant
virtual methods to implement are:

* onKeyVal ue()
This is used to get results for a particular key-value result from the probe. Keys are:
* host Name
The name of the LoginApp machine.
* owner Nane
The name of the user running the server instance.
e user sCount
The number of successful logins processed by this LoginApp.
* uni ver seNane
Not used, present for backwards compatibility.
e spaceNane
Not used, present for backwards compatibility.
e bi naryl D
Not used, present for backwards compatibility.
e onSuccess()
This is called when the probe has completed successfully.
e onFail ure()

This is called when the probe has timed out or otherwise failed.

bIgW@RLED" .

Integrating With BigWorld Server

e onFi ni shed()

This method is called after either onSuccess() or onFai | ure() is called, and should be used to clean
up the probe handler object.

12.5. Example Clients

BigWorld provides example source code to illustrate how to integrate with the BigWorld serv-
er from other client applications. These example clients are found in the bi gworl d/src/exam
pl es/client_integration directory.

12.5.1. python/simple

This example client is a barebone application that connects to a BigWorld server, and illustrates a minimal
amount of effort required to connect to the server and send player movement, and how to apply property
updates to Python-based entities.

This example is compilable under Linux and Windows.

12.5.2. ¢c_plus_plus/sdl

The SDL example is a simple client that provides a top-down GUI using the Simple Directmedia Library
library (http://www.libsdl.org) to connect to a FantasyDemo server.

It uses the ProcessDefs tool to generate entity code.
This example is compilable under Linux and Mac OS X. It requires the SDL and SDL_i nage libraries.

Under CentOS Linux, these libraries can be installed by installing the SDL- devel and SDL_i mage- devel
packages.

Mac OS X framework libraries for SDL and SDL_i mage and instructions on how to install them can be found
at on the SDL site.

In order to run the example, the resource paths for FantasyDemo need to be specified on the command line
as well as the server address, for example:

$./client_integration -r ../../../../fantasydemo/res -r ../../../res -s
| ocal host

When running under Xcode, you will need to set these command line arguments in the
client_integrationscheme Run = Arguments — Arquments Passed On Launch.

12.5.3. c_plus_plusl/ios

This example is a simple iOS client that connects to a FantasyDemo server, and offers a top-down GUI to
visualise the client-side area of interest.

The project file is located in bi gwor | d/ src/ exanpl es/ cli ent_i ntegrati on/c_pl us_pl us/i os/
Fant asyDenp. xcodepr oj . It requires XCode 4.3 and above, and the installation of the optional XCode
Command Line Tools. To install, go to Preferences = Downloads — Components, and install the Command Line
Tools component.

92

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

http://www.libsdl.org

Chapter 13. Server Communications

The communication with the server uses a low-level UDP-based protocol named Mercury. Mercury is de-
scribed in detail in the document Server Overview's section “Inter-Process Communication (Mercury)”.

Server communication is accessible from both C++ and Python scripts.

This section is only applicable for a full client/server BigWorld implementation.

13.1. Login

To log in, the client sends a UDP packet using Mercury to the login server, on a well-known port. The packet
contains all the account and character information required to authenticate the client and select a character.

If login is successful, the login server adds an entity for the character to the BigWorld server system, and
refers the client to a proxy server, which handles all in-game communication. Both sides then begin sending
data to each other. For more details on the login process, see the document Server Overview's section Design
Introduction = “Use Cases” = “Logging In”.

13.2. Online

A Mercury channel is created between the proxy and the client. Only selected data that is classified as reliable
is resent in the event of a dropped packet. Due to the average packet rate, and the expected network latency,
a packet is classified as dropped if a packet with a higher sequence number is received before it is.

Since the client is operating in high-latency conditions, the server does not wait for dropped packets to be
resent before delivering other pending information to the client. The client must therefore cope with receiving
out-of-order messages of all kinds.

Messages are sent to the server through a Ser ver Connect i on class. The position of the player is sent to
the server 10 times a second. Messages are received from the server by this class during the input loop, and
dispatched to their handlers in the Entity Manager.

* The types of messages that the server can send to the client are as follows:
e enterEntity

Informs the client that the entity with the given ID has entered its Aol.

| eaveEntity

Informs the client that the entity with the given ID has left its Aol.

createEntity

In response to a query from the client, provides the type and other immediate data of the entity.

avat ar Updat e
Updates the position of an entity that has a volatile position.

These messages are sent unreliably (i.e., they are not resent if the packet is lost).

entityMessage

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Server Communications

Sends a script message to, or updates a property of the client representation of an entity.
* The types of messages that the client can send to the server are as follows:
e avat ar Updat e
Informs the position of the client's player entity to the server.
e request EntityUpdate
Requests information about the entity with the given ID that has just entered the client's Aol.

This works by effectively setting the entity's last update time (to the requesting client) to the time con-
tained in this message.

Properties that have been changed since that time are resent.
° entityMessage

Sends a script message to the server side of an entity (either on the base or on the cell).

13.3. Firewalls

The bane of mass-market online gaming is the firewall, especially the corporate ones. Our protocols have
been designed to work smoothly through all but the most paranoid of firewalls.

From the firewall's point of view, it should appear that the client has initiated both the login and the proxy
packet streams — since the login reply packet contains the address of the proxy server to send to, the client
can immediately begin sending data, which makes it appear to the server it has initiated this stream too, i.e.,
it 'punched a hole in the firewall'.

The BigWorld server correctly handles the case where it sends data to the client (which may be lost if the
client is behind a firewall) before the client has sent any data to it — the lost data is resent.

All that the firewall needs to support for these protocols to work is the storing of a UDP reply mapping entry
when it forwards an outgoing packet, so that a when a reply packet arrives with exactly reversed addresses
(the source and destination IP and port are swapped from the request packet), it is forwarded back to the
requesting client. This is the same requirement as that of the ubiquitous Internet Domain Name Service
(DNS), which practically all firewalls support.

The BigWorld server does not require the client to make requests from any particular port, so it is not confused
if a firewall masquerades the port as well as the IP.

94

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 14. Particles

A particle is a textured rectangle or a small mesh that can be drawn quickly and simply, usually with an
additive blend mode. They are mostly used to create interesting graphical effects.

Particles are managed within particle system objects, which keep track of a number of particles with similar
properties, and an identical function pipeline to describe the transition of its particles' properties.

14.1. Particle Systems

The particle system is implemented in C++ and is accessible from both the scripting environment and C++.
The Python module for particle systems is named Pixie.

Each particle system is presently responsible for a set of particles of the same texture. While a particle system
can change its particle texture colour dynamically, effects that require different simultaneous textures require
separate particle systems.

A particle system is a conglomerate of the following:

e Particles. This is a container that has specific allocation requirements determined by the renderer type.
Currently there are contiguous particles, which have optimal insert/erase characteristics; and FixedIndex
particles, these behave like a circular buffer and ensure that particle indices remain constant over their
lifetime. FixedIndexParticles are a requirement for trail rendering and mesh particle rendering.

e Particle Actions, which are responsible for the movement of particles (these actions do all the work of
moving, creating and destroying each particle).

e Particle Renderer, which is in charge of drawing the particles.
The Particle System itself provides a common access point for all three objects.

The Particle Renderer is for the most part hidden within the particle system. Likewise, the particles them-
selves are inaccessible to the outside. Most game code associated with the Particle System involves the cre-
ation of special Particle Actions.

Particle Actions work only during the update phase of the client. They are called in turn during the tick
method for a particle system, and the combined actions of each produce the overall particle effect of the
system.

For each particle system class, there is a corresponding python wrapper class. For example, Met aPar ti -

cl eSyst emis wrapped by PyMet aPar t i cl eSyst em These python wrappers hold no state, they only hold
a smart pointer reference to the underlying C++ object. The reason for this separation between the C++ object
and their python equivalent is to allow the full construction of particle systems in the background thread
(Python objects may only be constructed in the main thread.)

There is one more particle system class, which is the ChunkParticles class. This is entirely C++ and imple-
ments a Chunkltem for particle systems, it allows particle systems to be placed in the world via the World
Editor tool. Note that such particle systems should be automatically time triggered, as there is no way to
access them at run-time in python and turn them on or off.

At present, the procedure for using a particle system involves the following steps:

e Particle System is created using Particle Editor.

e Particle Editor is used to create the different types of Particle Actions that control the particles.
* Any texture and material effects are set.

e Particle System is added to a model, in order to be displayed and updated.

bigw@RLD" =

Particles

Particle Systems can easily be created in the BigWorld Particle Editor and saved as XML files — typically
under folder the resource tree <r es>. In the client, they can either be placed directly into the scene using the
World Editor, or invoked from Python as such:

i mport Pixie
ps = Pixie.create("ny_particle_systemxm")
Bi gWor | d. pl ayer (). nodel . node("bi ped head").attach(ps)

Note that particle systems can take a reasonably long time to construct - for a moderately complex system
it might take 5ms to parse the xml file, create all the subsystems and hook them all up together. For this
reason, it is highly recommended that the script-writer load Particle Systems asynchronously, using either
the Pixie.createBG method, the BigWorld.loadResourceListBG method, or using Entity prerequisites. For
example:

Exanpl e 1:

i mport Pixie
ps = Pixie.createBE "nmny_particle_systemxm", self.onLoadPS)

def onLoadPS(self, ps):
Bi gWor | d. pl ayer (). nodel . node("bi ped head").attach(ps)
Exanpl e 2:
i mport BigWrld
Bi gWor | d. | oadResour ceLi stBE ("particles/one.xm", "particles/two.xm"),
sel f. onLoadResources)
def onLoadResources(self, resources):

sel f.nodel .root. attach(resources["particles/one.xm"])
sel f.nodel .root. attach(resources["particles/two.xm"])

14.2. Particle Actions

There are four main categories of Particle Actions:
* Source

Creates particles
* Movement

Changes the velocity or position of the particles based on a set of rules. One movement action is special as
it applies the effect of velocity onto the position of each particle.

* Sink
Removes particles from the list of active particles according to a set of rules.
* Alteration

Changes the appearance of the particles.

14.2.1. Source actions

Source actions can create particles over regular periods of time, on demand, or even be sensitive to the move-
ment of the model to which it is attached. The size, colour, velocity, position, and even age of the particles

96 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Particles

can be specified upon creation. The key behind vector descriptions of particles is the Vector Generation sub-
system.

Each source action requires three vector generators. A vector generator is a class of objects that randomly
create vectors within a given space; the space is usually defined by the type of generator and the parameters
given to it. For example, a sphere generator may accept a point in 3D space and a radius value, while a line
generator may accept two points in 3D space.

The three generators are used to find the initial position, velocity, and colour of the particle when created.
When calculating position and velocity, the local space of the model is taken into account, but only for the
creation of the particle. What this means is that a cube described by two points, (-0.5, -0.5, -0.5) to (0.5, 0.5,
0.5) is roughly the bounding box of the particle in position.

14.2.2. Movement actions

Movement actions act on every particle in the system. There is a variety of movements that can be applied
to a particle. Examples would be force, stream, barrier, and jitter.

Basic movement of particles due to velocity is calculated automatically within the particle system, taking
wind also into account.

Particles can also undergo full scene collision — e.g., spent bullets tumbling down steps.

14.2.3. Sink actions

Sink actions remove particles from the system, whether it is due to age or for moving beyond a specified
boundary. Examples of sink actions are sink, barrier, and splat.

It is important to note that without sink actions, particles once created will never leave the system, eventually
forcing it to hit its particle limit.

14.2.4. Alteration actions

Alteration actions affect the appearance of the particles. They can modify the shading, alpha level, and size
of the particle over time. They are typically used in smoke effects, gentle fading in and out, and glowing
effects. Particle textures can be animated if the texture specified is an animated texture.

14.3. Particle types

The particle system renderer is separate from the main particle system calculations, and allows not just tex-
ture-based particles, but also sprite-based and mesh-based particles. Multiple particle systems can share the
same renderer.

The mesh particle renderer can use any visual, but for optimum performance, meshes specific for use in
particle systems should be exported from 3ds Max or Maya in groups of 15, having the Mesh Particles option
button selected in its respective exporter dialog. For more details, see the document Content Tools Reference
Guide's chapter 3ds Max and Maya Exporters .

bIgW@RLD" -

#dest=
#dest=
#dest=

Particles

Checking aganst base Edt Help
Visal ot o scale General Dplions
~
. nimsted F Bumpmapped File Type | Bigwiild dssst =
stae [w Diafaull Fie Exlension:
£ Shabc winodes W Prezaive Refaances
& M arhicles
i - Fila Type Spacific Dptions
Advared Satlings Cancel BigWorld 1.7 Maya Exportes
Ewport Type Visual Typpe
™ Anmation ™ Armabed
i igual ™~ Shabg

7 Shahc with Hodes
e esh Partcles
[v Allow Scake

[v Bump mapped
W Use Reference Mods

Export Al] Apply Close

3ds Max Visual Exporter dialog and Maya Visual Exporter dialog

14.4. Attaching particle systems to bones

For details on any class mentioned in this section, see the Client Python API's entry
Class List.

To have a particle system follow a bone and orient to an external target, you should attach it to a node, and
then point that node using a tracker.

The tracker class provided by the BigWorld module (BigWorld.Tracker) can be set up using a variety of
DirectionProviders to point a node in the appropriate direction:

e EntityDirProvider
Points a node in the direction that an entity is facing.
e DiffDirProvider

Points a node towards the position given by a MatrixProvider (e.g., to point at the head node of another
entity, or to point in a constant world direction).

e ScanDi r Provi der
Makes a node swing back and forth around its Y-axis (e.g., to simulate a security camera).

Depending on your particular game, you might not be able to use a tracker to point a node on the source
model. For example, the node may be part of a character's skeleton and have some mesh rigged to it, so you
may not want to actually point to this bone (only the particle system attached to it). If this is the case, then you
will need to create a new node on which to mount your particle system — ask your artists to build dummy
nodes into their models on which to mount FX.

api_python/client/index.html#dest=Client_Python_API

Particles

To have a particle system exist at a position that is not provided by a bone, you should attach it to a separate
model, and display the separate model using Ent i ty. addMbdel . Using Enti ty. addMbdel instead of
Entity. nodel . node(xxx) . at t ach means that the model exists at location independent from the entity
— in fact, it means that nobody will be setting the position/direction of the model, and it is entirely up to
the script.

Once you have an independent model, you can set its position and orientation to any Mat ri xPr ovi der,
by using the Ser vo Mot or. As explained in the Client Python API, the Ser vo class is a Mot or that sets
the transform of a model to the given Mat ri xPr ovi der — as the Mat ri xProvi der is updated, the model
moves. The signal attribute is the Mat r i xPr ovi der that sets the model's transform.

This way, you can use the Ser vo Mot or to move the model to a position provided by any dynamic matrix.
If the independent model has a node to point to, then you can set its orientation by using a Tr acker, as
explained above. This allows you to detach the position of a particle system from a bone, but still set the
orientation of the particle system to the orientation of the bone, or towards an external target.

Finally, if you want a particle system to exist at a fixed point/orientation, then use the Parti cl eSyst enis
explicitPositionandexplicitDirection attributes. These set the position/orientation of a particle
system once, and cannot be set to dynamic matrices. Note that if you use either attribute, you will need to
use both (setting either attribute tells the particle system that it is using an 'explicit transform' derived from
both attributes).

Be careful when attaching particle systems to bones! To attach a particle system to a
bone, a PyModelNode must be retrieved. If there are no existing PyModelNodes refer-
encing the bone you want to use, then its transform is undefined until the next draw
call. Since python scripts are updated *before* the draw call, there is no way of know-
ing where a node is at the time of first retrieval. Therefore in this case, you should only
attach a particle system to a PyModelNode when you know it has been updated. Your
possible options are :

* Retrieve and keep a reference to the bone when you create your model. This will
ensure at a later date when a particle system is attached to that bone, that the bone's
position is well-known.

* Retrieve a reference to the bone you require, and callback yourself the next frame to
attach the particle system to it. For example :

BigWorld.callback(0.0, partial(self.model.node("HP particles").attach,
self.particles))

bigw@RLD"

api_python/client/index.html#dest=Client_Python_API

Chapter 15. Detail Objects

A detail object is a small mesh drawn in large numbers onto the terrain around the camera position. They
are separated from ordinary models for efficiency. The selection and placement of these objects is largely
automatic — it is based on the texture used by the underlying terrain.

Examples of detail objects are: grasses, ferns, bulrushes, pebbles, and rocks. The user does not interact with
detail objects (for example, no collision detection is performed).

15.1. Flora

BigWorld by default has about 60,000 triangles of flora active at any time, of which about 15,000 will be
drawn at any one time. You may change the size of the vertex buffer used by changing the value of the
vb_si ze tag in your flora configuration file (which is specified by the envi ronnment/ f| or aXM tag in
your configuration file <r es>/ r esour ces. xm — for details, see “File r esour ces. xm ” on page 11 .).

15.1.1. Placement

Because of the multitude of objects involved, it is impractical to place detail objects by hand. Instead, Big-
World has Ecotypes.

Ecotypes define objects that are automatically placed within the world, guided by terrain texture. They are
defined in XML, and have the following properties:

* One or more units (Moo visuals).
* One or more textures, which are used to match the terrain to an ecotype.
* Sound tag, for character footsteps.

For example, a grass ecotype could contain two separate meshes: one for low-height grass, and another for
mid-height grass.

The set of ecotypes currently active is managed by the Flora class, which also manages the individual active
detail objects, allocating and de-allocating them as required.

Each terrain block can have four textures, and each of these textures can have one associated ecotype. This
allows for four different ecotypes per terrain block. Hence, within the detail sphere (50-metre radius from
the camera) up to 16 different ecotypes may be visible.

Detail objects are not placed precisely within the terrain blocks — this would create square regions of detail
objects. Detail objects jitter' their position before querying the terrain for its detail mapping. This effectively
antialiases the quantised detail map.

Flora is calculated and stored in terrain files by the World Editor. For more details, see the document Content
Creation Manual (accessible in World Editor, Model Editor, and Particle Editor via the Help —» Content
Creation menu item, or by pressing F1).

15.1.1.1. Visual consistency

The detail objects are mapped directly from terrain textures. Visually this is correct, since in real life the
colour on the terrain is actually made from the colour of millions of detail objects (blades of grass, etc...).
Thus, a green 'grassy' terrain texture can be made to map perfectly to a grass ecotype.

In BigWorld, whenever a texture is used, its accompanying detail objects are displayed.

15.1.2. Implementation

Drawing detail objects is an extremely performance-critical area, as all routines are run thousands of times
per frame.

bigw@RLD"

#dest=
#dest=

Detail Objects

Vertex buffers are the perfect solution. The detail objects are kept transformed in a large vertex buffer. Thus,
1,000 pieces of grass at 6 vertices each means a world-space vertex buffer of 6,000 vertices. This allows all
grass to be drawn using one call to the video card, using one transform matrix. 3D accelerators are extremely
fast performing this kind of batched rendering.

As the player moves around the world, he sees the detail objects in the immediate vicinity (50m). In reality,
this means that the active set of detail objects must change according to the camera position. Detail objects
that are just coming into view are faded in, using alpha blending.

The flora configuration XML file <f | or a>. xm (for details on this file's grammar, see the document
File Grammar Guide's section “<f | or a>. xm ”) can define the size of the vertex buffer either statically
or as a set of options selectable by the user via the FLORA_DENSI TY graphics setting. For details, see
“FLORA_DENSI TY” on page 158 .

15.1.3. Frame coherency

In a multi-thousand object system, frame coherency must be utilised aggressively. The obvious choice for
frame coherency is the vertex transforms. Each detail object is kept transformed in a vertex buffer in world
space, until its terrain tile (or 'flora block') leaves the detail radius, at which point another terrain tile will
have moved into the detail radius. Then the new tile's detail objects will be transformed and placed in the
freed up vertex buffer memory.

On average, detail objects have shown around 97% coherency between frames, making for a huge saving
in transformation cost.

15.1.4. Animation

In order to create an immersive, living, breathing world, most things must animate.

Animating detail objects add greatly to the illusion of the world. The BigWorld client uses 3D Perlin noise
based on (wx, wz, time) to create believable procedural animation to the detail objects. Perlin noise was cho-
sen because it is a cheap way to create space-time coherent noise. The implementation performs the anima-
tion efficiently in the vertex shader.

15.1.5. Lighting

When using simplified meshes (which is crucial in a multi-thousand object ornamentation system), lighting
becomes challenging. Consider a criss-cross grass object rising vertically out of the terrain. If lit using stan-
dard procedures, the criss-cross objects would flare up in the evening sun.

In the BigWorld client, lighting for detail objects is performed using the light map calculated from the actual
terrain. Thus, it picks up terrain shadows as well. This is a mostly correct solution, because the mesh-based
terrain itself is really a simplified version of the millions of detail objects in existence.

15.1.6. File format

The XML flora file defines among other things, the light map to be used, plus the ecotypes and noise
generation functions. For details on this file's grammar, see the document File Grammar Guide's section
“<flora> xm”.

102 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Chapter 16. Water

Bodies of water can be placed in the world via World Editor, using the provided helper file bi gwor | d/ r es/
hel pers/ m sc/ wat er. xm — for details, see the document Content Creation Manual's lesson Add Water
to the World.

As all water objects are VLO's, every instance will create two new files in the chunk folder (named with a
unique ID for each instance):

e .vlofile
Contains the XML chunk item section for the water object.
* . odat a file

Contains binary information related to the VLO (in this case, the water's per-vertex transparency/edging
data).

16.1. Code overview

The water implementation is contained in the bi gwor | d/ src/ i b/ r onp library, more specifically in the
following files:

e chunk_wat er. cpp, chunk_wat er. hpp
Water's link to the BigWorld chunking system.

See also: bigworld/src/lib/chunk/chunk_vlo.cpp, and bigworld/src/lib/chunk/
chunk_vl o. hpp.

e editor_chunk_water. cpp,editor_chunk water. hpp
Editor-related features, like saving, moving, and editing.

See also: bi gwor | d/ src/lib/chunk/editor_chunk_vlo.cpp and bi gworl d/src/1ib/chunk/
edi t or _chunk_vl o. hpp.

e wat er. cpp,wat er. hpp,water.ipp
The main files. Contains the surface drawing/setup.
* wat er _scene_renderer.cpp,wat er _scene_renderer. hpp
Implementation of the water scene (reflection/refraction) generation.
e wat er _si nul ati on. cpp,wat er _si nul ati on. hpp
Implementation of the simulation of water surface.
The water features also uses the shaders below (located in res/shaders/water):
e water.fx
Main surface shader for the water.
e sinul ation.fx

Shader for simulation of GPU water interaction.

bIgW@RLED"

#dest=

Each ChunkWat er in the world creates its own Wt er object. A ChunkWat er is created by the first reference
ChunkVLOencountered. The water is a very large object (VLO), which means that it can span/belong to more
than one chunk. This is implemented by placing a VLO reference object (ChunkVLO) into every chunk that
the water overlaps. Each reference is treated like the actual large object, passing and retrieving data from/to it.

Each water object adds itself to the draw list at each frame, with Wat er s: : addToDr awlLi st . The engine
then draws the list of water surfaces with a call to Wat er s: : dr awWat er s.

16.2. Scene generation

A reflection scene are rendered based on the current water quality level (for details, see “Setting the quali-
ty” on page 104). The reflection scene is a render target that is updated in the main game loop, during
the call to Text ur eRender er : : updat eDynami cs.

Multiple water surfaces can share a reflection render target (Wat er Scene class) if they are both in the same
position on the y-axis. The water scene generation assumes a flat plane for the water to reflect/clip around
the defined y-axis position.

The refraction scene uses the Distortion channel texture which contains a copy of the main render target.

16.3. Render settings

The terrain will always be drawn, but everything else is linked to the current quality setting defined by the
following variables:

* WAt er SceneRender er: :s_drawbDynam cs_
Determines if dynamic objects are drawn into the water scene.
* WAt er SceneRender er::s_drawPl ayer _
Determines if the player model is drawn into the water scene.
* Wat er SceneRender er::s_drawlrees_
Determines if trees are drawn into the water scene.
* Wat er SceneRenderer::s_maxRefl ecti onDi stance_
Maximum distance that a dynamic object can be away from the water. Default value is 25.
* Wat er SceneRenderer::s_maxRefl ections_
Maximum number of dynamic objects to draw. Default value is 10.
° Wt er SceneRender er::s_useC i pPl ane_

Toggles the use of the hardware clipping planes

16.3.1. Setting the quality

The Water::init method is used to initialise the graphics settings options menu link and the FX files, and is
only called once. It will make available the following menu items:

* Water Quality » High — Invoked method: WAt er s: : set Qual i t yOpti on
All world items are drawn in the water scenes. Highest detail shader is also used.

* Water Quality » Mid — Invoked method: Vat er s: : set Qual i t yOpti on

104 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Except for dynamic objects, all world items are drawn in the water scenes.

* Water Quality » Low — Invoked method: WAt er s: : set Qual i t yOpti on
Player, trees and sky are drawn in the Reflection. Reflection texture size is reduced.
* Water Quality » Lowest — Invoked method: Wt er s: : set Qual i t yQpti on

Dynamic objects, player drawing, terrain and trees are disabled. Only the sky will be drawn into the re-
flection.

* Water Simulation Quality —» High — Invoked method: Wt er s: : set Si mul ati onOpti on
Perturbations can propagate between cells™.

* Water Simulation Quality - Low — Invoked method: Vt er s: : set Si nmul ati onOpti on
Simulation is restricted to the individual cells®.

* Water Simulation Quality — Off — Invoked method: Wt er s: : set Si mul ati onOpti on
Simulation is disabled

A — Cells are sub-divisions of the water surface (for details, see “Simulation” on page 105).

16.4. Simulation

The water surface is divided up into cells with size defined by the water surface (defaulting to be 100.0 units).
Each cell defines an area of water simulation that can be active.

There is a common pool of simulation textures (of size MAX_SI M_TEXTURE_BLOCKS) maintained by the
SimulationManager class.

A cell is activated when a movement enters its defined area, and is deactivated after a period of inactivity
(defined by Si mul at i onManager : : max| dl eTi me_, with a default value of 5.0 seconds).

When the high detail simulation options are selected, water movements will propagate to (and activate)
neighbouring cells.

The maximum number of active movements is defined by MAX_SI M_MOVEMENTS. Water movements are
passed into the simulation manager through the Sway system — for details, see the Client C API's entry
Class List = ChunkWat er , Public Member Fuction sway.

16.5. Rain

Water is automatically affected by rain — there is another simulation texture block reserved in the Simula-
tionManager, and that is used for the rain.

16.6. Water depth

The water depth is determined by the lowest terrain point underneath the water. The bounding box generated
from this value could also be used to define a water volume for gameplay purposes. This can be found by
searching for the bbDeep_ ref er ences in bi gwor| d/ src/ i b/ ronp/ wat er. cpp.

This depth information is also used to colour the water's refraction based on the actual per-pixel depth of the
water surface. This uses an MRT (multiple render target) depth texture generated in the main scene render.
A foaming edge effect is also added using this information.

bigw@RLD"

api_cpp/client/index.html#dest=Client_C_API

16.7. Watchers

To configure the behaviour of the water system, the watchers below are used (all watchers are prefixed by

Client Settings/VWater/):

character inpact

Strength at which a movement will hit the water surface simulation.

dr aw

Defines whether water surfaces are drawn.

Draw Dynamni cs

Linked to WAt er SceneRender er
Draw Pl ayer

Linked to Wt er SceneRender er
Draw Trees

Linked to Wt er SceneRender er
Max Refl ection Di stance
Linked to WAt er SceneRender er
Max Refl ections

Linked to Wat er SceneRender er
Scene/ Use dip Plane
Linked to Wt er SceneRender er

wat er speed square

::s_drawbDynani cs_.A

cs_drawPl ayer_.A

;o s_drawlr ees_.A

.. s_maxRef |l ecti onDi stance_.

::s_maxRefl ections_.A

::s_usedipPl ane_.A

Speed in which a wave will travel in the water simulation.

e wirefrane

Toggles wireframe mode for water surface.

A — For details, see “Render settings” on page 104 .

A

106

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 17. Graphical User Interface (GUI)

The BigWorld GUI can be broken into standalone (menu and options interfaces) and in-game overlays.

The in-game overlays require 3D integration, and thus have a separate design. The unique features of the
in-game interface are support for:

¢ Linking to in-game objects (specifically models' bounding boxes),
* Alpha blending, or superimposing over the scene,
* Special effects like scaling, rotation, colour change, fading in/out, and motion blur.

The most important feature of the in-game interface is the ability to fade away when not in use. This allows
the game designer to create a more immersive game world experience. Whilst a GUI is required to relate
important information to the player, it should only do so when that information is required. At other times,
the player should not be distracted by overlays, but immersed fully in the 3D world.

Some examples of in-game interfaces would be:
¢ Targeting

* Current item display

* Player health and damage

e Chat window

17.1. C++ GUI support

There are two C++ base classes for GUI support:
¢ SimpleGUIComponent

* GUIShader

There is also one management class:

e SimpleGUI

17.1.1. SimpleGUIComponent

The SimpleGUIComponent class is simply a textured rectangle. The derived class TextGUIComponent draws
text, and the also derived class FrameGUIComponent draws a resizable frame using three bitmaps (corner,
edge, background).

SimpleGUIComponent has many properties, mostly accessed from Python and XML files. For more details,
see “Python GUI support” on page 108 .

Components are hierarchical only in that parents draw their children; children do not inherit their parents'
transform. WindowGUIComponent is an exception to this rule — children are automatically clipped and

translated by their parent. Note that this is a feature of WindowGUIComponent, not the GUI system in
general.

17.1.2. GUIShader

The GUIShader class alters the way that components are drawn, in an analogous form to vertex shaders (in
fact, 99% of GUI shaders operate only on temporary variables instead of vertices, hardware TnL support).

* ClipGUIShader clips GUIComponents to a proportion of its original length, which is useful for making
health bars.

bIgW@RED"

Graphical User Interface (GUI)

* ColourGUIShader colours a component.
* AlphaGUIShader fades a component.
* MatrixGUIShader transforms a component.

Shaders are applied to all children — so use a MatrixGUIShader to implement windowing, and an Alph-
aGUIShader to fade in/out a whole tree of components.

17.1.3. SimpleGUI

This is the GUI root, and it is ticked and drawn at every frame.

Use SimpleGUI::addSimpleComponent() and SimpleGUI::removeSimpleComponent() to build your tree of
GUI components. Note that you would normally never call these methods from C++, as they are mostly called
by scripts.

17.2. Python GUI support

You probably will create GUIs using Python and XML most of the time. There is no BigWorld GUI editor,
thus all GUI is currently created using the Python console in game.

The code below shows an example:

i mport GUI

#create a sinple GU conponent
s=@Ul . Si npl e("nmaps/gui s/stats_bar.dds")

#wi dt h/ height initially in pixels. can use w dthRel ative/ hei ghtRel ative
#t o designate the conponent uses clip coordinates (-1 .. +1) instead.
s.width = 64
s. height = 16

#col our attribute is (r,g,b,a)
s.colour = (255, 128, 0, 255)

#the material FX is sinply the blend node. can be "BLEND',"SOLID',"ADD". ..
s.material FX = "BLEND'

#the position is always in clip coordinates (-1 .. +1)
s.position = (0, 0.85, 0.5)

#t he anchors determ ne what the position nmeans with respect to the width
#and height. in this exanple, the position of (0,0.85,0.5) and anchors
#"'TOP, CENTER" neans that the top centre of the conponent will rest at

#t he given position.

#The conponent will hang down fromy=0.85, and will be centred on x=0.0
s.vertical Anchor = "TOP"

s. hori zont al Anchor = " CENTER'

#create a clipper for the health amount. clip shaders are used to
#i npl ement stats bars. the constructor paranmeter "Rl GHT" neans the
#shader will clip the conponent fromthe right hand side.

c=@Ul . i pShader ("Rl GHT")

#al |l shaders animate their values. the speed indicates how |l ong the
#internal paranmeter will change fromthe old value to the new. This speed
#i ndicates the health bar will always take 1/2 a second to change.
c.speed = 0.5

108 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Graphical User Interface (GUI)

#the value is what the gane nornmally changes if player's health changes.
c.value = 1.0

#this line adds the shader. Note that you can call your shader any nane
#you like. Internally, the sinple GJ conponent sees you are trying to
#add a Cui Shader to it, under the name of clipper.

#lnternally it will call SinpleGJ Conmponent: :addShader ()

s.clipper =c

#create a colourer for the health anount
¢=CUl . Col our Shader ()

#the start,mddle and end sinply represent colours to blend to when the
value paraneter is 1.0, 0.5 and 0.0 respectively.

.start=(255, 0,0, 192)

. m ddl e=(255, 255, 0, 192)

. end=(0, 255, 0, 192)

. speed=0.5

.value=1.0

.col ourer=c

" oOoo0o0o0o0H

#and nake the health bar be drawn
QU . addRoot (s)

Example of GUI creation

You can then customise the new health bar simply by setting the appropriate values in the shaders:

player's health went down to 80%
s.clipper.value = s.colourer.value = 0.8

Finally, you can associate a script with the GUI component, in order to handle input and I/O events, and to
build high-level functionality onto it. Associate a script object with the component using the script attribute:

s.script = PyGUJ .Button(s)

For more details about GUI scripts, see “XML and Python” on page 110, and “Input events” on page
111 . For more details on attributes, see the Client Python APIs entry Main Page — Client -» GUI -
Classes — Si npl eGUI Conponent .

If you are creating a GUI purely in Python, then you must ensure that you correctly drop all references to
it when it is to be deleted, or there will be a memory leak. This is because the Python garbage collection is
turned off in the BigWorld engine, it uses reference counting instead for speed. You might get a warning
message like the following:

Sone Si npl eGUI Conponent i nstances haven't been destroyed.
To debug, in <engine_config> xm, set:
<si mpl eGui >
<breakOnAl | ocl d> Al l ocld </ breakOnAll ocl d>
<br eakOnLeak> true </breakOnLeak>
</ si mpl ecui >

To delete, you must set all references to the GUI component to None, and this includes removing the com-
ponent from its parent.

bIgW@RLED"

api_python/client/index.html#dest=Client_Python_API

Graphical User Interface (GUI)

if s.parent:

s.parent.del Child(s)
el se:

GUl . del Root (s)
s = None

17.3. XML

GUI can also be represented as XML files. They can be saved in the folder <r es>/ gui s once constructed,
for example, using the method described above.

The advantage of the Python interface is that once you have created the GUI, simply call:

s.save("guis/health_bar.gui")

An XML file will be created encapsulating the GUI component, its shaders, and all of its children. Once you
have done this, write:

GUl . del Root (s)

None

GUl . | oad("gquis/health_bar.gui")
GUl . addRoot (s)

s =
s =

After that, you will have exactly the same component, with all its shaders and children set up.

Advanced users will find creating XML by hand the quickest way to create your GUI. Alternatively, a GUI
editor can be entirely created in Python.

17.4. XML and Python

When you have a GUI component with a script saved in XML, your Python script must implement the fol-
lowing methods (at the very least to stub them out):

e def onLoad(self, section)
e def onBound(self)

e def onSave(self, section)

17.4.1. onLoad(sel f, secti on)

The onLoad method is called just after the C++ load method has been called, the standard member variables
have been setup, and the associated script has already been constructed.

The data section that the GUI component is being loaded from is passed into the method. This allows the
definition of custom attributes, especially for loading custom data into the script object.

Note that the method is called before any children components or shaders have been loaded.

17.4.2. onBound(sel f)

The onBound method is called after the load is complete.

The main difference between this method and onLoad is that by the time onBound is called, the whole GUI
component tree has been created. Thus in the onBound method you can write custom script handling to

110 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Graphical User Interface (GUI)

manipulate child components. For example, you could invoke your own custom Layout Manager in this
method.

17.4.3. onSave(sel f, secti on)

The onSave method is called just after the C++ save method has saved all standard GUI component members,
but before the shaders and children are saved.

17.5. Input events

Si npl e@AUl offers support for keyboard, joystick, and mouse input. To capture events, a component needs
to have its property focus set to true, and an associated Python script attached.

When loading a component from a GUI file, the attribute of a Si npl eGUlI Conponent is automatically set
if the XML declares a script field. The value of the field is used to instantiate the script object (it must be a
callable receiving one parameter — the Si npl eGUl Conponent being created — , and returning a Python
object). The Python object returned will be the one assigned as the script object for the newly created com-
ponent.

The script attribute can also be set manually for an existing component, like in the example below:

instantiate a new PyGU Button class, and nmeke it the conponent's
script attribute. note nobst scripts are passed the GU conponent
in their constructor so they can perform operations on them
s.script = PyGUJ .Button(s)

There are separate focus properties for each category of input events, as described below:
e focus

Associated with: Keyboard events (including character events), joystick (axis) events, and global mouse
button events.

* mouseBut t onFocus

Associated with: Mouse button events that occur while the mouse position is contained within the region
of the component.

e crossFocus
Associated with: Mouse enter events, and mouse leave events.
* noveFocus
Associated with: Mouse move events.
e dragFocus
Associated with: Drag events.
e dr opFocus
Associated with: Drop events.

To make a component start receiving input events, you must set the appropriate property to True, and to
have it no longer receiving events set it to False, as illustrated below:

start receiving key/axis events

bIgW@RLED"

Graphical User Interface (GUI)

c.focus = True

stop receiving nouse enter/| eave events
c.crossFocus = Fal se

When a component has a script and it has focus enabled, the script will start capturing input events.

The script must define the appropriate methods to handle the events. The example below illustrated a script
defining the methods to handle keyboard and joystick (axis) events:

cl ass Button:
def handl eKeyEvent(self, event):
do whatever, and return 1 if
this key event was consumned

def handl eAxi sEvent (self, event):

do whatever, and return 1
if this axis event was consuned

The following sub-sections describe the events supported by Si npl eGUl . For more details, see the Client
Python API's entry Main Page — Client - GUI - Classes — Si npl eGUI Conponent .

17.5.1. Keyboard Events

Keyboard events are related to input from keyboard, mouse, and joystick buttons. They are reported to script
objects through the handl eKeyEvent method:

def handl eKeyEvent (sel f, event)

The parameters are described below:
* event
PyKeyEvent containing information about this event.

A return value of Tr ue means that the event has been consumed, thus effectively preventing it from being
propagated to other components or game scripts. A return value of Fal se allows further propagation.

To receive key events, a component must have the property f ocus set to True.

Note that mouse button events reported through the method handl eKeyEvent differ from those reported
through handl eMbuseBut t onEvent in that the mouse cursor does not have to be inside the area defined by
a component for that component to capture the event. The only requirements for the capture are to have the
property f ocus set to True, and not having another component consuming the event earlier in the focus list.

Character events are attached to key events. Check the PyKeyEvent . char act er parameter, which will be
a string containing the fully translated character. It will otherwise it will be None. Keep in mind that due to
more complex input methods (e.g. dead-keys) the length of the character string can be greater than 1.

17.5.2. Axis Events

Axis events are related to joystick axis input. They are reported to script objects through the handl eAxi -
sEvent method:

def handl eAxi sEvent(self, axis, value, dTinme)

112 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

api_python/client/index.html#dest=Client_Python_API
api_python/client/index.html#dest=Client_Python_API

Graphical User Interface (GUI)

The parameters are described below:
* event
PyAxi sEvent containing information about this event.

A return value of Tr ue means that the event has been consumed, effectively preventing it to be propagated
to other components or game scripts. A return value of Fal se allows further propagation.

To receive axis events, a component must have the property f ocus set to Tr ue.

17.5.3. Mouse Events

Mouse events can be grouped into three categories:
* Button events

* Cross events

* Move events.

Mouse events are propagated from the top-most component under the mouse cursor down to the bottom
component until it is handled by a component (by returning True in one of its event handling methods).

The following sub-sections describe how to handle input from each category of mouse event.

Note that mouse events are only generated when the object MouseCursor is active. For more details, see
“Mouse cursor” on page 118 .

17.5.3.1. Button events

Button events are related to mouse buttons input. They are reported to the script objects through the methods
handleMouseButtonEvent and handleMouseClickEvent methods.

17.5.3.1.1. handl eMbuseBut t onEvent

This method is called by SimpleGUI on the top most component under the mouse that has mouseBut t on-
Focus set to True:

def handl eMouseButtonEvent (sel f, conp, event)

The parameters are described below:
e conp

Component over which the button was pressed or released.
* event

PyKeyEvent containing information about this event.

A return value of True means that the event has been consumed, effectively preventing it to be propagated
to other components or game scripts. A return value of False allows further propagation.

To receive mouse button events, a component must have the property mouseButtonFocus set to True.
17.5.3.1.2. handl eMbused i ckEvent

This method is called by SimpleGUI when the left mouse button was pressed and released over the compo-
nent.

bIgW@RLED"

Graphical User Interface (GUI)

def handl eMoused i ckEvent (sel f, conp, pos)

The parameters are described below:
e conp
Component over which the button was pressed.
* pos
Position of the mouse on the instant of the mouse button click.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

A return value of True means that the event has been consumed, effectively preventing it to be propagated
to other components or game scripts. A return value of False allows further propagation.

To receive mouse click events, a component must have the property focus set to True.

17.5.3.2. Cross events

Cross events are related to the mouse pointer entering or leaving the region defined by the component in
the screen. They are reported to the script objects through the methods handleMouseEnterEvent and han-
dleMouseLeaveEvent.

The signature for handleMouseEnterEvent is described below:

def handl eMbuseEnt er Event (sel f, conp, pos)

The signature for handleMouseLeaveEvent is described below:

def handl eMouselLeaveEvent (sel f, conp, pos)

The parameters for both methods are described below:
° conp
Component that the mouse entered or left.
* pos
First position of the mouse when entering or leaving the component.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

A return value of True means that the event has been consumed, effectively preventing it to be propagated
to other components or game scripts. A return value of False allows further propagation.

To receive mouse enter and leave events, a component must have the properties focus and crossFocus set
to True.

17.5.3.3. Move events

Move events are related to the mouse pointer hovering over the region defined by the component in the
screen. They are reported to the script objects through the handleMouseEvent method:

114 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Graphical User Interface (GUI)

def handl eMouseEvent (sel f, conp, event)

The parameters are described below:
* conp
Component over which the mouse cursor hovered.
e event
PyMouseEvent containing information about this event.

A return value of True means that the event has been consumed, effectively preventing it to be propagated
to other components or game scripts. A return value of False allows further propagation.

To receive mouse move events, a component must have the property focus and moveFocus set to True.

17.5.4. Drag-and-drop events

SimpleGUI offers support for drag-and-drop functionality. Drag-and-drop events can be grouped into two
categories:

* Drag events
* Drop events
The following sub-sections describe how to handle input from each category of drag-and-drop event.

Note that drag-and-drop events are only generated when the MouseCursor is active. For more details, see
“Mouse cursor” on page 118 .

17.5.4.1. Drag events

Drag events are related to a component being dragged by the user. They are always generated on the com-
ponent being dragged and reported through the methods handleDragStartEvent and handleDragStopEvent.

17.5.4.1.1. handl eDr agSt ar t Event

This method is called when the user is trying to drag the component:
def handl eDragStart Event (sel f, conp, pos)

The parameters are described below:
e conp
Component that the user is trying to drag.
* pos
Position of the mouse on the instant of the event.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

A return value of True signals to the GUI manager that this component is willing to be dragged, and con-
sumes the event. A return value of False prevents the component from being dragged, and allows further
propagation of the event.

bIgW@RLED"

Graphical User Interface (GUI)

To receive this event, a component must have the property dragFocus set to True.

17.5.4.1.2. handl eDr agSt opEvent
This method is called when the user released the mouse left button, and therefore wants to drop the com-
ponent:

def handl eDr agSt opEvent (sel f, conp, pos)

The parameters are described below:
° conp
Component being dragged.
* pos
Position of the mouse on the instant of the event.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

The return value from this method is always ignored, and the originating mouse button event is allowed to
propagate further.

To receive this event, a component must have the property dragFocus set to True.

17.5.4.2. Drop events

Drop events are related to a component being dropped over another one. They are always generated on the
recipient component and reported through the handleDragEnterEvent, handleDragEnterEvent and handle-
DropEvent methods.

17.5.4.2.1. handl eDr agEnt er Event

This method is called when the user just dragged another component over this one, but has not dropped it yet:
def handl eDr agEnt er Event (sel f, conp, pos, dropped)

The parameters are described below:
° conp
Component about to receive the drop.
* pos
Position of the mouse on the instant of the event.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

e dragged
Component being dragged.

The return value from this method is used to determine if the recipient component is willing to accept the
drop. This event is always considered consumed when first triggered, and the originating mouse move event
is propagated no further.

116 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Graphical User Interface (GUI)

To receive this event, a component must have the property dropFocus set to True. Arguments

17.5.4.2.2. handl eDr agLeaveEvent

This method is called when the dragged component is no longer over this one:
def handl eDr agLeaveEvent (sel f, conp, pos)

The parameters are described below:
e conp
Component that was about to receive the drop.
* pos
Position of the mouse on the instant of the event.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

A return value of True means that the event has been consumed, effectively preventing the originating mouse
event to be propagated to other components or game scripts. A return value of False allows further propa-
gation.

To receive this event, a component must have the property dropFocus set to True.
17.5.4.2.3. handl eDr opEvent

This method is called when the user has dropped a component over this one:
def handl eDr opEvent (sel f, conp, pos, dropped)

The parameters are described below:
e conp
Component receiving the drop.
* pos
Position of the mouse on the instant of the event.

Value is a 2-tuple of floats in clip-space, ranging from -1.0 (leftmost in x-axis, top in y-axis) to 1.0 (rightmost
in x-axis, bottom in y-axis).

e dr opped
Component receiving the drop.

The return value from this method is always ignored, and the originating mouse button event is allowed to
propagate further.

To receive this event, a component must have the property dropFocus set to True.

17.5.5. Component PyGUI

You might find it useful to build your own Python module with custom GUI components. To do that, the
best starting point is the module PyGUIL.

bIgW@RED"

Graphical User Interface (GUI)

PyGUI is the informal Python module for basic GUI elements, created for an internal project, and defined in
fantasydeno/res/scripts/client/Hel pers/PyGU

Starting from the basic functionality offered by SimpleGUI native components, you can code your own GUI
toolkit in Python. Below are some examples of widgets you can create:

* Page control

¢ Drop-down List

Edit field

Multi-line text field

® Check box

17.6. Mouse cursor

It is possible to control the behaviour and appearance of the mouse cursor from the game scripts. Mouse
cursor-related functions and properties can be accessed though the MouseCursor object.

The MouseCursor object is a singleton, and can be obtained using the method GUI . ncur sor .
The properties published by it are described below:
° posi tion — Read/write
Mouse cursor position
* shape — Read/write
Mouse cursor shape
* vi si bl e — Read/write
Mouse cursor visibility status
° active — Read-only
Mouse activity status
e cli pped — Read/write
When set to true, the mouse cursor will be clipped to the region of the client window.

The MouseCursor is an instance of the abstract concept InputCursor. There can only be one active InputCur-
sor at any given time.

To activate the MouseCursor, use the method BigWorld.setCursor. To deactivate it, activate another input
cursor, or pass None to BigWorld.setCursor.

Mouse and drag-and-drop events are only propagated to GUI components while the MouseCursor is active.

The code below illustrates how to use the MouseCursor:

access and nodi fy the nouse cursor
i mport GUI
i mport BigWrld

nc = QU . ntursor()

118 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

nc. shape = "arrow'

nc. visible = True

if not nt.active:
| ast Position = nt.position
nc.position = (0.0, 0.0)
Bi gWor | d. set Cursor(nt)
nt.active is now True

Example of how to use MouseCur sor object

Graphical User Interface (GUI)

bIgW@RLED"

119

Chapter 18. Fonts

BigWorld has an in-built font generation and glyph caching system. It supports large international character
sets. Internally, BigWorld uses GDI+ and requires an installed true-type font file to draw the glyphs into a
glyph-cache render target. As an alternative, you can ship your game with pre-cached font maps, however
this method does not support dynamic glyph usage, and as such is not appropriate for large character sets.

18.1. Creating and Using Fonts

To use fonts, you must first create a font definition file that describes the font style, point size, and desired
effects. Once a font is defined, you can use the font to display text on-screen. The main way to display text
on-screen is via a Python GUIText component.

18.1.1. Creating a Font Definition File

Font Definition Files are an XML file describing the font itself, the size of the glyph cache and the details of
any preloaded glyphs :

<exanpl e_font. font>
<creation>
<sour ceFont> Arial </sourceFont>
<sour ceFont Si ze> 16 </ sourceFont Si ze>
<ef f ect sMar gi n> 1 </effectsMargin>
<t ext ur eMar gi n> 1 </textureMargin>
<dr opShadow> true </dropShadow>
<shadowAl pha> 192 </ shadowAl pha>
<bol d> true </ bol d>
</creation>
</ exanpl e_font.font>

Since fonts are generated on-the-fly and their glyphs cached at runtime, this is all you need to do to begin
using a new font. If the specified source font name does not exist on the system, then Windows will automat-
ically choose the nearest matching typeface. To avoid any potential problems, please make sure you license
and install your desired true-type fonts on the end-users' system (e.g. as part of the installer scripts). If you do
decide to choose only Windows fonts (and assume they exist on the end-users' machines) then be aware that
there are large differences in the standard fonts used by Windows, depending on the region. For example,
if Windows has been installed with the Asian font pack, it will have a significantly different standard font
sets by default (even for English language fonts).

See . f ont for a detailed description of the .font definition format.

18.1.1.1. Secondary Font Families

In order to allow mixing different character sets within the same string of text while maintaining control
over how each character set is rendered, secondary font families can be defined. For example, Arial may be
desired for latin-1 (e.g. English) characters, however Arial is not designed to render east-Asian character sets
(e.g. Chinese). This would mean artifacts are produced when rendering east-Asian characters.

Secondary fonts are defined using one or more secondar y tags within the cr eat i on section. A secondary
font consists of a font name and a Unicode range used to selected which secondary font to use.

For example, to use Arial and Chinese you could add a secondar y font using SimSun:

<exanpl e_font.font>
<creation>

bIgW@RLED"

#dest=

<sour ceFont> Arial </sourceFont>

<secondary>
<sour ceFont > Si mBun </ sour ceFont >
<uni codeRange> U+2F00- UH9FFF </ uni codeRange>
</ secondary>
</ creation>
</ exanpl e_font.font>

18.1.2. Preloading Glyphs

For languages that have a limited number of glyphs, for example English, you may want to preload all the
glyphs into the cache so the client doesn't have to do anything more at runtime. Additionally, for larger Asian
languages, you may still want to preload the cache with some often-used glyphs and from then on let the
cache deal with whichever less-frequently used glyphs are required at runtime. The glyph caching system
will still be in effect, but the cache will contain these glyphs to begin with. Additionally, the preloaded glyphs
will never leave the cache during the duration of client execution, even if they are not used.

To preload glyphs or a range of glyphs, add any combination of the following tags into your font definition
file.

<start Char> 32 </ start Char>
<endChar > 192 </ endChar >
or

<uni codeChar> W+3000 <uni codeChar >
and/ or

<uni codeRange> U+AC00- U+D7A3 </ uni codeRange>

18.1.3. Specifying the widest character

Font glyphs are cached into a texture and are positioned on a regular grid (i.e. each grid element is the same
width and height). In order to determine the size of each grid element up front, the glyph cache must know
the dimensions of the widest character. By default the letter 'W' is used to calculate this size but this may be
inappropriate for some character sets (including Chinese). If the widest character is too narrow, then visual
artifacts will occur (characters will be clipped and neighbouring characters may 'leak’ into each other). If it
is too wide, then texture space will be wasted.

The widest character can be set using the <widestChar> tag in the font definition file. For example:
<exampl e_font. font>
<creation>
<wi dest Char> U+FF1F </ wi dest Char >

</ creation>
</ exanpl e_font.font>

18.1.4. Displaying Text

Text GUI Components are the main way that fonts are used to display text on-screen. For full details on
Text GUI Components and their python GUIL Text counterpart, please refer to the Python Client API guide,

122 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

under the section GUL Text. The GUIText class supports the "font" attribute, this specifies the name of the
font definition file, relative from the font root (see File Grammar Guide / resources.xml to see how to choose
or change the font root folder.)

Here is an example of how to use the above example font file, which for now we will assume was saved to
$FONT_ROOT/example_font.font.

i mport GUI
t = GUl.Text("Some Text")
t.font = "exanple_font.font"

GUl . addRoot (t)

18.2. Artist modified Fonts

Built-in or licensed true-type fonts may not necessarily have to desired look for your game. For example you
may want to use fonts that have a glow effect, or an internal gradient fill. In these situations, you have the
choice to output a fixed snapshot of a glyph cache as a .dds file. This file can then be processed by an artist to
generate whatever font effects they like. Note that this procedure will only work with a fixed set of glyphs,
as the client will not internally posess the ability to recreate the steps the artist took to modify the font.

18.2.1. Generating a Snapshot of a Font's Glyph Cache

The python API contains a function, BigWorld.saveFontCacheMap, that outputs the contents of the font's
glyph cache to a DDS file, and the details of the font metrics to the .font file. Once this snapshot is taken,
the .font file contains a <generated> section, and the font will no longer use the glyph cache, or be able to
generate any new glyphs at runtime. To revert this change, simply remove the <generated> section from
the .font file, and delete the .dds file. The texture will be named $FONT_ROOT/$FONTNAME_font.dds

i mport BigWrld

Bi gWor | d. saveFont CacheMap("super _turbo.font")

#t his generates super_turbo.font.dds, super_turbo.font.generated, and
super _turbo. font.grid. dds

18.2.2. Modifying the Font Texture

Once a snapshot has been created, the generated font .dds file can be loaded into Photoshop (you may need
to download and install a .dds file plugin, depending on the version of Photoshop you are using). The glyphs
can then be modified freely, however care must be taken not to go outside of the designated bounds for each
character. The grid reference bitmap describes the go and no-go areas, and its alpha-channel has a copy of
the glyphs to provide shape information and to simply demonstrate which character goes where.

Once you have modified a font texture, simply save over the *.font.dds file, and make sure both it and the
*.font.generated file is committed as part of your asset repository. The presence of these files on disk instructs
the font system to use the generated map from now on, and never attempt to expand the glyph cache. If
glyphs are encountered that do not exist as part of the generated glyph cache, a warning will be output to
the debug window and a filler character will be used.

18.2.3. Explaining the Font Grid .dds File

Below is a portion of a font.grid.dds file, duplicated 3 times in photoshop with various colour channels
extracted. You can see the three colour channels, with the alpha channel overlayed in white.

bIgW@RLED"

Wi W W/

AWERWA W

Example extracted from a .font.grid.dds file

On the left, the red channel describes the raw glyph rectangle as given by GDI+. As you can see in the
example, the W and / glyphs go outside of this region. This is because this particular font already has a drop-
shadow applied. The drop shadow, as provided in-engine, is a copy of the glyph, with a single pixel offset.
This is demonstrated by the green region below.

The green region describes the glyph region plus the effect margin, and is the rectangle that will be drawn
by the engine. Any pixels outside of the green area will be clipped when drawing text to the screen. Note too
that when glyphs are drawn together, creating a string or a sentence, the red regions (raw size) determine
the spacing between characters, and any effects margin is overlapped by the next glyph, this ensures that
adding effects like drop shadows do not increase the width of your strings.

The blue region describes the glyph region plus effect margin plus texture margin. The texture margin is
used to pad the glyphs apart in the texture map, to avoid any filtering artifacts. The texture margin should
never be drawn, and is pretty much wasted space. If you are sure that your font will only be drawn at a 1:1
ratio between pixels and texels (for example the text will never be shrunk, or drawn in 3D where it can be
rotated and mip-maps come into play), then you can safely do away with any texture margin.

Chapter 19. Input Method Editors (IME)

An Input Method Editor (IME) is an advanced user interface which is used to enter input text for East Asian
such as Chinese where the character set is much larger than can be practically mapped directly to keyboard
buttons. This is a mechanism provided by Windows and is determined by the currently installed keyboard
layout.

Unfortunately the default IME interfaces used by Windows overlay additional child pop-up windows which
do not work well within the context of a game. These pop-ups will conflict with the Direct3D device (espe-
cially in full-screen mode), are not skinnable, and, since Windows has no knowledge about your in-game
user interface, it will not be positioned to line up with your in-game edit controls. Thus in order to integrate
nicely with a game and deliver a smooth experience for the user, the IME interface should be rendered using
the in-game GUI system.

The BigWorld engine provides an API which allows the Python scripts to respond to IME events generated
by the operating system and populate an in-game IME based on the current state of the system input driver.

The currently supported IME types are:
* Chinese Simplified (PRC)
* Microsoft Pinyin

® QuanPin

Sogou Pinyin

Sogou Wubi

Google Pinyin
* Chinese Traditional (Taiwan)
¢ Microsoft New Phonetic IME
* Japanese
e Microsoft IME
* Korean
* Microsoft IME

This chapter describes how to setup Python scripts to respond to IME events and display an interface ac-
cordingly.

In addition to this document, there is an example implementation located atf ant asydeno/ r es/ scri pt s/
client/Hel pers/PyGU /| ME. py. This script is used by the PyGUI . Edi t Fi el d class.

Please note that the BigWorld IME system will be disabled if the Scaleform IME library is enabled.

19.1. Components of an IME interface

There are three main components that make up an Input Method Editor:

* Composition string. This contains the characters that the user has composed with the IME and is the string
that will be sent to the application once it has been finalised by the user. The composition string is usually
drawn on top of the edit control at the current location of the input cursor.

bIgW@RLED"

Input Method Editors (IME)

* Reading window. Typically used only by Chinese IME's, this contains the most recent keystrokes which
have not yet been translated to the target language.

* Candidate list. This is a list of candidate characters based on the current contents of the composition string.
The user can use the arrow keys to cycle through the available options and can use page-up and page-
down if there are multiple pages of options. The desired candidate is selected by pressing the number key
corresponding to the candidate list item, or by pressing enter on the highlighted item.

A particular IME may use all or only some of these components. The Pyl ME object is used
by the Python scripts to determine when a particular component needs to be drawn (e.g. the
Bi gWor | d. i me. r eadi ngVi si bl e flag can be used to determine whether or not the reading window
should be drawn at any particular time).

While not strictly part of the IME itself, including a language indicator on your edit control is useful as a
visual aid to keep track of which language is currently active. By changing its colour, you can also indicate
the current state of the IME (e.g. whether or not the IME is currently in alpha-numeric mode).

19.1.1. Examples

owwn fox jumped awve
> Hello, welcomes to IME! Hare'™:

Japanese IME

» Chinese text:

Chinese IME

19.1.2. Recommended Reading

[Installing and Using Input Method Editors, MSDN - http://msdn.microsoft.com/en-us/li-
brary/bb174599%28VS.85%29.aspx]

[Using an Input Method Editor in a Game, MSDN
brary/bb206300%28VS.85%29.aspx]

19.2. IME Python API

The BigWorld IME Python APl is accessed via the Bi gWor | d. i me object. This is a singleton instance of the
Pyl ME class.

http://msdn.microsoft.com/en-us/li-

See the Python client API documentation for details on all methods and properties mentioned here.

126 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

http://msdn.microsoft.com/en-us/library/bb174599%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb174599%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb206300%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb206300%28VS.85%29.aspx

Input Method Editors (IME)

19.2.1. Enabling IME

Disabled by default, IME can be enabled and disabled from the Python script. Typically, an application would
enable IME when a text-input interface comes into focus (e.g. an edit box), and disable it again once it has
lost focus. The enabl ed property on the Pyl ME object controls the current state:

Bi gWorl d. i me. enabl ed = enabl eBool ean

The internal state will be reset when IME is disabled.

19.2.2. Receiving IME events

Once the IME system is enabled, the engine will start posting events to the personality script.
19.2.2.1. BWPersonality.handlelnputLangChangeEvent

The BWper sonal i ty. handl el nput LangChangeEvent will be called whenever the user has switched
the current input language. The function does not take any parameters, so the handler should check the
Bi gWor | d. i me. | anguage property and the Bi g\Wr | d. | ocal el nf o function to check the new language
and update accordingly.

Typically, an application would update language indicators and/or fonts based on the new language.

19.2.2.2. BWPersonality.handleIMEEvent

The BWPer sonal i ty. handl el MEEvent gets called whenever the user performs some action (usually a
keystroke) that causes the internal IME state to be changed. The only parameter to the handl el MEEvent is
a Pyl MEEvent object. The event object itself does not have any data, rather it has a set of flags which indicate
which Bi gWor | d. i me properties have been updated. The handl el MEEvent function will be called when
the following events occur:

* The current IME state has been changed (e.g. switching between alpha-numeric mode and Hiragana mode
whilst in the Japanese language).

* The composition string has been modified.

¢ The cursor position within the composition string has been modified.
* The reading window string has changed.

¢ The reading window visibility has changed.

* The candidate list visibility has changed.

* The candidate list items have changed.

* The user has changed the highlighted item within the candidate list.
19.2.2.3. Finalising characters

When the user has finished entering their desired text into the method editor they will press enter to commit
the string. When this occurs, BWPer sonal i t y. handl eKeyEvent will be called for each unicode character
in the finalised string, and will be posted with the key code Keys. KEY_| ME_CHAR

19.2.3. Displaying the IME

The task of actually displaying the IME interface based on the current underlying state is a task for the
Python script programmer. The complexity of the IME presentation scripts will be determined by how many
languages need to be supported, as each language has their own standard way of presenting the IME.

bIgW@RED"

Input Method Editors (IME)

Note that due to the number of different IME's available for a single language, and due to differences between
Windows XP and Windows Vista, it is recommended to test across these different configurations as much
as possible.

Generally, when constructing an IME interface, the scripts will do the following:

Build a composition string window based on the contents of Bi g\Wr | d. i me. conposi ti on. Each char-
acter in the composition string will have a different attribute associated with it which determine its state
(e.g. whether or not it is highlighted). This is determined by the Bi gWor | d. i me. conposi ti onAttr
property (an array of the same length as the composition string).

A cursor should be drawn within the composition string based on @ the
Bi gWorl d. i me. conmposi ti onCur sor Posi ti on attribute.

If Bi gWorl d.ine.readingVisible is True, build a reading window based on the contents of
Bi gWorl d. i me. r eadi ng.

The orientation of the reading window is determined by the Bi g\Wor | d. i ne. r eadi ngVerti cal prop-
erty.

If Bi gWorl d. i me. candi dat esVi si bl e is True, build a candidate window based on the contents
of Bi gWor | d. i me. candi dat es. This is an array of candidate strings for the current page (each
page has a maximum of 9 entries). The highlighted item of the composition is determined by the
Bi gWor | d. i me. sel ect edCandi dat e property.

The candidate window should be placed so it appears just under the location of the composition window
cursor.

The orientation of the candidate window is determined by the Bi g\Wr | d. i ne. candi dat esVerti cal
property.

19.2.3.1. Japanese

Rather than placing the candidate window at the location of the composition string cursor, the candidate
window should be placed below the first target converted character (determined via the conposi ti on-
At tr property).

19.2.3.2. Korean

Korean IME's require a bit more specialisation than Chinese and Japanese. The main considerations for cre-
ating a Korean IME are:

The composition string is edited in-line. In other words, the composition character is directly inserted into
the edit box immediately so that the character to the right of the cursor is moved across. The underlying
Korean IME implements this by injecting keystrokes such as LEFTARROW Rl GHTARROWand BACKSPACE
into the input stream to automatically insert and remove a character into your edit box.

The composition string background blinks, itself acting as the cursor. As such,
Bi gWor | d. i me. conposi ti onCur sor Posi ti on can be ignored.

128

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 20. BigWorld Web Integration

The BigWorld Technology engine now includes the open source Mozilla project allowing for displaying and
interacting with web pages as part of the client.

20.1. Architecture

The BigWorld Technology Client includes the following components as part of the web browser integration:

* The bigworld/src/lib/web_render directory contains the BigWorld web integration code. The WebPage-
Provider class is the main interface for the web integration. The MozillaWebPagelnterface class contains
the main interface implementation for the Mozilla integration.

* The Mozilla project, see http://www.mozilla.org/ is the web layout engine used by the BigWorld Technol-
ogy Client. This project is shipped as compiled dlls as part of the BigWorld engine. These dlls are available
in the fantasydemo/game/mozilla directory. Different dlls are compiled for Visual Studio 2005 and Visual
Studio 2008. These dlls are based on the Mozilla 1.8 release. If required, customers can also replace these
dlls by recompiling Mozilla using the instructions available at http://ubrowser.com/. When recompiling
Mozilla, additional fixes to the Mozilla source code might be required (see the content of bigworld/bin/
client/mozilla/patch/mozilla_diff.txt for more details. Any modification to the Mozilla source code will
require redistribution of the modification (as required by the Mozilla license).

* The LLMozlib library, see http://ubrowser.com/ is an open source wrapper for the Mozilla project and is
shipped as part of the BigWorld source code. The LLMozlib source code is available in bigworld/src/lib/
third_party/llmozlib2 and is compiled as part of the BigWorld client solution file. Any modification to the
LLMozlib source code will require redistribution of the modification (as required by the LLMozlib license).

How the code works:

* A secondary thread is used to deal with all web related requests. This prevents performance spikes when
responding to long web related requests.

* The MozillaWebPageManager manages calls to Mozilla and callbacks by using a separate command thread
with two FIFO bulffers.

¢ Users (i.e. Python/C++ classes) use MozillaWebPagelnterface to interact with the MozillaWebPageManag-
er, and they send commands to the manager which are sent over via the FIFO bulffer to be dealt with by the
secondary thread. This thread dispatches the commands to the MozillaWebPage instance which correlates
with the MozillaWebPagelnterface.

* Callbacks are dispatched using a second FIFO buffer which is flushed by the main thread during the tick
method.

 Please note that all interaction with Mozilla must be done in the second thread (as Mozilla itself is not
thread safe).

* Please note that global plugins have been disabled as of BigWorld 2.1 as the LLMozlib library is incom-
patible with the Adobe Flash Player 11 plugin. In order to distribute an earlier version of the Adobe Flash
Player with your application, you will need to obtain a license from Adobe. This can be obtained from
http://www.adobe.com/products/players/flash-player-distribution.html

Plugins must now be installed manually.
To re-enable global plugin support, change CHECK LLMOZLI B_CALL_RET(| | nozl i bl nst ance-

>enabl ePl ugi ns(fal se)); to CHECK_LLMOZLI B_CALL_RET(! I nozl i bl nst ance-
>enabl ePl ugi ns(true)); inmozilla_web_page.cpp in the web_render project.

bigw@RLD"

http://www.mozilla.org/
http://ubrowser.com/
http://www.adobe.com/products/players/flash-player-distribution.html

BigWorld Web Integration

20.2. Using the Web Integration

The BigWorld web integration can be used in multiple scenarios. Multiple usage examples are available as
part of FantasyDemo and will be explained below.

20.2.1. In Game Web GUI Component

An in game web GUI component is a GUI component capable of displaying 2D web content and sending
mouse and keyboard events to that web content. There is some experimental (not supported) code also allows
building a game integrated with ActionScript and JavaScript components (see below).

20.2.1.1. Creating an Interactive 2D Web GUI Component

Displaying an interactive 2D web GUI Component which can be used to browse the web can be done by cre-
ating a GUI component containing a child SimpleGuiComponent using the fantasydemo/res/scripts/client/
Helpers/PyGUI/InternalBrowser.py script. For an example of a 2D web GUI component please review the
fantasydemo/res/gui/web.gui. Following are the main considerations for creating an interactive 2D web GUI
component.

¢ The web.gui contains multiple child GUI components. The main GUI component used to display the web
content is the InternalBrowser component. Other child components are mainly used to display navigation
buttons, a window label and the window texture.

* The InternalBrowser.py sets the SimpleGuiComponent texture to use the TextureProvider returned by the
WebPageProvider in order to display the web page as part of the SimpleGuiComponent.

* The InternalBrowser.py implementation currently supports two types of keyboard input methods. Key-
board input is automatically captured by Mozilla when mozillaHandlesKeyboard is set to True, otherwise
key events are sent to Mozilla by the InternalBrowser script, allowing for in game IME implementation.

20.2.1.2. Creating a Game Integrated 2D Web GUI Component

A game integrated 2D web GUI component is a web GUI component which can interact with the game
logic. This allows building game GUI using fast development tools like HTML or Flash, and having them
call Python methods using a JavaScript to Python or ActionScript to Python bridges. Please note that this
BigWorld feature is not supported and we recommend using the ScaleForm solution for customers interested
in such a solution. Implementing a Game Integrated 2D Web GUI Component is done similarly to the above
Interactive Component but with several additional steps. The fantasydemo/res/gui/html_chat_window.gui
contains an example html GUI component using the JavaScript to Python bridge.

20.2.2. In Game Web Screen

An in game web screen is a 3D in game entity with similar capabilities and use cases as the previously
explained Web GUI Component. The main difference between the Web GUI component and the in game web
screen is that the Web Screen is part of the 3D game scene and not a 2D GUI component. This Web Screen is
located in a specific world location and isn't available for gamers as part of their HUD.

20.2.2.1. Creating an In Game Web Screen

The WebScreen entity available as an example in fantasydemo/res/scripts/client/WebScreen.py implements
an in game web screen. Following are the main considerations for creating an In Game Web Screen:

* The WebScreen entity uses a model with multiple tints, the current tint is fed by a TextureFeed created by
the WebScreen entity. The parameters usedTint and textureFeedName control the entity model used tint
and the TextureFeed name used by this entity. These should usually contain the same string based on the
tints available for that model. These options are exposed as part of World Editor.

* The model used by the WebScreen entity should also have three hard points called HP_top_left,
HP_top_right, HP_bottom_left. These hard points are used by the _intersectMouseCoordinates method to

BigWorld Web Integration

find an intersection between a world ray and the entity model. This allows sending mouse events with a
2D position to the actual web page.

* The webPage member of this entity contains a WebPageProvider and is used to render a web page and to
send mouse and keyboard events to the web page.

20.2.3. Texture Mapping of Web Pages into a world object

The TextureProvider returned by the WebPageProvider can be used to build a TextureFeed (similar to the
one used for the WebScreen entity above). A VideoScreen Entity allows simple usage of the TextureFeed to
map the texture into 3D world objects with the correct material settings (same as the tints used above). The
exhibition room in the Urban space contains a teapot example of mapping a web texture into a world object
using a VideoScreen entity.

bIgW@RLD"

Chapter 21. Sounds

BigWorld provides sound support via the third-party FMOD sound library (www.fmod.org). See the docu-
ment "Third-Party Integrations" for more information.

bIgW@RLED"

Chapter 22. 3D Engine (Moo0)

Moo is a 3D engine using DirectX 9 that provides resource-, object- and device- based services up to, but not
including the scene database.

Resource-based services include the generation and management of vertex buffers, index buffers, vertex
shaders, pixel shaders, and effects. Textures are compressed and stored automatically. All resources that are
not managed by Direct3D are managed by Moo, allowing for large amounts of data moving in and out of use.

Object-based services include a full animation system, skinned bipeds, compound skeletal geometrics, and
specialised terrain rendering. Moo exposes the concept of a visual, an important mid-level geometric con-
struct that sits beneath the scene database and greatly simplifies the scene database code.

Device-based services include level-of-detail control over rendering states, encapsulated in materials and
shaders. The 3D window is encapsulated as a RenderContext, and provides frames-of-reference in which to
render geometrics and store lighting states.

Finally, Moo provides the essential alpha-blended sorted triangle pipeline, a service that unfortunately is still
not provided by Direct3D or directly in (most) hardware.

It is important to note that where possible, Moo uses underlying Direct3DX structures such as D3DXMatrix,
D3DXVector, and D3DXQuaternion. The DirectX team continually improves the implementation of these
mathematical classes, and their functionality often takes advantage of processor specific instructions, such
as MMX, SIMD and 3DNow!. It is prudent to leverage the efforts of these engineers.

22.1. Features

Some of the advanced features of Moo are listed below:
* D3DXEffects vertex and pixel shader support
* Cubic environment maps

* Render targets

Lighting

Normal mapping/bump mapping
¢ Terrain

* Animation

* Vertex morphing

The following sections describe these features.

22.1.1. D3DXEffects vertex and pixel shader support

Effect files are used extensively in Moo. Most of the rendering pipeline is based around the class EffectMa-
terial, which implements a way of managing the global values used by the effects, and also the per-instance
data for the effects, such as textures, self-illumination values, and specular reflection constants.

The effect files also make it easier to manage pixel and vertex shaders, as they are created together in one file.
Using the D3DXEffect format removes much of the complexities of adding new shader effects to the engine
and allows rapid prototyping of new visual effects.

22.1.2. Cubic environment maps

Cubic environment maps can be used for some reflections and for normalisation cube maps (used for normal
mapping).

bigw@RLD"

3D Engine (Moo)

22.1.3. Render targets

Render targets are used to create billboard textures. They can also be used in conjunction with the GUI
components to display 3D objects in the 2D GUI (for example, for item selection previews).

22.1.4. Lighting

The lighting component of Moo supports three different kinds of lights:
¢ Directional lights.

* Point lights.

* Spot lights.

Any object can be lit by two directional lights, four point lights and two spot lights. These lights are picked
according to an attenuation metric, so that generally the closest lights will be chosen. It is also important to
note that the fewer lights used, the faster the execution of the lighting vertex shader will be.

22.1.4.1. Light maps

The class bi gwor | d/ src/lib/romp/light_map. cpp is generalised to support both the flora and sky
light maps. Light maps are configurable in XML files.

22.1.4.1.1. Flora light map

The flora light map details are specified in f | or a. xm (for details on this file's grammar, see the document
File Grammar Guide's section “<f | or a>. xml ”) and its location is specified in the file r esour ces. xm (for
details on this file, see “File r esour ces. xm ” on page 11).

The mat eri al tag for flora light map should be syst emf mat eri al s/ | i ght _map. nf m(for details on this
file's grammar, see the document File Grammar Guide's section . nf m).

The default width/height for the flora light map is 64x64. This is small, but still enough resolution for the
projection onto the flora, because its visible area is 100x100 metres.

"G:I'ES?'II'EEHJ'I.II'CEE- xml

<rerource s . xml >

“Erndirorment -
“<florafML>- system it Llore. el <ffloraML-

~ ras-feyrstemfdat af flora . zanl

<flora. =ml:>

<liaht_man:>
“material> spsEem/marerialsfls gi1.t_m.:|;='l b < tmaterials
=midthi- 2] < midth-
<hei ght: - B4 < /height -

Definition of flora light map
22.1.4.1.2. Sky light map

The sky light map details are specified in the space's sky. xm file, and its location is specified in the space's
space. set ti ngs file (for details on this file's grammar, see the document File Grammar Guide's section
space. settings.).

136 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

3D Engine (Moo)

The material tag for sky light map should be syst em’ mat eri al s/ sky_I i ght _map. nf m(for details on
this file's grammar, see the document File Grammar Guide's section . nf m).

The default width/height for the sky light map is 512x512. This is quite large because the light map is projected
across the whole visible world (usually around 1x1 km).

“recrfspaoes f(Yrpacarspace sattings
<rpdce. sebtings -

-;:1.:-:i.rne DfDay: rpaces/epacer/epace sky.wml £ftime0fDay-
Sragk .I'sp:a.c ez focpacerfepace sky . uml
= Toot-
-&'1 :|. ght map >
smateriaml= sypstremimarevialsfeky light map mbm </materials

=0l Juh - 3if <fwmidth>
<height> 512 <fheight -

Definition of sky light map

The sky light map can be disabled via the SKY_LI| GHT_MAP graphic setting (for details,
see “Customising options” on page 157).

22.1.5. Normal mapping/bump mapping

Normal mapping is used to add surface detail to objects by using per-texel normals baked into a texture. Moo
currently supports normal maps for specular and diffuse lighting on dynamically lit objects, and specular
lighting on statically lit objects. The current version of the Exporter supports tangent space normal mapping
only.

22.1.6. Terrain

Moo takes advantage of the multi-texture, vertex, and pixel shading capabilities of the supported graphics
cards. Since it uses a blended 4-layered texturing system for the terrain, Moo utilises the hardware's four
texture stages optimally so that most of the terrain can be rendered in just one pass. The terrain also supports
self-shadowing from a directional light source.

22.1.7. Animation

Moo supports node-based and vertex-based (morph) animation. Moo can also blend animations together to
provide smooth transitions between them.

22.1.8. Vertex morphing

Moo's vertex morphing is suitable for small changes in surfaces, such as facial animation. Morph targets are
exported from the content creation package, and controlled through the normal animation system.

Please note that as morph targets are applied in software, extensive use will affect rendering performance.

22.2. Supported video cards

The currently supported graphics cards are as follows:

bigw@RLD"

#dest=
#dest=

3D Engine (Moo)

° NVIDIA

GeForce4 series, GeForce FX series, GeForce 6x00 series, GeForce 7x00 series cards and above.
° ATI

Radeon 9000 series, and Radeon x000 series of cards.

Any graphics chip that supports at least Hardware Transform and Lighting and two texture stages should
work, some with a limited subset of features enabled. These include (but are not limited to):

* NVIDIA
GeForce3 series and GeForce GO 4 series cards.
° ATI

Radeon 7000 series, Radeon 8000 series, Mobility 8000 and Mobility 9000 series.

22.3. Hardware requirements for special effects

The table below lists the special effects available in Moo, and their hardware requirements:

Special effect Vertex Pixel Texture
shader shader stages re-
version version quired

Bloom 11 11 4

Cloud shadows 1.1 - 3

Flora 11 - 1

Heat Shimmer 11 - 1

Normal mapping 1.1 11 4

PyModel Shimmer 1.1 - 1

PyModel stipple 11 11 4

Entity shadows 2.0 2.0 1

Simulated sub-surface 3.0 3.0 4

scattering

Sky Gradient dome 1.1 - 3

Terrain shadows 11 11 4

Terrain Specular 1.1 1.1 4

Hardware requirements for special effects

22.4. Visual

The Vi sual class implements the basic renderable objects drawn by the 3D engine. A visual contains a node
hierarchy, vertices, indices, and materials used for rendering objects, and it also contains a BSP tree used for
collision detection.

The node hierarchy gives the renderable object a frame of reference when rendering objects. Visual uses the
Ef fect Material ,Primtives,and Verti ces classes to render its geometry.

22.5. EffectMaterial

The material system in the BigWorld 3D engine uses D3DXEf f ect s files extensively.

3D Engine (Moo)

The material system is implemented through the class Ef f ect Mat eri al , which contains one or more D3DX
effects, their overridden values, and information about the collision properties and surface type of the ma-
terial.

The idea behind the material system is to give as much control as possible to the artists, to allow them to
experiment with new rendering techniques without involving programmers.

22.5.1. Format

The format of the Ef f ect Mat eri al on disk is very simple, having only a handful of sections, and with
most of the work done through the .fx file.

22.5.2. Automatic variables/Globals

Automatic variables are used for any variable that is controlled by the engine, such as transforms, lights,
camera positions, etc... Automatic variables are exposed to Effect files using variable semantics.

In an Effect file, the automatic variables are defined like below:
<type> <vari abl eNanme> : <semantic>;

where:
© <type>

The variable type (float, bool, texture, etc.).
e <vari abl eName>

Name used for the variable in the effect file.
° <semantic>

Name exposed to the engine.

The automatic variables are connected to the effect through the class EffectConstantValue. New automat-
ic variables can be added by overriding the EffectConstantValue interface, implementing the operation (),
and adding an instance of the new class using EffectConstantValue::set or using a handle returned from
EffectConstantValue::get.
The automatic variables set up by Moo::EffectVisualContext are listed below:
* Ambi ent (f | oat 4)

Current ambient colour.
* Caner aPos (f | oat 3)

Current camera position in world space.
e Camer aPosbj ect Space (f | oat 3)

Current camera position in object space.

* DepthTex (t ext ure)

The depth of the scene, stored encoded in a 32-bit RGBA texture. This is only available when the Advanced
Post Processing graphics setting is switched on.

bIgW@RLED"

3D Engine (Moo)

e Directional Li ght Count (i nt)

Number of directional lights.

Di rectional Li ghts (Di rectional Li ghts[2])

Current diffuse directional lights in world space.

Di recti onal Li ght sCbj ect Space (Di recti onal Li ght s[2])
Current diffuse directional lights in object space.
EnvironmentCubeMap (t ext ur e)

Cube map containing a low-resolution dynamic cube map of the environment (sun, moon, sky gradient
dome, sky boxes).

EnvironmentTransform(f | oat 4x4)

Matrix used to transform environmental and skybox objects to the screen. Comes pre-multiplied with the
projection matrix.

EnvironmentShadowTransform(f | oat 4x4)

Matrix used to transform environmental and skybox objects to the sky light map.
FarPlane (f | oat)

Current far plane in metres.

Fl oraAni mati onGri d (f| oat 4] 64])

8x8 array of Perlin noise values used to animate the flora vertex buffer.
Fl oraText ure (t ext ure)

The composite Flora texture map used by the FloraRenderer.

FogCol our (f | oat 4)

Fog colour.

FogEnd (f | oat)

End of linear fog.

FogG adi ent Text ur e (t ext ure)

The fog texture used by the terrain renderer.

FogStart (fl oat)

Start of linear fog.

FogText ureTransf or m(mat ri x)

Projects the fog texture onto the terrain.

GUI Col our (f1 oat 4)

Colour for use by the GUL

140

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

* Last Vi ewPr oj ecti on (f | oat 4x4)
The last frame's view*projection matrix.
° I nvVi ew(f | oat 4x4)
Current inverse view matrix.
* I nvVi ewPr oj ecti on (f | oat 4x4)
Current inverse view*projection matrix.
e MpFilter (int)
Configurable MIPFILTER.
* M nMagFilter (int)
Configurable MIN/ MAGFILTER.
e MaxAni sot ropy (i nt)
Configurable MAXANISOTROPY.
* NearPlane (f | oat)
Current near plane in metres.
e Normal i sati onMap (t ext ure)
Normalisation cubemap.
* ObjectID (f | oat)

Set to 1 when rendering a PyModel, aka a dynamic/entity model. Set to 0 for all other models. In future,
this may expand to designate further groups of objects.

* Penunbr aSi ze (f | oat)
Used by the terrain renderer for self-shadowing.
e Poi nt Li ght Count (i nt)
Number of point lights.
e Poi nt Li ght s (Poi nt Li ghts[4])
Current diffuse point lights in world space.
e Poi nt Li ght sQbj ect Space (Poi nt Li ght s[4])
Current diffuse point lights in object space.
* Screen (f | oat 4)
Holds the screen dimension thus : (width, height, half width, half height)
* SkyBoxController (f | oat 4)

Holds the current value of the Vector4 that was registered with the sky box currently being rendered. How
this variable is interpreted is up to the individual sky box, although the fourth component is generally
treated as an alpha value.

bIgW@RED"

3D Engine (Moo)

e Specul arDi recti onal Li ght Count (i nt)
Number of specular directional lights.

e Specul arDirectional Li ghts (Di rectional Li ghts[2])
Current specular directional lights in world space.

e Specul ar Di r ecti onal Li ght sObj ect Space (Di r ecti onal Li ghts[2])
Current specular directional lights in object space.

e Specul ar Poi nt Li ght Count (i nt)
Number of specular point lights.

e Specul ar Poi nt Li ght's (Poi nt Li ght s[2])
Current specular point lights in world space.

e Specul ar Poi nt Li ght sCbj ect Space (Poi nt Li ght s[2])
Current specular point lights in object space.

e Spot Li ght Count (i nt)
Number of spot lights.

e Spot Li ght s (Spot Li ght s[2])
Current diffuse spot lights in world space.

* Spot Li ght sObj ect Space (Spot Li ght s[2])
Current diffuse spot lights in object space.

e StaticLighting(bool)
Whether static lighting is applied or not.

° Stippl eMap (t exture)
Map to be used for the stipple effect.

* SunAngl e (f | oat)
Used by the terrain renderer for self-shadowing.

e Terrai nText ureTransform(fl oat 4[2])
Projects textures onto the terrain.

e Tine (fl oat)
Time in seconds since the game started.

* Vi ew(f | oat 4x4)
Current view matrix.

* Vi ewPr oj ection (f| oat 4x4)

Current view*projection matrix.

142 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

e WndAni mati on (f| oat 4)

Two Vector2's. in (x,y) is a value that can be used for wind-affected texture scrolling. It keeps the incremen-
tal value of a single uv coordinate blown around by the wind. in (x,z) is the current wind average speed.

° Worl d (fl oat 4x4)
Current world matrix.
e Worl dPal ette (fl oat4[17*3])
Matrix palette, made up of the current renderset matrices stored as transposed 4x3 matrices.
° Worl dVi ew(f | oat 4x4)
Current world*view matrix.
° Wor | dVi ewPr oj ecti on (f | oat 4x4)

Current world*view*projection matrix.

22.5.3. Artist-editable/tweakable variables

Artist-editable variables are variables that are designed to be overridden on a per-material basis. These vari-
ables can be edited in World Editor and Model Editor, allowing you to change the look of a model in real
time, while visualising it.

The artist-editable variables can be exposed to the engine by setting the attribute arti st Edi t abl e or
wor | dBui | der Edi tabl e tot rue.

Setting arti st Edi t abl e to t r ue exposes the variable to Model Editor's Materials Settings panel (for
details, see the document Content Tools Reference Guide's section Model Editor - “Panel summary” —
“Materials Settings panel”), while setting wor | dBui | der Edi t abl e to true exposes it to both Model
Editor and, if the obj ect s/ mat eri al Overri deMbde tag is set to 1 in bi gwor | d/ t ool s/ wor | dedi -
tor/options. xm (for details on this file's grammar, see the document File Grammar Guide's section
options. xm - “World Editor”) file, to World Editor's Properties panel (for details, see the document
Content Tools Reference Guide's section World Editor - “Panel summary” — “Properties panel”).

The notation for these variables in a FX file is described below:

<type> <vari abl eNane>
<

bool [artistEditable|lworldBuil derEditable] = true;
> : .<df aul t Val ue>;
Other attribute definitions.
where:
e <type> — Type of the object.
e <vari abl eName> — Variable name in the effect file.
o <def aul t Val ue> — Default value of the variable.
Currently, the supported types of artist-editable variables are:

* bool

e f| oat

bIgW@RED"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

3D Engine (Moo)

e float4
o fl oat 4x4
°int
e texture
The conditions to have the variable exposed in either tool are described below:
e IfartistEditabl eissettotrue in the FX file
Exposed in Model Editor?: Yes
Exposed in World Editor?: No
e If wor | dBui | der Edi t abl e is set to t r ue in the FX file
e If mat eri al Overri deMode issetto 1 in bi gwor| d/t ool s/ worl dedi tor/options. xm
Exposed in Model Editor?: No
Exposed in World Editor?: No
e If materi al Overri deMbde is set to O in bi gwor | d/ t ool s/ wor | dedi t or/ opti ons. xm
Exposed in Model Editor?: No
Exposed in World Editor?: Yes

22.5.4. Multiple-layered effects per material

The Moo: : Ef f ect Mat eri al class supports having multiple-layered D3DXEffects per material.

This is useful for materials that need to use a standard set of vertex shaders, but only have slight changes
to the pixel shader component of the effect. These materials would generally only be created by the asset
converter, as Model Editor does not support adding more than one effect per material.

22.5.5. Recording material states

Material states can be recorded by class Mbo: : Ef f ect Mat eri al by calling the method r ecor dPass()
between a begi n() and end() pair on the material.

This method returns a Mbo: : St at eRecor der that is used to store the current render states for delayed
rendering.

This object only stays valid until the end of the current render loop, and will not be usable after this point.

22.5.6. Using BigWorld . f x files with 3ds Max

BigWorld . f x files and 3ds Max .fx files unfortunately are not 100% compatible. It is however possible to
create a . f X file that can be used in both applications.

To expose editable parameters, BigWorld shaders use the annotation below:
bool artistEditable = true;
whereas 3ds Max requires the annotation string below:

Ul Nanme="nane"

144 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

The sample effect file bi gwor | d/ r es/ shader s/ st d_ef f ect s/ nor mal map. f X exposes its parameters
properly to BigWorld and 3ds Max. The exporter also exports the values entered in the 3ds Max shader
material panel.

The file nor mal map. f x also uses a separate technique, called max_pr evi ew, plus additional vertex and
pixel shaders.

This is due to two reasons:
* There is no uniform way to apply the lighting in both the BigWorld engine and 3ds Max.
* 3ds Max uses a right-handed coordinate system, while BigWorld uses a left-handed one.

In itself this is not a big problem, but it means that additional shader work is required if you want to preview
your shaders in 3ds Max.

If you have not applied Service Pack 1for 3ds Max 7, an issue exists in that its Material Panel is very poor
at dealing with #i ncl ude directives in the effect files. What happens is that if you save a material with the
effect nor mal map applied, then not always it will be properly loaded up again in 3ds Max, which can cause
additional confusion for the artists. This problem has been fixed in Service Pack 1, so it is important to apply
it if you want to use . f x files in 3ds Max.

It is important to be mindful of these issues before you decide to make your . f x files compatible with 3ds
Max.

22.6. Visual channels

The visual channels implement the delayed rendering pipeline in Moo.
There are presently five standard channels implemented:

e Sorted channel

¢ Internal sorted channel

e Shimmer channel

¢ Sorted shimmer channel

¢ Distortion channel

An application can create as many channels as it wants by overriding the Mbo: : Vi sual Channel interface
and implementing Vi sual Channel : : addl t em

The following sub-sections describe these channels.

22.6.1. Sorted channel

The sorted channel is used for objects that need to be rendered in a back-to-front order.
When a primitive group from a visual is added to this channel, its triangles are not sorted internally.

This channel is mostly useful for additive objects, i.e., objects with a destination blend of one.

22.6.2. Internal sorted channel

The internal sorted channel is used for objects that need to be rendered in a back-to-front order, and also
have its triangles rendered in a back-to-front order.

Objects that are added to this channel will also be sorted against objects in the sorted channel.

This channel is useful for alpha-blended objects, and any transparent object that does not have a destination
blend of one.

bIgW@RED"

3D Engine (Moo)

22.6.3. Shimmer channel

The shimmer channel is used for objects that need a heat shimmer.

Any object that is added to this channel should only write to the alpha channel of the frame buffer.

22.6.4. Sorted shimmer channel

The sorted shimmer channel is used for objects that need a heat shimmer, and also need to draw colour infor-
mation.

Any object added to this channel should write to both the alpha channel (for shimmer amount) and colour
channel of the frame buffer.

22.6.5. Distortion channel

The distortion channel is used for objects that want direct access to the final scene as a texture. This can be
used to achieve effects like refraction (for example, the water).

22.7. Textures

22.7.1. Texture detail levels/compression

Textures are loaded and compressed automatically based on their filenames, which control the size, format
conversions, and compression levels.

For details on this file's grammar, see the document File Grammar Guide's section . t exf or mat .

The system is implemented through the class Mbo: : Text ur eDet ai | Level . The Texture Manager stores
a list of texture detail levels and uses them to resize and compress textures based on their filenames. The
legacy . t exf or mat system is still supported.

The properties for the Text ur eDet ai | Level are divided into two sets:
¢ Filename matching criterion.
* Conversion rule.

The filename matching criterion set of properties defines the criteria used to check if the current TextureDe-
tailLevel applies to the texture being checked. They are described below:

e contains_

Matched strings for a string contained in the texture filename.
e post Fi xes_

Matched strings for the postfixes of the texture filename.
e preFixes_

Matched strings for the prefixes of the texture filename.

Only one string from each list of strings has to match the texture name for the Text ur eDet ai | Level to
consider it a match. If there are no strings in one of the lists, that will be considered a match as well.

The conversion rule set of properties defines how matching textures will be converted. They are described
below:

e conpressedFor mat _

Format to which convert the texture (when texture compression is enabled).AB

146 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=

3D Engine (Moo)

e format _
The format to convert the texture to.
* | odvbde
Defines how texture responds to the texture quality settings.
Texture quality is set via TEXTURE_QUALI TY graphics setting.AB
e maxDim_
The maximum width/height dimension of the texture.
e mnb m
The minimum width/height dimension of the texture.
* noResi ze_

Determines that the texture will not be scaled to be a power of two, and will not have mipmapping, com-
pression or a .dds version.

° reduceDi m_

The number of times to halve the dimensions of the texture when compression is disabled.”
A — Texture compression can be toggled via TEXTURE_COMPRESSION graphics setting.B
B — For details, see “Graphics settings” on page 154 .

The texture detail level can be read from a datasection, as displayed in the example below:

<prefix> obj ects/ </prefix>
<post fi x> tga </ postfix>
<post fi x> brmp </ postfix>
<cont ai ns> nor ns </ cont ai ns>
<cont ai ns> normal s </contai ns>
<maxDi > 512 </ maxDi n»
<m nDi > 128 </ m nDi n>
<reduceDin>r 1 </ reduceDi n»
<f or mat > ASBR8G8B8 </ for mat >

Example texture detail level format

The example above results in any texture loaded from a sub-tree of folder objects/ with the extension . t ga
or . bnp and that contains the string norms or normals to have its dimensions reduced by half once, as long
as the smallest dimension does not fall below 128. If the format is different, it will be changed to a 32-bit
colour with alpha.

The default detail levels are:

* Any file with a filename ending in nor ns. t ga or nor ns. bnp will be converted to an ASR8G8BS texture
(so as to not compress BigWorld's normal maps).

* Any other . t ga file is converted to the DXT3 format.
* Any other . brp file is converted to the DXT1 format.

By default textures are only scaled down if their dimensions are bigger than 2048.

bIgW@RLED"

3D Engine (Moo)

22.7.2. Animated textures

Moo supports simple animated textures by texture swapping.

When Texture Manager loads a texture, it will look for a file with the same name as the one being loaded,
but with a . t exani mextension. If such file is found, then it will be loaded as an animated texture.

The . t exani mfile is a simple XML file that references a number of textures, contains an animation string
and a frames-per-second value.

The format of a . t exani mfile is described below:

<frames> string </franes>
<f ps> .f </fps>
+<t ext ure> TEXTURE RESOURCE </t exture>

File . t exani mformat

An example of a . t exani mfile is displayed below:

<frames> abcdef gh </franes>
<f ps> 10.0 </fps>
<texture> maps/fx/fx_dirt0l.tga </texture>
<texture> maps/fx/fx_dirt02.tga </texture>
<texture> maps/fx/fx_dirt03.tga </texture>
<texture> maps/fx/fx_dirt04.tga </texture>
<texture> maps/fx/fx_dirt05.tga </texture>
<texture> maps/fx/fx_dirt06.tga </texture>
<texture> maps/fx/fx_dirt07.tga </texture>
<texture> maps/fx/fx_dirt08.tga </texture>

Example file . t exani mformat

In this case, the animating texture will play the f x_di rt textures back in order at a rate of ten frames per
second.

You can change the order in which the frames are played back by changing the f r anes tag . The a in the
tag's value refers to the first texture stored in the XML file, b refers to the second texture stored, and so on.

22.7.3. Applying a code-generated texture to a character

To apply a code-generated texture to a model, follow the steps below:
1. Create an automatic . f X variable (e.g., cust oniText ur e).

2. Update the character's shaders so that they render using the new . f x variable, instead of the di f -
f useMap property.

3. You will need a single Text ur eSet t er, which is a Mbo: : Ef f ect Const ant Val ue. This provides the
"current custom texture" to . f X files.

4. Write a PyFashi on that sets up the "current custom texture" when drawing an instance of a PyMbdel .
5. Create a Mbo: : BaseText ur e that wraps the custom texture creation process.
22.7.3.1. Loading textures from disk

When loading texture from disk, it is recommended to have the loading thread running in the background,
so that it does not interrupt the rendering thread.

148 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

The example below illustrates a texture loader using the Backgr oundTask and BGTaskManager classes.
Note that the code provides two features — threaded texture loading, and providing the texture to the . f x
file system.

#i ncl ude "pch. hpp"
#i ncl ude "cstdnf/bgtask_manager. hpp"
#i ncl ude "cstdnf/concurrency. hpp"

DECLARE_DEBUG_COMPONENT2("ronp", 0);

L e I e
/] Section: Texture Setter

A e I
/**

* This class sets textures on the device. It is also nmulti-threaded.

* \Wen it is told to use a new texture, it uses the background | oading

t hread

* to do so. Wile it is doing this, the textureNane refers to the new
* texture, but isLoading() will return true. And in this state, it will be
* sneakily using the pre-existing texture until the new one is ready.
*/
class ThreadedTextureSetter : public Mo:: Ef f ect Const ant Val ue
{
public:
Thr eadedText ureSetter():
pTexture_(NULL),
bgLoader _(NULL),
textureNane_("")
{
}
/**
* This nethod is called by the effect systemwhen a nmaterial needs
* to draw using a texture with the given autonatic senantic.
*/
bool operator() (I D3DXEf fect* pEffect, D3DXHANDLE const ant Handl e)

{
Si mpl eMut exHol der hol der (nutex_);

if (pTexture_ && pTexture_->pTexture())

pEf f ect - >Set Text ur e(const ant Handl e, pTexture_->pTexture());
el se

pEf f ect - >Set Text ur e(const ant Handl e, NULL) ;

return true;

}
/**
* This nethod sets our texture. |If the texture is different then
* the existing one, we schedule the new one for |oading, and set
* the textureNane and the isLoading() flag. |In an unspecified anmount
* of tine, the new texture will be | oaded and used.
*/
voi d texture(const std::string& texNane)
{
if (textureNane_ == texNane)
return;
i f (this->isLoading())
return;
textureNane_ = t exNane;

bIgW@RED"

3D Engine (Moo)

bgLoader _ = new BackgroundTask(
&Thr eadedText ureSetter:: | oadTexture, this
&Thr eadedText ureSetter::onLoadConplete, this);

#i f ndef EDI TOR_ENABLED
BgTaskManager: : i nstance() - >addTask(*bgLoader_);
#el se
ThreadedText ureSetter:: | oadTexture(this);
ThreadedText ureSetter::onLoadConplete(this);
#endi f

}

/**

* This class-static nethod is called by the background | oading thread
* and allows us to |load the texture resource in a bl ocking manner.

*/

static void | oadTexture(void* s)

Thr eadedTextureSetter* setter = static_cast<ThreadedTextureSetter*>(s);
Mbo: : BaseTexturePtr pTex =

Mbo: : Text ur eManager: : i nstance()->get(setter->textureNane());
setter->pTexture(pTex);

}

/**

* This class-static nmethod is called when the background | oadi ng thread
* has finished.

*/

static void onLoadConpl ete(void* s)

Thr eadedTextureSetter* setter = static_cast<ThreadedTextureSetter*>(s);
setter->onBgLoadConpl ete();

}

/**
* This nethod returns the nane of the texture we are currently
* drawing with. |f isLoading() is true, then the textureNane
* refers to the texture we would like to draw with (however we
* wll be actually drawing with the previous texture ptr).

*/
const std::string& textureNanme() const
{
return textureNanme_;
}
/**

* This nethod returns true if we are currently waiting for the
* background |l oading thread to | oad our texture.

*/

bool isLoadi ng()

Si mpl eMut exHol der hol der (nutex_);
return (bgLoader_ !'= NULL);

}

private:
/1only called by the background | oading thread
voi d pTexture(Mo::BaseTexturePtr pTex)

Si mpl eMut exHol der hol der (nutex_);
pTexture_ = pTex;

}

150 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

/1only called by the background | oading thread
voi d onBgLoadConpl et e()

Si npl eMut exHol der hol der (nutex_);
del et e bglLoader _;

bgLoader _ = NULL;
}

Mbo: : BaseTexturePtr pTexture_;
std::string textureNane_; //store a copy for use while |oading.
Backgr oundTask* bglLoader _;
Si npl eMut ex nut ex_;
b

Example of texture loader

22.7.3.2. Manipulate individual pixels within a texture
To manipulate pixel within a code-generated texture, there are at least two available options:
1. Create the texture in the managed pool

This way there will be a system memory copy and a video memory copy. You can then lock the texture
and manipulate it as needed — DirectX will update the changes to video memory.

The only drawback to this option is that on some hardware configurations, the system memory texture
may be stored swizzled, meaning that the lock operation would have to unswizzle it before you can make
changes — a potentially costly lock operation.

Note that to use the texture, you will need to have mipmaps available, so when performing the lock you
will have to either:

* Update each surface of the texture individually.
—or —
¢ Use stretch rect to supply the mipmap chain from the top surface.
2. Create the texture in video memory as a render target
You will have to use shaders to write your changes to the texture.

The drawback to this method is that if the device is reset, then your changes will be lost. If that happens,
you will have to handle the CreateUnmanagedObjects callback (from the DeviceCallback interface) and
recreate the custom texture.

Unfortunately, you cannot just copy the data to system memory, because a CTRL+ALT+DEL will lose the
device without giving you a chance to save the video memory data first.

Note again that to use the texture, you will need to have mipmaps available. So perhaps in this instance
you can create a separate mipmap texture in video memory, and use stretch rect to supply the mipmap
chain from the source render target. The source render target might be a 'scratch pad' used in building
all the custom character textures.

22.7.3.3. Using a shader to build a custom texture

The closest example on how to achieve this is provided by the flora light map, which uses a variation of the
terrain shaders to render the lighting information to a render target. For details, see bigworld/src/lib/romp/
flora_light_map.cpp.

bIgW@RLED"

3D Engine (Moo)

Note that to use shaders you will need a video memory/render target surface as described in the section
above.

22.7.3.4. Dealing with the texture cache

The custom texture is needed to implement the Moo::BaseTexture interface, so that it can add itself to the
Texture Manager. However, depending on the following step (applying custom textures to models), you may
not even need to use the TextureManager, as it simply provides a 'retrieve texture by name' access to textures.

If you are creating several custom textures for characters, then you may have an internal (hidden) naming
scheme, which would result in a minimal benefit for using the texture cache. It may be good enough simply
to use smart pointers to handle caching.

22.7.3.5. Assigning custom textures to a model

Assuming that you have one model that you want display many times, each with a unique custom texture,
then you will have to implement a class deriving from the PyFashi on class.

Such classes are created from Python, assigned to a PyModel instance, and given an opportunity to alter
how a shared model renders (i.e., to set the custom texture on the model). The PyFashi on class will become
the main interface to your scripts, so in Python you can construct the PyFashi on instance with the names
of the texture you want to combine, and then assign it to a player's model by simply setting the fashion as
any named attribute on its PyMbdel (PyMbdel : : pySet Attri but e automatically detects when a fashion
is set on itself, and incorporates it into its rendering chain).

To actually set the custom texture on the model, we recommend creating a class deriving from
Moo: : Ef f ect Const ant Val ue, and that provides the custom texture to . f x files by name. In the . f x files,
use the automatic variable semantic (e.g., Text ure di f f useMap : cust onChar act er Text ur e), instead
of the existing arti st Edi t abl e property.

For an example code on creating a texture setter, see “Loading textures from disk” on page 148 .

22.8. Vertex declaration

Vertex declarations are used by Direct3D to map vertex stream data to vertex shaders.

Moo uses the Ver t exDecl ar ati on class to ease the handling of vertex declarations used by Direct3D.
Vertex declarations are stored on disk in XML format and loaded as needed. The vertex declarations stored
on disk can be retrieved by calling method Ver t exDecl arati on: : get ().

By default, the vertex declarations are stored under folder bigworld/res/shaders/ formats.

Two declarations can be combined with Vert exDecl ar ati on: : conbi ne() as long as the elements of
both declarations are mutually exclusive.

22.8.1. File format

The format of the vertex declaration file is described below:

<r oot >

+<USACGE> (usage index, optional defaults to 0)

?<strean> (strm#, opt, dflt is strmused by the prev el mt) </ streanp
?<of fset> (ofst into strm opt, dflt is nxt ofst aft prev elmt) </offset>
?<type> (data type, opt, defaults to FLOAT3) </type>
</ USAGE>

152 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

</ root >

Vertex declaration file format
The USAGE tag maps to the enumerated type D3DDECLUSAGE, and its possible values are listed below:
e POSI TI ON

* BLENDWEI GHT

* BLENDI NDI CES

* NORMAL

e PSI ZE

e TEXCOORD

e TANGENT

* Bl NORVAL

* TESSFACTOR

e POSI TI ONT

* COLOR

* FOG

e DEPTH

* SAMPLE

The data types entered in the t ype tag map to enumerated type D3DDECLTYPE, and its possible values are
listed below:

 D3DCOLOR
« DEC3N

+ FLOAT1

+ FLOAT16_2
+ FLOAT16_4
 FLOAT2
 FLOAT3
 FLOAT4

* SHORT2

* SHORT2N

* SHORT4

* SHORT4N

* UBYTE4

bIgW@RED"

3D Engine (Moo)

UBYTE4N

* UDEC3

USHORT2N

USHORT4N

As an example, the xyznuv_d vertex format is defined like this:

<xyznuv_d. xm >

<PCSI TI ON >

<NORMAL/ >

<TEXCOORD>
<type> FLOAT2 </type>

</ TEXCOORD>

<COLOR>
<streanr 1 </ streanp
<offset> 0 </ of f set >
<type> D3DCOLOR </ type>

</ COLOR>

</ xyznuv_d. xnl >

Vertex declaration file xyznuv_d. xm

22.9. Graphics settings

To allow the game client to run as smoothly as possible in the widest range of systems, BigWorld's 3D engine
exposes several parameters. These can be tweaked by the player to achieve the optimal balance between
visual quality and game responsiveness for his particular hardware configuration.

These parameters are known as graphics settings, and are listed below:

* FAR PLANEA
Available options: FAR, MEDI UM NEAR “Customising options” on page 157
Modifies the viewing distance. The viewing distance is defined per space and this graphics option modifies
the viewing distance by a factor. The factors and options are configurable in the file bi gwor | d/ r es/
syst em dat a/ gr aphi cs_settings. xm

+ FLORA DENSI TYA
Available options: H GH, MEDI UM LOW OFF “Customising options” on page 157

Sets the density of the flora detail objects by a factor. The factors and options are configurable in the file
bi gwor | d/ res/ syst eni dat a/ gr aphi cs_settings. xm .

* FOOT_PRI NTS
Available options: ON, OFF
Toggles footprints on and off.
* OBJECT_LOD

Available options: Hl GH, MEDI UM LOW “Customising options” on page 157

154 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

Modifies the relative distance from the camera for LOD transitions by a factor.

* SHADER_VERSI ON_CAP
Available options: SHADER MODEL _3, SHADER MODEL_2, SHADER MCODEL_1, SHADER MODEL_0
Sets the maximum shader model version available to the engine.

SHADER_MODEL_0 is disabled if client is running with a graphics card supports Shader Model 1 only.
SHADER_MODEL_0 need vertex shader 2.0 capability, no matter it is software or hardware vertex pro-
cessing. SM1 graphics card such as nVidia TI4400 enables hardware vertex processing but only support
vertex shader 1.1, so SHADER_MODEL_0 option can't be applied.

+ SHADOWS_COUNTA

Available options: From 1 to maxCount (defined in shadows. xm — for details on this file's grammar,
see the document File Grammar Guide's section shadows. xml)

Sets the number of simultaneously visible dynamic entity shadows.
* SHADONS_QUALI TY
Available options: H GH, MEDI UMLOW OFF

Sets entity shadow quality. Hl GHuses a 12-tap filter for shadows, MEDI UMuses a 4-tap filter for shadows,
LOWuses a 1-tap filter for shadows and OFF turns shadows off

o SKY_LI GHT_MAPB

Available options: ON, OFF

Toggles the cloud shadows on and off.
+ TERRAI N_SPECULAR®

Available options: ON, OFF

Toggles terrain specular lighting on and off.
« TERRAI N_LOD

Available options: FAR, MEDI UMNEAR

Modifies the terrain geo-morphing distances by a factor. The factors and options are configurable in the
file bi gwor | d/ res/ systenml data/terrai n2. xm

e TERRAI N_MESH RESOLUTI ON
Available options: H GH, MEDI UMLOW

Selects the terrain resolution to use. HIGH uses the highest available resolution, MEDIUM uses half the
available resolution, LOW uses a quarter of the available resolution

« TEXTURE_COVPRESSI ONAC
Available options: ON, OFF “Customising options” on page 157
Toggles texture compression on and off

° TEXTURE_FI LTERI NG

bIgW@RLED"

#dest=
#dest=

3D Engine (Moo)

Available options: ANl SOTROPI C_16X, ANI SOTROPI C_8X, ANl SOTROPI C_4X, ANI SOTROPI C_2X,
TRI LI NEAR, B LI NEAR, LI NEAR, POl NT

Selects texture filtering. Shaders can be modified to take advantage of this setting by using the automatic
variables M nMagFi | t er, M pFi | t er, and MaxAni sot r opy to set the M NFI LTER, MAGFI LTER, M P-
FI LTER and MAXANI SOTROPY sampler states. For details, see bi gwor | d/ r es/ shader s/ speedt r ee/
speedtree. fx.

TEXTURE_QUALI TYAC “Customising options” on page 157

Available options: Hl GH, MEDI UM LOW

Sets texture quality level.

SPEEDTREE_QUALI TY

Available options: VERYHI GH, Hl GH, MEDI UM LOW LOVWEST

Sets the quality of the speedtree rendering. VERYH GH Enables per-pixel lighting (normal mapped) on all
tree parts, Hl GHEnables per-pixel lighting (normal mapped) on only the tree branches, MEDI UMTrees use
simple lighting, LOWTrees use simple animation and lighting, using the fixed function pipeline.
WATER_QUALI TY

Available options: Hl GH, MEDI UM LOW LONEST

Sets the quality of water reflection rendering. Hl GH Enables drawing of all object types, MEDI UMDisables
drawing of dynamic objects, LOWDisables drawing of dynamic objects and halves the resolution of the
render target. LOWNEST only renders specular reflections.

WATER_SI MULATI ON

Available options: Hl GH, LOW OFF

Sets the quality of the water simulation. Hl GH Enables inter-cell water simulation, MEDI UMenables water
simulation on a cell by cell basis, OFF turns water simulation off.

POST_PROCESSI NG

Available options: H GH, MEDIUM, LOW OFF

Sets the default post-processing chain. These are selected from the chains folder, for example : big-
world/res/system/post_processing/chains/high_graphics_setting.xml. If you want to edit the default post-
processing then edit the three chain files there. There are two versions of each chain, one version with
FXAA and one without, see FXAA PROCESSI NGbelow.

FXAA_PROCESSI NG

Available options: ON, OFF

Sets if FXAA (Fast approXimate Anti-Aliasing) is in the post-processing chain.

MRT_DEPTH

Available options: ON, OFF

Enables creation of the depth texture (exposed to .fx files via the DepthTex semantic.) This enables a variety

of advanced post-processing effects such as depth-of-field and depth-fades, as well as the depth-based
colouring of the water.

156

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

A — Adjustable via configuration files. For details, see “Customising options” on page 157 .
B — Requires restart of the client. For details, see “Settings that require restarting the client” on page 162 .

C — Delayed setting. For details, see “Delayed settings” on page 161 .

22.9.1. Customising options

Although most of these settings have their options determined in the engine, some settings can have their
options customised via configuration files.

These settings and their customisation are discussed in the following topics.

22.9.1.1. TEXTURE_QUALI TY and TEXTURE_COVPRESSI ON

Both TEXTURE_QUALI TY and TEXURE_COMPRESSI ONsettings are customised by the way of the texture for-
mat (. t exf or mat) and detail levels (t ext ure_detai | _| evel . xm) files (for details on this file's gram-
mar, see the document File Grammar Guide's section . t exf or mat).

Lowering the texture quality and using compressed formats helps improving engine performance, by reduc-
ing the amount of texture memory required to store them. This means that less data needs to be sent to the
graphics card at each frame, ultimately improving frame rate.

TEXURE_QUALI TY adjusts the resolution of a texture by preventing its topmost mipmap levels from being
loaded. This means that, at the highest level of quality, the texture will be at the same resolution as the original
texture map. At medium level, it will be at half its original size, and at a quarter of it at the lowest level of

quality.

How many mipmap levels are skipped in each quality level for each texture can be controlled by the | odMbde
tag in the texture's det ai | Level section.

The table below lists the values | odMbde can assume, next to the number of mipmaps skipped for each of
the texture quality setting levels:

I od- # of skipped mipmaps

[\VoJo [}
Value Descrip- High Medium Low
tion quality quality quality
1 Normal 0 1 2
2 Low 0 1 1
bias
3 High 0 0 1
bias

Number of skipped mipmaps per quality setting level/ LOD level

TEXURE_COVPRESSI ON affects the format in which texture maps are stored in memory. When texture com-
pression is disabled, all textures are stored using the format defined by the format tag in the texture's de-
tail Level section. When texture compression is enabled, the format defined by the f or mat Conpr essed
is used. If f or mat Conpr essed is not defined for a texture, then format is used, whatever the compression
setting is.

Note that there is no restriction to what texture format is used for format or f or mat Conpr essed, but for
the texture compression setting to yield any significant performance results, f or mat Conpr essed should
define a texture format that uses less texture memory than its non-compressed format counterpart.

bIgw@RED

#dest=
#dest=

3D Engine (Moo)

For details on how to setup a texture's level of detail, see “Texture detail levels/compression” on page 146
. For details on the configuration file's grammar, see the document File Grammar Guide's section . t exf or -
mat .

22.9.1.2. SHADOWS_COUNT
SHADOWS_COUNT defines the maximum number of simultaneous dynamic entity shadow casters in a scene.

Shadows are rendered using shadow buffers, thus consuming texture memory. Filling the buffers up at every
frame requires rendering the scene again for each shadow caster. Reducing the number of simultaneous
dynamic shadow casters reduces the memory requirements and the amount of processing used to update
the buffers at every frame.

Value ranges from 1 to value specified in maxCount shadows. xm file, in power of two steps (defined
in shadows. xm — for details on this file's grammar, see the document File Grammar Guide's section
shadows. xm).

22.9.1.3. FLORA _DENSI TY
FLORA_DENSI TY defines the size of the vertex buffer used to render the flora detail objects.

Since the flora drawing distance to the camera is fixed, defining the size of the vertex buffer also determines
the flora density. Because it uses alpha blending, drawing the flora can negatively influence the frame ren-
dering time, especially on hardware with limited fill rate performance. Reducing the amount of flora ren-
dered at any one time may help improving the frame rate.

Flora density options are defined in <gr aphi cs_setti ngs>. xnl (for details on this file's grammar, see
the document File Grammar Guide's section “<gr aphi cs_set ti ngs>. xm ”) as a multiplier of the vertex
buffer, which actual size is defined per space in <f | or a>. xm (for details on this file's grammar, see the
document File Grammar Guide's section “<f | or a>. xm ”).

<gr aphi cs_settings. xm >

<fl ora>
<opti on>
<l abel > H & </I| abel >
<value> 1.0 </val ue>
</ opti on>

<opti on>
<l abel > LOW </I| abel >
<value> 0.5 </val ue>
</ opti on>

<opti on>
<l abel > OFF </I abel >
<value> 0 </val ue>
</ opti on>
</flora>

</ graphi cs_settings. xm >

Example <gr aphi cs_set ti ngs>. xm — Configuring flora density

22.9.1.4. FAR_PLANE

FAR_PLANE defines the maximum viewing distance when rendering the 3D world.

Decreasing the viewing distance reduces the amount of geometry sent to the rendering pipeline, resulting
in higher frame rates.

158 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

3D Engine (Moo)

Because the far plane distance can be defined on a per-space basis (in space. setti ngs file — for details
on this file's grammar, see the document File Grammar Guide's section space. set ti ngs), FAR_PLANE is
actually multiplied by the space's specific far plane value before it is applied to the camera.

Specified in <gr aphi cs_set ti ngs>. xm (for details on this file's grammar, see the document File Gram-
mar Guide's section “<gr aphi cs_setti ngs>. xm ”), the far plane can be configured as in the example
below:

<gr aphi cs_settings. xn >

<f ar Pl ane>

<option>
<value> 1.0 </ val ue>
<l abel > FAR </ | abel >
</ option>
<option>
<val ue> 0.75 </ val ue>
<l abel > MEDI UM </| abel >
</ option>
<option>
<value> 0.5 </ val ue>
<l abel > NEAR </ | abel >
</ option>

</ far Pl ane>

</ graphi cs_settings.xmn >

Example <gr aphi cs_set ti ngs>. xml — Configuring far plane

22.9.1.5. OBJECT LD

OBJECT_LOD defines the relative distance to the camera before LOD transitions occur.

For standard BigWorld models, LOD distances are defined using the Model Editor. Particle Editor is used to
set the LOD distance for particle systems (the maximum distance to which the system is still visible). LOD
levels and transition distances for SpeedTrees are defined inside SpeedTreeCAD (although they can be over-
ridden by the SpeedTree's XML configuration file, which is specified in r esour ces. xm file's speedTr e-
eXM tag. For details on this file, see “File r esour ces. xm ” on page 11).

The OBJECT_LOD setting specify multipliers that will modify those distances during runtime, allowing the
user to trade some visual quality for better performance.

The LOD multipliers are defined in <gr aphi cs_setti ngs>. xm (for details on this file's grammar, see
the document File Grammar Guide's section “<gr aphi cs_set ti ngs>. xm ”):
<gr aphi cs_settings. xm >
<obj ect LOD>
<option>
<value> 1.0 </ val ue>
<label> HGH </I|abel>

</ option>

<option>

bIgW@RLED"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

3D Engine (Moo)

<val ue> 0.66 </ val ue>
<l abel > MEDI UM </1 abel >
</ opti on>
<option>
<val ue> 0.33 </ val ue>
<l abel > LOW </ 1 abel >
</ opti on>

</ obj ect LOD>

</ graphi cs_settings. xm >

Example <gr aphi cs_set ti ngs>. xml — Configuring object LOD

22.9.2. Using settings

Upon startup, the client automatically tries to load the graphics settings from disk. All graphics settings are
stored in the gr aphi csPr ef er ences section of the file specified in preferences tag of the file specified in
resour ces. xm 's engi neConf i gXM tag (for details, see “File <pr ef er ences>. xm ” on page 13). The
first time the application is run, and when the graphics card or its driver has changed, the graphics settings
will try to auto-detect the most appropriate settings for the device.

Saving, on the other hand, is not performed automatically; it must be controlled from the scripts, using the
Bi gWor | d. savePr ef er ences method — it will save both the graphics settings and the video and script
preferences.

The game scripts can use the functions Bi gWor | d. graphi csSettings and
Bi gWor | d. set G aphi csSet ti ngs to query and change the current state of the settings (usually trough
a graphical user interface).

22.9.2.1. Auto-detecting settings

Auto-detecting of settings is supported through an xml configuration file specified by the tag gr aphi cs-
SettingsPresetsinresources. xm . This file defines matching criteria to attempt to match a group of
settings to a specific device (graphics card). There are three different ways of matching a group of settings to
a device. All matching is done against the D3DADAPTER | DENTI FI ER9 structure. The auto-detection itself
is performed in the method Mbo: : Gr aphi csSetting: :init

e GUD

Matches a specific device type and driver version to a settings group, this is useful when there are known
issues with a certain driver/device pair and you can adjust your graphics settings accordingly

e VVendor | D/ Devi cel D pair

Matches a specific device type to the settings this is useful when you know the vendor and device id's
for a specific device

* Devi ce description string

Matches the strings to the device description, all the strings need to match for the setting to be selected

<gr aphi csPref erences> H GH <=== Nane of the preset, if no nane is present, the
preset will not appear in the |ist of settings,
but it will still be used when auto-detecting

settings for the graphics card

<entry> <=== a graphics setting to change

160 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

<l abel > CLASSI C_ TERRAI N_QUALI TY </I| abel > <=== the nane of the graphics
setting
<activeQption> 0 </activeOption> <===the sel ected option
</entry>

<QUI Dvat ch> 01234567. 89abcdef . 01234567. 89abcdef </ GUI Divat ch>
<=== Conbi ned GQUI D of device and driver version, this is the value from
Devi cel dentifier in the
D3DADAPTER_| DENTI FI ER9 structure saved out using the BigWrld
Uni quel D cl ass.
If this value matches, the setting will be used.

<Vendor Devi cel Divat ch>
<Vendor | D> 4318 </ Vendor| D> <=== the Vendor|d from D3DADAPTER_ | DENTI FI ER9
<Devi cel D> 1554 </ Devi cel D> <=== the Deviceld from D3DADAPTER_| DENTI FI ER9
</ Vendor Devi cel DMat ch> <=== |f these two val ues match the current device,
the setting will be selected
unl ess there is a GJ Dvatch with the current
devi ce

<Devi ceDescri pti onMat ch>
<string> nvidia </string> <=== Any nunber of strings that will be matched
agai nst the
<string> 6800 </string> <=== Description property from
D3DADAPTER I DENTI FI ER9
</ Devi ceDescri pti onMatch> <=== |f these val ues match the current device,
the setting will be selected
unl ess there is a GU Dvatch or
Vendor Devi cel DMatch with the
current device

<defaul tSetting> true </defaultSetting> <===this value is true for the
val ue to be used as the default setting,
the default setting is used
when no other settings match.
</ graphi csPreferences>

Example <gr aphi cs_settings_preset s>. xnl — Setting up device matches

22.9.2.2. G- aphi csPreset s class

A simple python graphics presets class is also supplied. This class helps with grouping several graphics
settings together so that you can have pre-defined settings for multiple graphics options for a specific level
of hardware or performance. The G aphi csPresets class can be found in the folder bi gwor | d/ r es/
scri pts/ Graphi csPresets. py.

22.9.2.3. Delayed settings

Most settings take effect immediately after calling Bi gWor | d. set Gr aphi csSet t i ngs, but some are just
flagged as delayed. That means that after being set they are added to a list of pending settings, and that they
will only come into effect when that list gets committed.

This was designed to give the interface programmer a chance to warn the user that processing the new
settings may take a while to complete before the client application blocks for a few seconds (currently, there
is no support for displaying a progress bar while the settings are being processed).

The following functions allow the scripts to manage the pending settings list:
* Bi gWorl d. hasPendi ngGr aphi csSetti ngs

e Bi gWorl d. commi t Pendi ngGr aphi csSetti ngs

bIgW@RLED"

3D Engine (Moo)

* Bi gworl d. rol | BackPendi ngG aphi csSet ti ngs
22.9.2.4. Settings that require restarting the client

Some settings are not applied until the client application is restarted. The function
Bi gWor | d. graphi csSetti ngsNeedRest art returns true whenever the client requires a restart for a re-
cently changed setting to take effect.

22.10. Taking Screenshots

The BigWorld client is able to take screenshots and save them to a number of different formats. It does this
by retrieving the current content of the back buffer at the time the screenshot operation is called. To take an
in-game screenshot, press the Prt Scn but t on, or use the Bi gWbr | d. scr eenShot (ext ensi on, narmne)

Python API function.

The default image type, filename prefix, and output location are all configured within the
engi ne_confi g. xm (see “File <engi ne_confi g>. xm ” on page 12). The schema for the <scr een-
Shot > tag is:

<engi ne_config. xm >

<scr eenShot >
<pat h> rel ativePat h
<pat hBase> basePat hNane </ pat hBase>
</ pat h>
<nane> prefixNanme </ nanme>
<ext ensi on> ext ensi on </ extension>
</ scr eenShot >

</ engl ne_config. xm >
* rel ativePath — This is the output path relative to basePath (outlined below). For example, if rela-

tivePath is MY_DCCS, you may want to set this to something like " My Conpany/ Game Name/ Scr een-
shot s" . Leave blank or specify " . / " to place directly in basePat hName (which is the default behaviour).

* pbasePat hName — This configures the base output location for the screenshots. This can be one of the
following values:

e EXE_PATH — Screenshots relative to the location of the client executable. This is the default location if
none is supplied.

* CWD — Screenshots will be stored relative to the current working directory. Note that if the working
directory changes during runtime, it will save in the new working directory.

* ROAM NG_APP_DATA — Screenshots will be stored relative to the current user's roaming AppData di-
rectory. In other words, if the user is on a domain the data will be syncronised with the domain controller
when the user logs in and out of Windows.

° LOCAL_APP_DATA — Screenshots will be stored relative to the current user's local AppData directory.
e APP_DATA — This is the same as ROAM NG_APP_DATA.

* MY_DOCS — Screenshots will be stored relative to the current user's My Documents directory.

* MY_PI CTURES — Screenshots will be stored relative to the current user's My Pictures directory.

* RES_TREE — Screenshots will be stored relative to the first resource path found in pat hs. xni .

The default value is EXE_PATH.

162 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

e prefixName — Specifies the prefix to use when generating a numbered screenshot. The default value
is "shot".

* extensi on — Specifies the file format to use when saving the screenshot. This can be one of "bmp",
"ipg", "tga", "png" or "dds". The default value is "bmp".

The full path of the generated screenshot will therefore be basePat hNane/rel a-
tivePat h/ prefi xName_<sequence>. ext ensi on, where <sequence> is a four-digit non-negative in-
teger, padded with leading zeros (e.g., shot _0012. brp). The screen capture mechanism will not overwrite
pre-existing files.

22.10.1. High Resolution Screenshots

Normally the back buffer is the same size as the window or the screen resolution when in full-screen mode.
However, when running in windowed mode it is possible to have a back buffer that is larger than the window
itself, thus increasing the size of the screenshot.

22.10.1.1. The backBufferwidthOverride watcher

The size of the back buffer can be changed (via Debug (Watchers) Console) by the backBuf f er W dt hOver -
ri de watcher.

The values specified to the watcher, and their effect on the back buffer are described below:
* Watcher's value: 0 (default)

Resulting dimensions of the back buffer: Same as those of the window (when in windowed mode) or
screen (when in full-screen mode).

* Watcher's value: Between 1 and the maximum surface width (4096 high-end cards)

Resulting dimensions of the back buffer: Width of the back buffer will be as specified. Height of the back
buffer will be the specified width divided by the aspect ratio of the window.

* Watcher's value: Greater than supported by hardware

Resulting dimensions of the back buffer: Maximum value supported by the hardware (typically 2048 or
4096). Specified value will be ignored.

22.10.1.2. How to take a high resolution screenshot
To take a high-resolution screenshot

1. Open engi ne_confi g. xm (for details on this file, see “File <engi ne_confi g>. xm ” on page 12)
and check the settings in <supershot> tag. If you have a video card with a large amount of memory you
may be able to change hRes to 4096.

2. Load the space/level and navigate to the place of which you want the screenshot.
3. Press ctrl+PrtScn to enable high resolution screenshot settings.
4. Press PrtScn to take a screenshot.

5. Press ctrl+PrtSen to restore regular render settings.

22.10.1.3. Troubleshooting

The list below describes some errors that you might come across when taking high-resolution screenshots
and how to solve them:

bIgW@RLED"

3D Engine (Moo)

* Back buffer's size did not change to the value that I specified.

When setting backBuf f er W dt hOver ri de, client checks if specified size is larger than the hardware can
support. If that is the case, then hardware will ignore the specified size and use its maximum (typically
2048 or 4096).

— or —

When very large numbers are specified in the Debug (Watchers) Console, parsing may wrap the value. If
this is the case of the value specified for backBufferWidthOverride, then it will be set to 0.

There is a glow covering the screen.

Sometimes, limited video memory resources will stop the renderer from allocating some of the buffers
that it uses, or from drawing full-screen post-processing.

This is particularly common when changing to a lower resolution after using a very large one.
To solve this, you can either:
* Set buffer to a smaller width (an application restart may also be necessary).
* Turn off post-processing through the graphics settings
* Press DEBUGHP to open the Python Console.
* Type BigWorld.setGraphicsSetting("POST_PROCESSING", 3)
Changing back buffer's size had no effect when working in full-screen mode.

When in full-screen mode, the back buffer must always have the same dimensions as the screen resolution
— this is a hardware/API limitation.

Hence, backBuf f er W dt hOverri de will always be disabled (value equals 0) when running in full-
screen mode.

22.10.1.4. Hardware recommendations

To produce high-resolution screenshots, a very capable video card is necessary — the two key requirements
are:

e Maximum texture resolution

* Available video memory

DirectX 9 requires 2048 resolution as a minimum, but 4096 is available on nVidia GeForce3+ (7800+ recom-
mended) and ATI 1X800+ series cards. It is recommended that you have a minimum of 256MB video memory
when taking screenshots at resolutions in the order of 4096x3072.

22.11. Dynamic Entity Shadows

The client supports two different ways to allow entity models to cast shadows into the scene. The method
you choose to use will depend on the target hardware as they differ greatly in cost.

22.11.1. Splodges

This system works by drawing a special "splodge" texture onto the geometry below the feet of the entity
model, projected in the direction of the sun (they are only visible while in outside chunks). This is a good
low-end solution as they are inexpensive to draw, however they will only provide a crude approximation
of a shadow.

164

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

3D Engine (Moo)

Splodges can be added to an entity model by using the PySplodge API. The PySplodge class is a type of
attachment, and are attached to the feet of the entity model (one per foot). For example:

>>> | spl odge = Bi g\Wor | d. Spl odge()
>>> rspl odge = Bi g\Worl d. Spl odge()
>>> nodel . node("bi ped L Toe0").attach(|splodge)
>>> nodel . node("bi ped R Toe0").attach(rspl odge)

While all splodges use the same material to draw (this can be configured by modifying the environ-
ment/splodgeMaterial section in resources.xml), each PySplodge instance can modify the following param-
eters:

* The maximum LOD distance from the camera, after which they are culled. Defaults to 50 metres.

¢ The size of the individual splodge.

Since the collision scene is used to determine where to draw a splodge, only solid ob-
jects will receive splodge shadows.

An example of splodge shadows

22.11.2. Shadow maps

Entity models can be configured so that they cast a shadow into the scene based on the direction of the sun
light, utilising a dynamic shadow map. Each frame the engine will select a set of shadow casting entities
closest to the camera, the number of which is configured via the SHADOWS_ COUNT graphics setting. For each
shadow caster it will render the caster into a texture from the direction of the light and then project this
texture into the scene by re-rendering each object that intersects the shadow (using the shadow map as input).

In order to cast shadows, an entity must be explicitly added to the entity shadow manager. Two Python API's
are provided:

* Bi gWor | d. addShadowEnt i t y - this is usually called from the onEnt er Wor | d entity callback.

bIgW@RLED"

3D Engine (Moo)

* Bi gWor | d. del ShadowEnt i ty - this is usually called from the onLeaveWr | d entity callback.

Global shadow settings (e.g. shadow map resolution, intensity, and shaders) are configured in the shadows
XML file (defined in shadows. xml — for details on this file's grammar, see the document File Grammar

Guide's section shadows. xm).

User controllable graphics settings are SHADOWS_COUNT and SHADOWS_QUALI TY. See “Graphics set-
tings” on page 154 for details.

Shadows will be cast onto terrain, solid models, and flora. Sorted triangles (i.e. translu-
cent objects) will not cast or receive shadows.

Keep in mind that the expense of using entity shadows will increase as the num-
ber of rendered shadowed entities increases, so it is recommended to keep the
SHADOWS_COUNT setting as low as possible to maintain performance. As such this is
not designed to be a general purpose full-scene shadowing system.

An example of dynamic entity shadows

166 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

Chapter 23. Post Processing

Post-processing effects are used extensively in all modern games, and have many applications - from HDR
tone-mapping and colour-correction to cartoon effects, the possibilities are almost limitless.

BigWorld Technology has support for complete user customisation of the post-processing chain, for artists
via a built-in editing tool, and for programmers by offering full control over every parameter in python and
drop-in shaders in the way of DirectX/HLSL effect files.

However before you jump into creating your own new swanky effect, it pays to think about it. Effects should
play nicely together, they should reuse render targets where possible, and you need to monitor performance.

23.1. Pipeline Overview

After the opaque scene, translucencies and lens effects, and before the GUI is drawn, the
PostProcessing::Manager draws its current chain. A Chain contains a list of effects that draw in order. In-
ternally each Effect contains a list of Phases that draw in order. A Phase usually draws a full-screen quad to
the screen using an effect file, although other transfer meshes are available.

There are three parts to the implementation of post-processing. The core is written in C++, in the bigworld/src/
lib/post_processing library. All of the features there are exposed to python via the _PostProcessing module.

In Python, the PostProcessing module exists in bigworld/res/scripts/client/PostProcessing and imports all of the
methods from _PostProcessing. This allows you to override, or wrap, any of the C++ methods. Therefore all
python calls should be to the PostProcessing, not _PostProcessing.

By default, the PostProcessing module registers 3 graphics settings. If the user selects high/medium/low,
an appropriate post-processing chain is loaded. These are found in bigworld/res/system/post_processing/
chains/ and are "High Graphics Setting.ppchain”, "Medium Graphics Setting.ppchain" and "Low Graphics
Setting.ppchain”. Therefore it is easy for developers to redefine the default post-processing chains by creat-

ing new chains in World Editor and saving over the top of these files.

In general it is expected that a game will use a combination of the default post-processing chain files, dy-
namically mixed in with gameplay related effects. In order to achieve this, follow the examples in the Post-
Processing module. Additionally, take a look at the Python API for PyMaterial, as it will demonstrate how
you can smoothly fade in/out your dynamic post-processing effects.

Finally in World Editor, the Post-Processing tab is a full-featured editor and preview tool for chains. It loads
and saves .ppchain files. Please see the Content Creation Manual and the Content Tools Reference Guide for
further information.

23.2. Creating a Custom Post-Processing Effect

While BigWorld comes with a basic set of post-processing shaders, phases and effects, more likely than not
you will find yourself needing to implement an effect that is unique to your game.

For this example, we will be creating a post-process that will invert all the colours on the screen.

We will author a post-processing effect that can be added as part of the client's overall post-processing chain,
and we will write a custom shader that performs the actual colour inversion.

23.2.1. Creating the Custom Pixel Shader

So how are we going to get the GPU to invert all the colours on the screen?

Because the BigWorld client supports drop-in DirectX Effect files (.fx), this step is relatively easy. All we need
to do is author a .fx file that takes an input texture, inverts the colour, and outputs that value.

float4 ps_invert(PS_I NPUT input) : COLORO

bigw@RLD"

#dest=
#dest=

Post Processing

{
float4 map = tex2D(i nput Text ureSanpl er, input.tcO);
float4 invMap = float4(1,1,1,1) - map;
invMap.w = 1;
return i nviap;
}

OK, so that was the easy bit. This pixel shader assumes a couple of things, namely that the vertex shader
is passing through a set of texture coordinates, that there is a sampler reading the correct texture map, and
that there is a PS_INPUT structure defined.

Luckily all of this has been taken care of, via the effect include file post_processing.fxh (bigworld/res/shaders/
post_processing/post_processing.fxh)

The complete effect utilising this pixel shader is quite straightforward, and looks something like this:

#i ncl ude "post_processing. fxh"

DECLARE_EDI TABLE_TEXTURE(i nput Texture, inputSanpler, CLAWP, CLAMP, LI NEAR,
"I nput texture/render target")

float4 ps_invert(PS_INPUT input) : COLORO

{
float4 map = tex2D(i nput Sanpl er, input.tcO0);
float4 invMap = float4(1,1,1,1) - map;
invMap.w = 1;
return inviap;

}

STANDARD _PP_TECHNI QUE(conpile vs_2 0 vs_pp_defaul t(), conpile ps_2_ 0
ps_invert())

The shaders can also be edited in FX Composer by adding the following:

#defi ne FX_COVPCSER 1
#i ncl ude "post_processing. fxh"
FX_COVPOSER_STANDARD VARS

DECLARE_EDI TABLE_TEXTURE(i nput Texture, inputSanpler, CLAWMP, CLAMP, LI NEAR,
"I nput texture/render target")

float4 ps_invert(PS_INPUT input) : COLORO

{
float4 map = tex2D(i nput Sanpl er, input.tcO0);
float4 invMap = float4(1,1,1,1) - map;
invMap.w = 1;
return i nvivap;

}

STANDARD_PP_TECHNI QUE(conpile vs_2 0 vs_pp_default(), conpile ps_2 0
ps_invert())

STANDARD _FX_ COMPOSER_TECHNI QUE(conpil e vs_2 0 vs_pp_default(), conpile ps_2 0
ps_invert(), "RenderCol or Target O=i nput Texture;")

In the FX Composer settings, add the path to post_processing.fxh and the other post processing headers to
your include path. Comment out #define FX_COMPOSER 1 to use the shader in the client or world editor.

168 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Post Processing

23.2.2. Previewing the Results

As the post-processing chain contains many phases, which often write to intermediate, invisible render tar-
gets, it is often desirable to see the intermediate results of a post-processing effect or chain. There are two
methods available for this purpose, PostProcessing.debug() and World Editor's preview feature.

In the client, you can register a render target of arbitrary size with the _PostProcessing module, and have
it record all intermediate steps. This render target can then be viewed by displaying it in the GUI A helper
class, ChainView, is available in the PostProcessing module, this will display the entire chain on-screen in
real-time.

In World Editor, there is a preview button in the post-processing editor, this displays the intermediate results
inside each of the phase nodes in the editing graph.

23.2.3. Writing a Custom Pixel Shader for Previewing the Results

Sometimes, this simple preview is not going to be suitable. By default, the preview directly displays the
output of each phase's pixel shader. However, often the output of an intermediate step is written to a float-
ing-point render target that does not directly map to the visible colour range, other times there is information
encoded in specific ways that are not directly viewable.

Take for example a depth-of-field lens simulation. One possible implementation might decode the depth
buffer, and categorise the scene into 7 separate areas, 3 levels of blur in front of the focal range, in-focus
and 3 levels after. This information may be written into a single-component floating point render target and
contain a value between -3 and +3.

When the output of a pixel shader is not directly viewable, you can author another pixel shader that is used
for the preview function. To do this, you need to add a new technique to your effect. This technique must
be called "Preview", and if available, will be used in lieu of the main technique when previewing the post-
processing chain. This technique should output the data such that it will be viewable and make sense on an
ordinary R8G8B8AS render target and when viewed on-screen.

In the above example, you could write a preview technique that displays 3 shades of red for blurred areas

in front of the focal range, full-green for all areas in focus, and 3 shades of blue for all areas being blurred
behind the focal range.

23.2.4. Authoring a Post-Processing Effect in Python

So now how do we get our new effect to manipulate the screen at post-processing time? We have to author
a PostProcessing::Effect. Most often, this will be done via the post-processing editor in World Editor. World
Editor saves out .ppchain files, these contain chains of effects and phases, and can simply be loaded up and
set as the current post-processing chain. However, it's also useful to know how to use the Python AP, as you
do have access to the entire chain, and often you will want to tie in post-processing effects directly to game
logic. It also helps to understand what is happening 'under-the-hood' when authoring chains in the editor.

For this example effect, we must write every pixel in the backbuffer with the inverse of whatever colour is
in the backbuffer.

PC hardware cannot read from the same texture that is being written to, so we will need first to grab a copy
of the back buffer, and store it in another texture.

This snippet of python code creates a CopyBackBuffer phase, creates a render target that is the size of the
back buffer, and hooks the two up.

i mport Post Processi ng

bigw@RLD"

Post Processing

phasel = Post Processi ng. CopyBackBuf f er ()
bbcRT = Bi gWor | d. Render Tar get (" backBuf f er Copy", 0, 0)
phasel. render Target = bbcRT

In World Editor, we can simply drop a "BackBufferCopy" phase into our effect and be done with it.

Note in this case, we are creating a new render target, however generally you want to share render targets
between effects and phases, especially full-screen ones like the one above. So instead of creating a render
target, we could instead use the RenderTargets module like this:

bbcRT = Post Processi ng. Render Tar get s. rt (" backBuf f er Copy")

Now we have a copy of the back buffer that we can read in as a texture, now is time to do our colour inversion
pass

phase2 = Post Processi ng. Phase()

phase2. material = BigWrld. Materi al ("shader s/ post _processi ng/
col our _invert.fx")

phase2. materi al . i nput Texture = phasel.renderTarget.texture
phase2.render Target = None

phase2.filterQad = PostProcessing. Transfer Quad()

This code sample creates a new phase, this time a generic PyPhase object. A PyPhase object has a PyMaterial
and a FilterQuad. It uses these to write to a RenderTarget.

We have created a new PyMaterial, from "colour_invert.fx", the shader we authored earlier.

The effect file uses a texture variable named "inputTexture". Since we marked this variable in the effect as
'editable’, it shows up in the python dictionary for the material. Thus we can set it directly to the texture held
by the back buffer copy render target.

We have set this phase's renderTarget attribute to None. Specifically this means "don't set a render target”, in
practice this means we want to write directly to the main scene's back buffer, instead of an off-screen render
target.

Note that whenever we write to the back buffer, we change its contents, and the next post-processing effect
or phase must use a new copy that contains these changes. The BackBufferCopy phase internally detects
whether or not the back buffer has been modified since the last copy was taken. Therefore it is ok to use
BackBufferCopy phases all the time, and there will be no performance penalty if that phase is in fact not
needed at that time.

Finally the phase uses a FilterQuad to draw with; these usually draw with n sets of filter taps, in this case
we just want to read a single pixel from the source texture, for each pixel in the output render target. So we
have created a PyTransferQuad, which has only a single sample point, and with no offsets. If we wanted to
do some texture filtering, we could have used a PyFilterQuad instead, and specified n sample points - with
each sample point representing (u-offset in texels, v-offset in texels, weight, unused).

col ourlnvert = PostProcessing. Effect()
col ourlnvert.phases = [phasel, phase2]
col ourlnvert.name = "Invert Col ours”
Post Processi ng. chai n([col ourlnvert])

This final code example wraps up our two phases into a single Effect, and registers the Effect as the post-
processing chain. From here on in, the colours on the screen will be inverted.

170 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Post Processing

23.3. Render Targets

One of the main sets of resources used by post-processing chains are render targets. These tend to be mul-
tiples of the back buffer size, and have different surface formats and uses. The BigWorld client exposes the
PyRenderTarget class which can be used to create custom render targets on demand. Please see the Python
Client API for detailed instructions on how to use PyRenderTarget.

Note that it is ok to create as many render targets as you like, as the actual surface memory is only allocat-
ed when the render target is first used for drawing into (via RenderTarget.push). Therefore you can define
render targets that are not actually used, with negligible overhead. However for the render targets in use,
the video memory can quickly add up, so it pays to take care when designing your post processing chains.
The total memory used by any particular chain can be viewed in the World Editor, or by calling the function
PostProcessing.RenderTargets.reportMemoryUsage().

In Python, the PostProcessing module has its own RenderTargets module, in bigworld/res/scripts/client/Post-
Processing/RenderTargets. If you want to add more render targets for use by your post-processing chains, then
add them to the render target list here. Doing this is necessary because this is where World Editor gets its
list of available post-processing render targets.

23.4. Performance

There are two main performance metrics to be aware of when authoring post-processing chains. These are:
memory use (mainly by the render targets); and the time spent in the GPU. Render targets and their asso-
ciated memory use are described in the previous chapter. As always, PostProcessing resources created dy-
namically should be loaded in the background thread, to avoid stalling the rendering thread.

23.4.1. Measuring the Time Spent on the GPU

Post-processing chains tend to have a low CPU cost - involving simple iteration through effects and phas-
es and simple geometry setup - but a high GPU cost, with complex pixel shaders that perform full-screen
passes and many texture fetches per pixel. Therefore the main cost is normally GPU bandwidth: fill-rate,
and texture-fetch.

The BigWorld client has a python API function, PostProcessing.profile(nlterations), which measures the time
taken by the GPU. The parameter nlterations should usually be around 10 or so to make sure an accurate
value is measured. Since the main cost is fill-rate and texture-fetch, this value depends on the resolution of
the screen, so it is necessary to profile on different GPUs and at different resolutions. Note that World Editor
also comes with a toolbar button on the Post-Processing panel that also profiles the chain.

23.4.2. Background Loading

There is no direct support for background creation of .ppchain files, since the library uses many PyObject
pointers which can only be created in the main thread. Instead, support for background loading of .ppchain
files can be achieved via the PostProcessing.prerequisites() method. This extracts the appropriate resources
(mainly EffectMaterials) from the XML file and returns a list of the required resources which can then be
passed directly to BigWorld.loadResourceListBG().

For example:

filenanme = "system post _processi ng/ chai ns/ underwat er. ppchai n"
Bi gWor | d. | oadResour ceLi st BG Post Processi ng. prerequi sites(fil enane), onLoadBG

PostProcessing chains loaded via the SFX system are automatically loaded in the background.

Because gathering the PostProcessing prerequisites relies on the .ppchain file data section already being
loaded, it is recommended that you preload all your .ppchain XML files.

bIgw@RED

Chapter 24. Job System

24.1. Overview

The job system allows additional cores in multicore systems to execute code and calculate data for render-
ing just in time. It also moves the issue of D3D commands onto its own core, with the main thread simply
recording them for execution in the next frame.

The rendering of a frame is divided into blocks. Blocks are rendered in order. Each block begins only after
the previous block has finished.

Each block consists of any D3D rendering commands and associated vertex and index buffers, textures, shad-
er constants or any other data. The block can be produced as a combination of conventional D3D rendering
from the main thread and output from jobs running in parallel on cores allocated to run jobs.

Any number of jobs can produce the input for a block. Since only one block is rendering at a time and jobs
execute in parallel you should use at least as many jobs as there are cores, otherwise there will be idle cores.
Jobs within a block can finish in any order, but the block will not be rendered until all jobs are complete.
While the jobs are executing D3D executes the previous block. Thus the job cores and the D3D core are
constantly working while at the same time the main thread is preparing another frame of blocks and their
corresponding jobs.

24.2. Under the Hood

All rendering commands and jobs are stored in a command buffer. This is accomplished by wrapping D3D.
All D3D function calls go to the wrapper which records them to be executed on the next frame while at the
same time the commands from the previous frame are executed in another thread on the D3D core.

When flushed the D3D core first stalls for the results of the first block's jobs. Meanwhile each core in the
job cluster starts grabbing jobs from the block. There is no central dispatch mechanism. The cores grab jobs
and atomically decrement a counter for that block when they finish writing their results. Note that jobs are
grabbed in order but they are not necessarily finished in order. For example, if the first job takes a long
time the second might finish first and that core can begin on another job. This means that the output is not
guaranteed to be contiguous until after the last job finishes and decrements the counter to zero.

Only then can the D3D core begin to process the results of the first block, while the cluster begins to operate
on the second block, outputting the results into another buffer.

If the D3D core finishes first it retires the buffer and stalls until its next buffer is ready. If the cluster finishes
first it stalls until the D3D core retires the buffer it is consuming so it can receive output from the cluster.

24.3. Wrapper API

In addition to wrapping D3D the wrapper has a small API to control its behaviour.

DX: : newBl ock() : Starts a new block. All rendering from the previous block will finish before this one
will begin and all job output that was used to render the previous block will no longer be accessible.
What this means is that all jobs producing output for this block must be allocated before the next call to
DX: : newBl ock() .

DX: : set W apper Fl ags() and DX: : get W apper Fl ags() : These functions get and set flags that control
the behaviour of the wrapper.

| MVEDI ATE_LCCK: Flush the command buffer and then execute the lock in the main thread. This is required
if you are not going to fill in the entire locked region. It is an extremely expensive way to lock and should
be avoided where possible.

bigw@RLD"

Job System

DEFERRED_LQOCK: This flag is used to lock a buffer that will be filled in with a job. The pointer that a lock
returns can only be used to store into a job and then accessed when the job executes. The actual lock occurs
in the next frame when the job executes.

24.4. Job System API

The Job System API is accessed through the JobSystem singleton. It is obtained with
JobSystem :instance().

al 1 ocJob() : This method places a job into the list of jobs for the current block and returns a user imple-
mented class derived from Job. This has a virtual function called execut e() which actually performs the
job. The derived class stores anything necessary for the execution of the job. Note that the jobs within a block
will not execute in order.

al | ocQut put () : The job will need to produce output and this is allocated up front with al | ocCQut put ().
It is called from the main thread and its result is placed into the Job object. The memory for the output is not
actually allocated at this time, but it will be made ready at the time that the job is executed next frame.

Within a block you can have any mix of job and output allocations. For example, you may allocate one output
and divide it between many jobs or vice versa or any combination you like. The only rule is that the output
and the jobs must all come from the same block.

24.5. An Example

Let us imagine that we are updating and rendering a simple particle system. This will be done in one block.
The particle system consists of 4096 points, each of which will be updated and generate one vertex into a
vertex buffer for rendering.

Our block will consist of setting a vertex bufferer and calling DrawPrimitive on it. The vertex buffer will be
filled using jobs. The vertex buffer will be divided into 8 parts of 512 vertices each. Each part will be filled
in with one job.

Main thread:
* New Block

* Lock vertex buffer of 4096 points using the DEFERRED_LOCK flag

Set 8 jobs, each filling in 512 points

Set rendering states

DrawPrimitive

* Reset wrapper flags

All of the above steps are not immediately executed but rather recorded for execution on the next frame.
Jobs and D3D core:

During the next frame the default block renders until the new block for the particles is reached. At the same
time the 8 jobs to fill the vertex buffers are executed. When the new block is reached and the jobs are com-
pleted the particles are rendered. At the same time the jobs for the next block are executed.

24.6. Implementing it

Now that we understand how this example works we can go through the steps of implementing it.

First we need to implement our job object.

174 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Job System

class PointSpriteParticleJdob : public Job

{
public:
void set(Particle* particles, Mo::VertexXYZDP* pVertex, uint nPoints);
virtual void execute();
private:
Particle* particles_;
Mobo: : Ver t exXYZDP* pVertex_;
uint nPoints_;
1j5

The job object inherits the virtual execut e() method which gets called in the next frame just before the
output of the job will be needed for consumption by the D3D core.

We also implement a set () method which gets called from the main thread and stores all the information
that will be needed in execut e().

The execut e() method will do two things. It will update the positions of the particles and output the new
positions into a vertex buffer. Each given job object will do this for only a part of the particle system and
vertex buffer so that the entire task can be divided into several jobs and execute in parallel on several cores.

Now we are ready to use the job class in our rendering code.

We begin this with a new block.

DX: : newBl ock() ;

Now we are ready to queue our rendering commands.

First we need to lock a deferred vertex buffer, and to do this we need to set the appropriate wrapper flag
before locking.

Normally when locking you get a pointer that you can use immediately to write vertex data. However our
vertex data will be calculated in the next frame by jobs, so the lock actually has to occur at that time. Therefore
we use a deferred lock which returns a pointer now but does not perform the lock until required.

ui nt 32 ol dFl ags = DX:: get W apper Fl ags() ;
DX: : set W apper Fl ags(DX: : WRAPPER_FLAG DEFERRED LOCK);

Mbo: : Dynanmi cVert exBuf f er Base2<Mbo: : Vert exXYZDP>& vb =
Moo: : Dynami cVert exBuf f er Base2<Moo: : Vert exXYZDP>: : i nst ance() ;
Mbo: : Vert exXYZDP* pVertex = vb.lock2(4096);

Now we are ready to allocate and set up our jobs. The pointer from the lock is used to set up the jobs.

for (uint i =0; i <8; i++)

{
job = jobSystem al | ocJob<Updat eParticl esJob>();
job.set(particles + i*512, vertices + i*512, 512);

Finally we can unlock the buffer, reset the wrapper flags and render.

At this point we can render as if the jobs that we have allocated and set are complete, since the following
rendering commands will not be executed until that time.

bIgW@RED"

Job System

vb. unl ock();
ui nt 32 | ockl ndex = vb. | ockl ndex();

DX: : set W apper Fl ags(ol dFl ags);

vb.set(0);
Moo: :rc().drawPrimtive(D3DPT_PO NTLI ST, | ocklndex, nPoints);

176 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 25. Debugging

This section describes some of the debugging features of the BigWorld client.

Debugging is an important part of any development process, and the client has many features that facilitate
finding bugs early, in-game debugging, remote debugging, and the immediate application of changes with-
out restarting.

Many debugging features are accessed via a specially defined debug key. By default, the debug maps to the
grave (tilde) key on the keyboard, however this can be re-configured by editing the engine configuration
XML file.

25.1. Build configuration — conditional feature inclusion

BigWorld provides a number of features that aid in runtime debugging, such as the debug menu and the
telnet Python service.

To remove these features from a final release build of the client, a number of compile guards exist. These are
collectively controlled by the following define located in src/lib/ cstdmf/config.hpp.

#defi ne CONSUMER_CLI ENT_BUI LD 0

If CONSUMER_CLI ENT_BUI LDis 0, then the development features will be compiled.

Individual features are encapsulated in their own individual compile guards, which can collectively be
switched using the above define. Individual features may also be enabled, by setting the corresponding force
enable define to a non-zero value.

This is illustrated in the example below:

#define CONSUMER CLIENT BULD 0
#define FORCE_ENABLE DEBUG KEY HANDLER 0

#define ENABLE DEBUG KEY HANDLER (! CONSUMER CLI ENT_BUI LD \
|| FORCE_ENABLE_ DEBUG KEY HANDLER)

25.2. Watchers

A watcher is an object that wraps a variable or function result in a program, and turns it into a string.

Watchers can be read-write or read-only, and can be viewed in various ways. Their hierarchy is usually
organised by functionality. There are also watchers that can dynamically match changing data, such as the
contents of a sequence or map.

25.2.1. Watcher types

The simplest watcher type is the DirectoryWatcher, which allows the creation of a directory of other watch-
ers (including DirectoryWatchers). This is one way in which the hierarchy can be built up. For example, a
float value for the amount of rain drawn by the rain system in the BigWorld client is specified at 'Client
Settings/Rain/ amount'. This uses three DirectoryWatchers: the root directory, the Client Settings directory,
and the Rain directory.

There are also templatised watchers for any data type that can be streamed onto a std::stream object. These
come in two flavours, as DataWatchers of variables, and as MemberWatchers of the result (or sole argument)
of member functions of a class.

bIgw@RED

Debugging

The DataWatchers and MemberWatchers can also take a 'base object’ argument, which the data they point
to is considered a member of. This is very useful when combined with more complicated types of watchers,
such as the SequenceWatcher.

The SequenceWatcher and MapWatcher appear to be the same as a DirectoryWatcher, but they watch any
class that supports the STL sequence or mapping methods. They have just one client watcher, but they present
as many children as there are elements of their wrapped container. The child watcher is called with its 'base
object' set to the element of the container. To handle pointers in these containers, there is also the BaseDeref-
erenceWatcher, which presents no extra hierarchy level, but rather dereferences its base object and calls a
sole child watcher with that value. The children can be named either by a static list, or by making a request
for a certain value in the child watcher (such as name).

25.2.2. Using watchers

From the types above, it can be seen that a watcher hierarchy can be set up to both expose simple settings
and to track complex structures.

The simplest way to make a watcher is to use the MF_WATCH macro. This macro takes the path name for the
watcher, and a variable or member function to get/set its value. It expands to code that adds the appropriate
watcher.

To change the parsing or display of a value (as a string), it is not necessary to write a new watcher. Instead,
you can use member functions that get and set the value as a string. This is how the 'Client Settings/Time
of day' value works — there are simple accessors for timeOfDayAsString, which format the time of day
as 'hours:minutes’ and parse it back from the same format. Setting a watcher can also be used to trigger a
command — for example, the server is also notified whenever the time of day is set (for debugging purposes
only).

To track complex structures, the appropriate watcher must be created directly, and inserted into the watcher
hierarchy. Classes that participate in such an arrangement often implement a getWatcher() static method
that returns a watcher object that works when the 'base object' is set to an instance of their class. The same
watcher can be shared by all instances of the class, and is usually of type DirectoryWatcher of DataWatchers
and MemberWatchers.

This is done on the client with the map of entities maintained by the Entity Manager. The entities are named
by their ID.

Most of the C++ state of the client is also available through explicitly added watchers, as they were needed
for some stage of the debugging already.

25.2.3. Watcher Console

The watcher console provides access to the watcher system from within the game. It can be brought up at
any time, and overlays the game screen with a listing of the current watcher directory.

Directory-like entries can be followed down, and the value of any writable watcher can be set by selecting
it, pressing Ent er, then typing in a new value.

There are also keys for adjusting numerical values by 1, 10, 100, or 1000.

25.2.4. Remote watcher access

The watcher system is exported from the client using a very simple UDP-based watcher message protocol.
The server uses this protocol extensively for its own debugging needs.

This is not related to Mercury, although it can be (and currently is) linked to its input loop. When the client
starts up, it broadcasts a watcher nub notification packet, advertising the port its watcher nub is listening for
requests on (it sends a similar message when it shuts down cleanly).

178 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

To access the watcher values, a number of tools may be used, but by far the most useful is a UNIX daemon
called 'watcher'. This daemon listens for any broadcast watcher packets and adds or removes them from an
internal list.

The other side of the daemon presents an HTTP interface to all the watcher nubs it knows. It inserts the name
of the watcher nub (contained in the registration message, e.g., 'client of John', 'cell14/, etc...) as the top level of
a watcher super-hierarchy. It presents the individual watcher trees as branches of this top directory. The path
in the request URL is translated into the watcher value request path. This interface can get and set values.

So by connecting to this daemon with any web browser, all the running clients on the local network can be
seen, and then investigated or manipulated, right down to changing the value of a Python variable in an
entity. Python variables can be set to arbitrary Python, which is executed on the client to find its value. The
client can also send its watcher nub notification to another external address if so desired, so even remote
clients can be accessed in this way.

25.3. Memory tracking

The memory tracking system can be used to determine the amount of memory allocated to a class or module.
The ResourceCounters class is the primary class used to perform the tracking.

25.3.1. ResourceCounters overview

This is a simple class that tracks the memory usage of a component based on a description string (the com-
ponent allocating/deallocating the memory) and a memory pool enumeration (the memory pool to be used,
i.e., system memory, managed video memory, or default video memory).

The two main worker methods of this class are add and subtract, which respectively track memory allocations
and deallocations using the description-pool.

The Resour ceCount er s class maintains a map of the components it is tracking. Rather than calling the
methods of ResourceCounters directly, two macros are exposed. These macros are defined away to nothing
when memory tracking is disabled:

#defi ne RESOURCE_COUNTER_ADD(DESCRI PTI ON_PCOCL, AMOUNT) /

Resour ceCount ers: :i nstance() . add(DESCRI PTI ON_POOL, (size_t) (AMOUNT));
#def i ne RESOURCE_COUNTER_SUB(DESCRI PTI ON_POCL, AMOUNT) /

Resour ceCount ers: :instance().subtract (DESCRI PTI ON_POCL, (size_t)(AMOUNT));

ResourceCounters also exposes t 0St r i ng-style methods that are used by the realtime resource-monitoring
console to display the current memory usage statistics.

25.3.2. Memory allocation taxonomy

With respect to the memory tracking system, there are two basic types of memory allocation:
* DirectX memory allocation

All DirectX resources are COM objects. COM objects use reference counting to manage their sharing among
multiple objects. The Moo library provides the wrapper class ComObjectWrap for dealing with these ob-
jects.

Inside BigWorld, there are two reference types used to refer to DirectX objects: plain points (e.g.,
DX::Texture*) and ComObjectWrap pointers. For DirectX objects, the memory tracking is performed pure-
ly through the ComObjectWrap class. Therefore, any DirectX resource that needs its memory tracked must
be refactored to use ComObjectWrap references if it does not do so already. For details on how the DirectX
textures were instrumented, see “DirectX textures” on page 180 .

bIgw@RED

Debugging

* Standard memory allocation

All other objects in BigWorld use standard stack or heap memory. Unlike the memory tracking for DirectX
resources, there is no unified way of instrumenting a particular class or set of classes. For details on the
main issues encountered when instrumenting arbitrary classes, see “Binary blocks” on page 182, “Ter-
rain height maps” on page 183, and “Terrain texture layers” on page 186 .

25.3.3. Case studies

This section documents the instrumenting of four classes/types that make up the BigWorld system:
¢ DirectX textures

* Binary blocks

¢ Terrain height maps

e Terrain texture layers.

Each of these classes/types presents its own set of challenges. These examples highlight the main issues that
come up during instrumentation.

25.3.3.1. DirectX textures

Even with the memory-tracking functionality added to the ConCbj ect W ap class, COM objects are not
memory-tracked by default, because the accounting for memory must occur after the resource has been
created. Since there is no way of knowing when this happens automatically, memory tracking cannot be
activated automatically for all COM objects.

In order to activate the memory tracking for a particular DirectX resource, the programmer must make a
call to ConCbj ect W ap: : addAl | oc(<string description>) after creating the DirectX resource to
activate the memory tracking for this resource. Note that ConCbj ect W ap objects automatically handle
the deallocation of memory from the memory tracking system on destruction of the last resource reference.
Therefore there is no need for the programmer to explicitly make the deallocation.

Below are excerpts of the | ock_map. * pp files that support DirectX texture instrumenting.
e src/tool s/worl deditor/project/| ock_map. hpp
Cl ass LockMap
{
public:
Contbj ect W ap<DX: : Texture> | ockTexture() { return | ockTexture_; }
private:

Contbj ect W ap<DX: : Texture> | ockTexture_;

e src/tool s/worl deditor/project/|ock_map. cpp

LockMap: : LockMap()
gridwdth_(0),
gri dHei ght _(0),

180 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

col our Locked_(Col our: : get Ui nt 32(COLOUR_LOCKED)) ,

col our LockedEdge_(Col our: : get Ui nt 32(COLOUR_LOCKED EDCE)),

col our LockedByQt her _(Col our: : get Ui nt 32(COLOUR_LOCKED _BY_OTHER)) ,
col our Unl ocked_(Col our: : get Ui nt 32(COLOUR_UNLOCKED))

voi d LockMap: : set Texture(uint8 textureStage)

{
Moo: :rc().set Texture(textureStage, |ockTexture_. pConbject());

}

voi d LockMap: : updat eLockData(uint32 width, uint32 height, uint8* |ockData)

{
bool recreate = !l ockTexture_. pConlhject ();

}

voi d LockMap: :rel easeLockText ure()

| ockTexture_ = NULL;
}

voi d LockMap: : createlLockTexture()

{

HRESULT hr = Mbo::rc(). device()->CreateTexture(
gridWwdth_, gridHeight_, 1, 0, D3DFMI_A8R8G3BS,
D3DPOCL_MANAGED, &l ockTexture_, 0);

| ockTexture_. addAl l oc("texture/lock terrain");

=

Several functions require a reference to a DirectX texture resource, such as set Text ure. A call to
ConObj ect W ap: : pConbj ect () returns such a pointer.

E When releasing resources, the release call is handled automatically. It must not be called explicitly on
release — ConmObj ect W ap should simply be set to NULL.

It is important that when ConObj ect W ap objects are being used to access a DirectX resource that they be
used everywhere to access that resource. ComChj ect W ap objects automatically increment and decrement
the internal reference count of the COM objects they reference when passing COM objects between them-
selves. Passing a COM object reference from a ConCbj ect W ap object to a regular pointer circumvents the
automated memory deallocation and reference decrementing functionality.

The only situation when a DirectX resource should be exposed as a plain pointer is when passing the object
to DirectX functions directly (see the above example in sr ¢/ t ool s/ bi gbang/ proj ect /| ock_nmap. cpp's
function set Text ur e, when Mbo: : rc() . set Text ur e is called).

Insrc/tool s/worl deditor/project/| ock_map. cpp's function cr eat eLockText ur e, directly after
the call to Mbo: :rc(). device()->CreateTexture, acall tol ockTexture_. addAl | oc("texture/
I ock terrain") is made. This call accounts for the allocation of memory during the
Moo: :rc() . devi ce()->Creat eText ur e call for the | ockText ur e_ object. The" texture/lock terrain"
memory resource pool will be incremented by the amount of memory used by | ockText ur e_. But how to
is the amount of memory used by | ockText ur e_ determined?

Conbj ect W ap is a templated class. A different class implementation is created at compile time for each
COM object that makes use of this class. In the case of DX: : Text ur e, a ConObj ect W ap<Dx: : Text ur e>

bIgW@RLED"

Debugging

class is created. During the call ConObj ect W ap: : addAl | oc(<string description>), calls to the
functions ComChj ect W ap: : pool and ConChj ect W ap: : si ze are made. Each COM object can imple-
ment its own version of these methods using template specialisation. The ConObj ect W ap<Dx: : Text ur e>
versions are:

tenpl at e<> ui nt Conbj ect W ap<DX: : Text ure>: : pool () const

/1 Get a surface to detern ne pool
D3DSURFACE_DESC sur f aceDesc;
pConthj ect _->Cet Level Desc(0, &surfaceDesc);

return (uint)surfaceDesc. Pool ;

}

tenpl at e<> ui nt Conbj ect Wap<DX: : Texture>: :size() const
{

/1 Determine the mp-map texture size scaling factor
doubl e mi pmapScal er = 0. 0;

for (DWORD i = 0; i < pConm(bject ->Cet Level Count (); i++)
m pnapScal er += 1 / powm(4.0, (double)i);

/] Get a surface to determine the width, height, and format
D3DSURFACE_DESC sur f aceDesc;
pConthj ect _->Cet Level Desc(0, &surfaceDesc);

/1l CGet the surface size
ui nt 32 surfaceSi ze = DX: :surfaceSi ze(surfaceDesc);

/1 Track menory usage
return (uint)(surfaceSize * m pnapScal er);

Excerpt — src/ | i b/ nbo/ com obj ect _wrap. i pp

The Combj ect W ap<DX:: Texture>::pool function determines what memory pool the tex-
ture resides in by examining the surface description of the surface at mipmap level 0. The
ConmCbj ect W ap<DX: : Text ur e>: : si ze function determines the size of the memory allocation by com-
puting the mipmap scaling factor due to the mipmap levels, determining the memory footprint of the zero
level mipmap level for the given texture format, and then multiplying the two.

Every DirectX resource that is to be memory-tracked will need to implement its own versions of these func-
tions.

25.3.3.2. Binary blocks

Memory tracking for BinaryBlock involves «calls to the RESOURCE_COUNTER ADD and
RESOURCE_COUNTER_SUB macros in the constructor and destructor respectively. In the constructor, if the
Bi nar yBl ock is the owner of the data, the memory tracking call is:

RESOURCE_COUNTER_ADD(Resour ceCounters:: DescriptionPool ("binary bl ock",
(ui nt)Resour ceCount ers: : SYSTEM ,
(uint)(len_ + sizeof (*this)))

Otherwise, if another Bi nar yBl ock owns the data, the call is:

RESOURCE_COUNTER_ADD(Resour ceCounters:: DescriptionPool ("binary bl ock",
(ui nt) Resour ceCount ers:: SYSTEM ,

182 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

(uint)sizeof (*this))

Note that in the first version, the size of the binary data allocation is accounted for, as well as the size of the
Bi nar yBl ock object, while in the second version only the size of the Bi nar yBl ock object is accounted for.
Similarly in the destructor, if the Bi nar yBl ock owns the data, the memory tracking call is:

RESOURCE_COUNTER _SUB(Resour ceCounters:: DescriptionPool ("binary bl ock",
(ui nt) Resour ceCounters:: SYSTEM,
(uint)(len_ + sizeof (*this)))

Otherwise, the call is:

RESOURCE_COUNTER _SUB(Resour ceCounters: : DescriptionPool ("binary bl ock",
(ui nt) Resour ceCounters:: SYSTEM,
(uint)sizeof (*this))

As it stands, the memory usage for all Bi nar yBl ock objects is placed in a single resource pool called "binary
block". This is still a very high level of granularity — it is likely that Bi nar yBl ock objects are used by many
different objects to varying degrees. It would be useful to known their distribution throughout the system.
For details on how this is done, see “Terrain texture layers” on page 186 .

25.3.3.3. Terrain height maps

Like most classes, Ter r ai nHei ght Map2 has primitive types, pointers, and objects as member variables.

Terrai nHei ght Map2: : Terr ai nHei ght Map2(ConmonTer r ai nBl ock2 &t errai nBl ock2):

RESOURCE_COUNTER_ADD(Resour ceCounters:: DescriptionPool ("height nmap",
(ui nt) Resour ceCount ers:: SYSTEM ,
(uint)(sizeof(*this)))

}
Terr ai nHei ght Map2: : ~Terr ai nHei ght Map2()

{
RESOURCE_COUNTER_SUB(Resour ceCounters: : Descripti onPool ("hei ght map",
(ui nt)Resour ceCount ers:: SYSTEM ,
(uint)(sizeof(*this)))

Excerpt —src/ | i b/ noo/ t errai n_hei ght _map2. cpp

The calls to RESOURCE_COUNTER_ADD and RESOURCE_COUNTER_SUB account for the static memory used
by the member variables, but do not account for the dynamically allocated memory used by our member
pointers, the member pointers of our member objects, member pointers of member objects of our member
objects, and so on.

Therefore, it is necessary to examine both the member pointers and the member objects to account for their
dynamic memory usage, if any. With respect to the TerrainHeightMap2 class, there are three members of
interest:

e ComrmonTerr ai nBl ock2* terrainBl ock2_

e Terrai nQuadTreeCel | quadTree_

bIgW@RLED"

Debugging

e Image<f | oat > hei ghts_
25.3.3.3.1. CommonTer r ai nBl ock2* terrai nBl ock2_

On construction of a Ter r ai nHei ght Map2 object, a reference to the parent CormonTer r ai nBl ock2 ob-
jects is passed in. As such, the Ter r ai nHei ght Map2 is not responsible for the memory usage of this class
(in fact, the opposite is true — if memory tracking is added to CormmronTer r ai nBl ock2, then it is like-
ly that the memory allocated by Terr ai nHei ght Map2 should be allocated into the ConmonTer r ai n-
Bl ock2 resource counter). Simply accounting for the t er r ai nBl ock2_ pointer in the constructor's call to
RESOURCE_COUNTER_ADDis sufficient.

25.3.3.3.2. TerrainQuadTreeCell quadTree_
The Ter rai nQuadTr eeCel | class must be inspected to check whether it or any of its members result in

any dynamic memory allocations. The inspection is recursive until all members and their allocations are
accounted for. For the Ter r ai nQuadTr eeCel | class we have the following expansion:

Terrai nQuadTr eeCel |

std::string allocator_; /1 Need to account for this
std::vector<Terrai nQuadTreeCel | > children_; // Need to account for this
Boundi ngBox boundi ngBox_; /'l Need to expand
static Boundi ngBox s_insideQut_; /1 For sinplicity we do not
/] account for static nenbers
Qut code oc_; /1 |Is of primtive type uint32
Qut code conbi nedCc_; /1 Is of primtive type uint32
Vector3 nmin_; /1 Only contains primtives
Vector3 max_; /1 Only contains primtives

For TerrainQuadTreeCell, the dynamic memory used by member variables

Terrai nQuadTreeCel | : : al | ocat or _and Terr ai nQuadTr eeCel | : : chi | dr en_ must be accounted
for.
e Terrai nQuadTreeCel | : : al | ocator _

allocator_ is a std::string that records the resource pool being used. Since we want
Ter r ai nHei ght Map2's Terrai nQuadTreeCel | instances to use Terrai nHei ght Map2's resource
pool, we need a way to configure Ter r ai nQuadTr eeCel | s resource pool. This is done by passing the
resource pool string to the Ter r ai nQuadTr eeCel | constructor.

Terrai nQuadTreeCel | : : Terrai nQuadTreeCel | (const std::string& allocator);

Excerpt — src/lib/moo/terrain_quad_tree_cell.cpp

al | ocat or _ is then set to the resource pool passed as parameter, so that the correct resource pool will
be used. It is a simple matter to account for al | ocat or _'s additional memory usage in the constructor's
memory-tracking call to RESOURCE_COUNTER_ADD:

Terrai nQuadTreeCel | : : Terrai nQuadTreeCel | (const std::string& allocator);
{

RESOURCE_COUNTER_ADD(ResourceCounters:: DescriptionPool (allocator_,
(ui nt) Resour ceCount ers: : SYSTEM ,
(uint)(sizeof (*this) +
al l ocator _. capacity()))

184 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

A similar call is made in the destructor.
e Terrai nQuadTreeCel | ::children_

children_isastd::vector containing zero or four Ter r ai nQuadTr eeCel | objects. Vectors use dy-
namic memory allocation, but since the objects are of type Terr ai nQuadTr eeCel | , that means we are
already accounting for the memory of each allocation. The only catch with having a vector of Ter r ai n-
QuadTr eeCel | objects is that the call to chi | dren_. resi ze(4) in Terrai nQuadTreeCel | ::init
would create four Ter r ai nQuadTr eeCel | objects using the default constructor. These objects must use
the same resource pool as their parent Ter r ai nQuadTr eeCel | object. This is achieved by passing a pro-
totype instance to the resize method with the appropriate resource pool:

voi d Terrai nQuadTreeCel | ::init(...)
{

Terrai nQuadTreeCel | chil dPrototype(allocator_);
children_.resize(4, childPrototype);

Excerpt—src/lib/noo/terrain_quad_tree_cell.cpp
At this point all memory has been accounted for in class Ter r ai nHei ght Map2.
25.3.3.3.3. I mage<f | oat > hei ghts_

The | mage<f | oat > class must be inspected to see if it or any of its members result in any dynamic memory
allocations. Like the inspection performed on Ter r ai nQuadTr eeCel |, the inspection is recursive until all
members and there allocations are accounted for. The member variables of the | mage<Pi xel Type> class
are:

| mge<Pi xel Type>

std::string allocator_; // Need to account for this
Pi xel Type* pi xels_; /1 Need to account for this
Pi xel Type** |ines_; /1 Need to account for this
uint32 width_; /] Primtive
ui nt 32 hei ght _; /] Primtive
bool owns_; /] Primtive
size t stride_; /1l Primtive

For | mage<f | oat >, the dynamic memory used by the member variables | mage<f | oat >: : al | ocat or _,
| mage<f| oat >: : pi xel s_, and | mage<f| oat >: : | i nes_ must be accounted for.

* | mage<fl oat >::al | ocator _

Just like TerrainQuadTreeCell::allocator_ (for details, see “TerrainQuadTreeCell
quadTree_” on page 184), | mage<f| oat >: : al | ocat or _ stores the resource pool for this object. Its
memory is accounted for in the constructor's memory tracking call to RESOURCE_COUNTER_ADD:

RESOURCE_COUNTER_ADD(ResourceCounters::DescriptionPool (allocator_,
(uint)ResourceCounters:: SYSTEM ,
(uint)(sizeof(*this) + allocator_.capacity()))

A similar call is made in the destructor.

bIgW@RLED"

Debugging

e | mage<f| oat >: : pi xel s_

The dynamic memory allocations assigned to Image<f| oat >: : pi xel s_ can be determined simply
by searching through the Image class. Every direct or indirect memory allocation and deallocation
must be accounted for. The following is an example of an indirect dynamic memory allocation to the
I mage<f| oat >: : pi xel s_ member variable.

tenpl at e<t ypenane Pi xel Type>
bool | nmage<Pi xel Type>:: createBuffer(uint32 w, uint32 h, Pixel Type* & buffer,
bool & owns, size t& stride, bool & flipped)

{

/1 Track menory usage
RESOURCE_COUNTER_ADD
Resour ceCount ers: : Descri pti onPool (all ocator_,
(ui nt) Resour ceCount ers: : SYSTEM ,
(uint)(sizeof (Pixel Type) * w* h))
buf fer = new Pi xel Type[w*h];

}

tenpl at e<t ypenane Pi xel Type>
voi d | mage<Pi xel Type>::init(uint32 w, uint32 h, Pixel Type *pixels,
bool owns, size_t stride, bool flipped)

{
pi xel s_ = pixels;
width_ = w
hei ght _ = h;
owns_ = owns;
stride_ = (stride == 0) ? w'sizeof (Pixel Type) : stride;

createLines(width_, height_, pixels_, stride_, flipped);
}

tenpl at e<t ypenane Pi xel Type>
inline void I nage<Pi xel Type>: :resize(uint32 w, uint32 h)

{
Pi xel Type *newBuf = NULL; // Creates a Pixel Type pointer
bool owns, flipped,;
size_t stride;
/1 newBuf points to newy created pixel buffer
createBuffer(w, h, newBuf, owns, stride, flipped);
/1 pixels_ now points to newmy created pixel buffer
init(w, h, newBuf, owns, stride, flipped);

}

° I mage<float>::1ines_
Use the same technique described above for | mage<f | oat >: : | i nes_.

25.3.3.4. Terrain texture layers

The final instrumenting case study is for class Ter r ai nText ur eLayer 2. The techniques described in the
earlier case studies can be used to account for all but three of Ter r ai nText ur eLayer 2's member variables:

CommonTerrai nBl ock2* terrainBl ock_; /1 Sanme as CommonTerr ai nBl ock2*
terrainBl k2

186 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

std::string textureNane_; /1 Need to account for this
Terrai nTexturelLayer2::1nmageType blends_; // Sane as | mage<float> hei ghts_
uint32 width_; /'l Primtive

ui nt 32 hei ght _; /'l Primtive

Vect or4 uProjection_; /'l Primtive

Vector4 vProjection_; /1l Primtive

size_t | ockCount_; /1l Primtive

BaseTexturePtr pTexture_; /1 Need to account for this
State state_; /1l Primtive

Bi naryPtr conpressedBl end_; /'l Need to account for this

Terrai nText ur eLayer 2's member variables
e std::string::textureNane_

t ext ur eNane_ can be accounted for in a similar manner to TerrainQuadTreeCell::allocator_ (for details,
see “TerrainQuadTreeCell quadTree_” on page 184) and | mage<f| oat >: : al | ocat or _ (for details,
see “I mage<f| oat > hei ghts_” on page 185), except that the allocation occurs in several places in
terrain_texture_| ayer 2. cpp. Each can be handled similarly by subtracting from the resource pool
before an assignment and adding to the resource pool after an assignment, as illustrated below:

RESOURCE_COUNTER _SUB(ResourceCounters:: DescriptionPool ("texture |layer",
(ui nt) ResourceCount ers: : SYSTEM,
(uint)textureNane_. capacity())

textureNanme_ = fil enane;

RESOURCE_COUNTER _ADD(ResourceCounters:: DescriptionPool ("texture |layer",
(ui nt) ResourceCount ers: : SYSTEM,
(uint)textureNane_. capacity())

Excerpt—src/lib/nmoo/terrai n_texture_|l ayer2.cpp
° BaseTexturePtr::pTexture_

BaseText ur ePtr is a smart pointer to the abstract class BaseText ur e. The first case study above al-
ready accounted for all texture usage in the system, therefore we need a way to override the call to
Conbj ect W ap: : addAl | oc(std::string description) so that for this particular texture the
"terrain texture layer/texture" memory resource pool is used.

First, a search is performed to find where pText ur e_ is being assigned:
pTexture_ = TextureManager::instance()->get(textureNanme_);

The desired memory pool needs to be added to this parameter list to override the default pool used for
Text ur eManager 's created textures. The call now looks like this with all the default values for the pa-
rameters filled in:

pTexture_ = TextureManager: :instance()->get (
textureName_, true, true, true, "terrain texture |layer/texture");

The last parameter must have a default value assigned so that the interface for the method is not broken.
The allocator pool must be passed through to the construction of the Ani mat i ngText ur e and Managed-
Text ur e classes. This requires the addition of the allocator pool description string to the constructors
of these classes (and any other classes that inherit from BaseText ur e that need more accurate memory
tracking). The constructor of the BaseText ur e class is also changed to accept this allocator string in its

bIgW@RED"

Debugging

constructor and store it in a member variable. This member variable can then be used by all classes that
inherit from BaseText ur e to account for the memory allocated in the call to Cr eat eText ur e.

* Bi naryPtr::conpressedBl end_

As mentioned above, the Bi nar yBl ock class accounts for all its memory usage. Therefore, if we wish
to account for the conpr essedBl end_ dynamic allocation in the Ter r ai nText ur eLayer 2 memory
pool we must override the memory tracking in Bi nar yBl ock. This can be achieved similarly to how
the resource pool was overridden when creating a texture. The desired pool must be passed through to
the Bi nar yBl ock constructor. This required adding the default valued allocator string to the end of the
following methods:

inline BinaryPtr Moo::conpresslmage(| mge<Pl XELTYPE> const & nmage,
std::string allocator)

{

return conpressPNG pngData, allocator);

src/lib/ moo/ png. hpp

Bi naryPtr Moo:: conpressPNG PNG mageData const &dat a,
std::string allocator)

{
Bi naryPtr result = concatenate(outputBuffers, allocator);
}
Bi naryPtr concatenate (std::vector<BinaryPtr> const &buffers,
std::string const &al | ocat or)
{
Bi naryPtr result = new Bi naryBl ock(data, total Size, allocator());
}

src/ i b/ moo/ png. cpp

Bi nar yBl ock: : Bi naryBl ock(const void * data, int |en,
const char *allocator, BinaryPtr pOaner)

{
RESOURCE_COUNTER_ADD(Resour ceCounters:: Descripti onPool (al | ocator _,
(ui nt)ResourceCounters:: SYSTEM ,
(uint)sizeof (*this))
}

src/lib/resmgr/binary_bl ock. cpp

25.3.4. Displaying the memory tracking console

The memory tracking console can be displayed in the client, World Editor, Model Editor and Particle Edi-
tor. To display the console in the client, press Ct r | +DEBUGHF5, and to display it in the tools, press Shi f t
+Ctrl +F5.

188 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

The user can cycle through the realtime memory usage information by pressing Space. There are three levels
of granularity:

* All memory — one pool.
* System memory, video memory, and miscellaneous memory — three pools.
* System memory, managed memory, default memory, and miscellaneous memory — four pools

Note that video memory is a combination of managed and default memories. Also, miscellaneous memory is
a catchall for any memory that does not fall into the system, managed, or default pools (e.g., DirectX Scratch
memory).

25.4. Scripts

The implementation of a game using the BigWorld client can potentially involve many scripts. These scripts
will interact and have real-time requirements and dependencies, since they are part of a network game —
in some cases, the game cannot be simply stopped and stepped through without affecting the behaviour of
the client being debugged.

Scripting must therefore be approached in the same way as any other coding, and not as a poor alternative
to C++ coding. Scripts must be designed properly, and consideration must be given to the appropriate use
of class hierarchies and other language concepts.

25.4.1. Python Console

The Python console can be brought up at any time during the game.

This is a console that looks and acts exactly like a Python interpreter, so arbitrary Python can be entered into
it. All C++ modules can be accessed, so the environment is the same as that in which the scripts are executed.

Python errors and exceptions that are not caught by the script itself (before they reach the C++ call-in point)
are output to the console, and therefore are errors from commands entered into the Python console itself.
The console is the first place to access when an error occurs in a game.

The Python console supports multi-line commands the same way that the standard Python interpreter does,
and it also supports macros like a UNIX shell. Macro invocations begin with a dollar sign ($), and their
expansions are contained in a dictionary in the personality file (see the fantasydemo personality script for
an example). It implements the BWPersonality.expandMacros() callback function.

The list below describes the line editing shortcuts supported by the Python console:
e Backspace
Deletes the character to the left on insertion point. Same as Ct r | +H
* Delete
Deletes the character to the right of insertion point. Same as Ct r | +D.
* End
Moves insertion point to the end of line. Same as Ct r | +E.
* Hore
Moves insertion point to the beginning of line. Same as Ct r | +A.
e Ctrl +Backspace

Cuts to clipboard all text between insertion point and beginning of word. Same as Ct r | +W

bIgW@RLED"

Debugging

o Ctrl+Del ete
Cuts to clipboard all text between insertion point and end of word. Same as Ct r | +R.
e Ctrl+l nsert
Pastes the content of clipboard after insertion point. Same as Ct r | +Y.
e Crl+Left arrow
Moves insertion point to the beginning of word.
o Ctrl+Ri ght arrow
Moves insertion point to the end of word.
e Orl+A
Moves insertion point to the beginning of line. Same as Horre.
e Crl+D
Deletes the character to the right of insertion point. Same as Del et e.
o Ctrl+E
Moves insertion point to the end of line. Same as End.
e Ctrl+H
Deletes the character to the left of insertion point. Same as Backspace.
e Orl+K
Cuts to clipboard all text between insertion point and end of line.
e Orl+R
Cuts to clipboard all text between insertion point and end of word. Same as Ct r | +Del et e.
e Qrl+U
Cuts to clipboard all text between insertion point and beginning of line.
e Crl+W
Cuts to clipboard all text between insertion point and beginning of word. Same as Ct r | +Backspace.
e Crl+y
Pastes the content of clipboard after insertion point. Same as Ct r | +I nsert.
The console also offers the functionality of auto code completion. By pressing Tab, it automatically completes
the current word by trying to match it against the attributes defined for the referenced context. If a unique

match is found, then it is added after the insertion point. If more than one match exists, then pressing Tab
cycles through all of them.

25.4.2. Remote Python Console

The services provided by the Python console are also available remotely over the network.

190 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

The client accepts connections using the telnet protocol on TCP port 50001. A number of telnet options are
supported, such as the emulation of line editing.

25.4.3. Script reloading

All scripts can be reloaded by pressing Caps Lock+F11.

Existing entity class instances are updated so that they are instances of the new classes, without losing their
dictionary. Entity script classes can provide a reload method to refetch stored function references that have
changed after reloading. For example, the reload function in the player script recalculates its key bindings,
which would otherwise continue to reference functions in the old version of the class.

When the server sends an update to a script, only that script is reloaded and only its instances are updated.

25.4.4. Common errors

Some common scripting errors are listed below:
¢ Could not find class <enti ty>

There is a Python error in the file <r es>/ scri pt s/ cl i ent/ <ent i t y>. py. Check the file pyt hon. | og
in the current working folder.

e App::init: BigWrlddientScript::init() failed
There is a mismatch between Python script and <res>/ scri pts/entity_defs/<entity>. def.
e EntityType::init: EntityDescriptionMp:: parse failed

An undefined data type was used in file <res>/scripts/entity_defs/<entity>. def file, or in
<res>/scripts/entity _defs/alias.xm.

For details on entity definition and Python script files, see the document Server Programming Guide's sec-
tions Directory Structure for Entity Scripting = “The Entity Definition File” and Directory Structure for Entity
Scripting = “The Entity Script Files”, respectively.

25.5. Script interactive debugging

You can run BigWorld Client as a Python extension module, instead of as an executable. This will allow you
to use third party interactive debuggers (such as Wing IDE and Komodo), or Python's built-in debug module
(pdb) to debug your game's scripts.

To run the client as Python extension module, follow these steps below:

1. Create the Python extension module by building the client using the PyMbdul e_Hybr i d configuration.
The resulting binary will be located at bi gwor | d/ bi n/ cl i ent/bwclient. pyd.

This configuration requires the environment variable PYTHONHOME to be set to the
top-level folder of a standard Python installation (e.g., C: \ Pyt hon26).

2. Copy the example stub script from the fantasydemo project folder (fanta-
sydeno/ | aunch_f ant asydeno_pyd. py) into your own project folder (e.g. mypro-
ject/launch_nyproj ect _pyd. py).

3. If you have scripts located within additional resource paths, you will need to modify the stub script to
add these paths to sys. pat h. To do this, modify the resourcePaths list just before the list is assigned
into sys. pat h.

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Using the script above, you can start the client from the command prompt (for example, with the command
pyt hon. exe | aunch_f ant asydeno_pyd. py.) or from Visual Studio. Now, from anywhere in the scripts
or from the Python console, you can invoke the standard Python debugger:

i mport pdb
pdb. set _trace()

For more information on how to use the pdb module, please refer to the Python Manuals.

You can also use the start-up script to run the client using a third party interactive Python debugger/IDE. This
should allow you to set breakpoints and inspect variables. For more information on how to use an interactive
debugger, please refer to your package manuals.

The client will be disconnected from the server if the execution of the main thread is

interrupted by more than a few seconds, as it usually happens when Python scripts
are debugged interactively.

When running the client as an extension module, it is possible to quit the Python inter-
preter before exiting the client (by, for example, invoking exit() from pdb prompt).

Because the client will still try to execute Python commands during its shutdown pro-
cess, this will cause the client to crash.

25.6. Client Access Tool (CAT)

CAT provides a graphical interface to change watcher values and run Python console commands on a remote
or local client. It does so via the Remote Python Console service provided by the client. For more details, see
“Remote Python Console” on page 190 .

25.6.1. Connecting to the client

In order to connect to the client, you have to provide the computer name and/or the IP address where it is
running.

Client Chooser E|

FPrevious choices: | R0 w

Ur enbzr new chent detaiks:
Compubsr name

IP addiess; (O 1]] 0

| ok || Cawal |

Client Chooser dialog

If you provide both the computer name and the IP address, CAT first tries to connect using the computer
name, and if that fails, then it uses the IP address. Specify localhost as the computer name or 127.0.0.1 in the
IP address to connect to the local client.

Debugging

CAT automatically reconnects to the last client when it is started.

25.6.2. CAT Scripts

CAT searches for scripts in folder <res>/ . ./t ool s/ cat/scri pts, where <r es> is one of the entries in
the resources folders list (for details on how BigWorld compiles this list, see the document Content Tools
Reference Guide's chapter Starting the Tools).

For example, if one of the entries in <r es>is C: / nf / f ant asydeno/ r es, then CAT will look for scripts un-
der the folder C. / nf / f ant asydeno/ t ool s/ cat/ scri pt s. It will then present a tree view of the scripts,
as illustrated in the picture below:

B CAT -127.0.0.1

Fie Help
[Heconnect " Digconnect] [&b Update Lipdate
Coriral Menu FarPlans ¥, 500
= Diebisg
Actiors Explarer P
Alarts Wiralrame | (O W
Arimation Beand Graoh
Rendar [#] Vertical Blank
Scale Model
Slows Tima [T Fiame Rate Gisgh
= MR
Camara Follow
= Playar !
— [+] Draws Temain
Controlla
Pl:ll::t:lll'l ' [+] D e b
Tarpating
~ Rendar Enable Shadows
Flora
Parformance
T e OEF HUD
Time ©F Dy [=]
imials [Tuin On HUD]
Water

Tree view of scripts

CAT scripts are specialised Python scripts. In the image above, the CAT script <res>/ ../t ool s/ cat/
scri pt s/ Render/ Per f or mance. py is selected. It defines the GUI controls to the right of the tree. When
you select a different CAT script from the tree, different controls will be presented to the right of the tree.

CAT scripts allow the viewing and manipulation of client watcher values as well as the execution of com-
mands in the client's Python console. See the examples provided in folder f ant asydeno/ t ool s/ cat/
scri pt s for information on how to create your own scripts.

The list below describes the toolbar buttons and its functions:
* Reconnect

Reconnects to the client, e.g., after you restart the client.
e Disconnect

Disconnects from the client.

bIgW@RLED"

#dest=
#dest=
#dest=

Debugging

* Auto update
Refreshes the data on the current tab once every 2 seconds.
e Update
Refreshes the data on the current tab e.g., if watcher values are changed from the within client.

25.6.3. Creating scripts for CAT

CAT looks for scripts in folder <res>/. ./t ool s/ cat/scri pts, thus enabling two separate sets of CAT
scripts to exist:

* BigWorld system scripts
* Scripts defined by you that are specific for your game.

CAT scans this directory hierarchically, and generates a folder tree akin to Windows Explorer's one, using
the folder names as branches and script files as leaves.

The picture below illustrates how a folder structure will be displayed in CAT:

B I=lCantral Menu
“"'[:ﬁbi guorl 4F IEI GI':mE
: " Character
“""[_at--:- ol 5 f =
[ﬁ F FHair
- —
— - = Clathing
-i.--[ﬁ;: riptsyf ?4 f— Top
J : |
“ Big:-:u:-rld.p'!,r ----- Shaas
’ "'IERE nderingf R feDants
‘i‘"']:le tail.py " Eigtiorld
;...31_' sdams py |=/"Rendering
.."[Eﬁ{gmeﬂ Shaljl:lWE
- /| L Cretai
""[.ﬁta alsf

Resulting structure in CAT

;...[E]Ht;

i""l_asuz Tiptry
e py
*"'[_ﬁthuutu;

‘é‘"'I‘Ia.ir TV

P i P othingf
* '"Pa.:nt-s B
* "'31-.-:.-:5 B
[Drop py

Example folder structure

Debugging

Example folder structure vs. Resulting structure in CAT

The basic structure of the CAT script files is illustrated below:

fromcontrols inport *
envSetup =\

Skeleton of CAT script files
CAT script files are divided in three blocks, which are described below:
° envSet up
Block where variables local to this CAT script are created and initialised.
e args

Represent various controls for variables, which can be edited. They can either represent variables local to
the CAT page, or watchers that mirror values on the client.

* commands
Executable commands that appear on the CAT page as buttons.
The following sections discuss the blocks args and commands.

25.6.3.1. Block args

There are several widget elements available in the args block of the CAT pages.

In order to add multiple elements, they should be placed in a list with comma delimiters. Any underscores
in names are ignored and replaced by spaces.

25.6.3.1.1. Basic Elements
The basic elements of args control the layout of CAT pages.
e Divider ()

This element causes CAT to display a horizontal divider between elements, allowing pages to be visually
divided.

° Fi xedText ("<text>")

This element displays any static text segments such as headings. Multiple lines of text can be specified by
using the newline character "\ n".

bIgW@RLED"

Debugging

25.6.3.1.2. Variables
It is possible to set up variables that are local to a specific CAT page.

These can also have an associated Python variable tied to them, to allow for updates from the client appli-
cation.

Below is a list of commands to create variables in CAT:

e StaticText ("<nanme>" [, default = "<value>"] [, updat eCommand = " <pyt hon_updat e
_source>"])

This widget creates a non-editable field with the specified name and default value (if default is present).

If updateCommand is specified, then <pyt hon_updat e_sour ce> will be used as the Python value from
the client that will be displayed.

For example:

StaticText("Position",
updat eCommand = """
| ocation = $B. fi ndChunkFronPoi nt ($p. position).split('@)
print "(%1f, % 1f, % 1f) @% @%" %
($p.position.x, $p.position.y, $p.position.z,
| ocation[0], location[1])

")
Creation of field

e CheckBox("<name>" [, updateConmmand = "<python_update_source>" [, set Conmand
= "<python_set_source>"]])

This widget creates a check box called with the specified name.

If updateCommand is specified, then until the check box is edited, it will use <python_update_source> as
the Python code to get the value that will be displayed.

If setCommand is specified, then when the field is edited, <python_set_source> will be executed.

For example:

CheckBox("Use Dash",
updat eConmand = "$p. i sDashi ng",
set Conmand = "$p. switchToDash(Use_Dash)")

Creation of check box

e Int (" <nane>" [, def aul t = <val ue> | [, updat eConmand
"<pyt hon_update_source>" [, setComand = "<python_set source>" [, m nMax
(<smin><max>) 1 1 1)

This widget creates an integer field with the specified name and default value (if default is present).
If setCommand is specified, then when the field is edited, <python_set_source> will be executed.

If updateCommand is specified, then <python_update_source> will be used as the Python value from the
client that will be displayed.

If minMax is specified, then the field will have the specified (inclusive) value range.

196 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

For example:

Int("Health",
default = 100,
updat eConmand = "$p. heal t hPercent"”,
set Command = "$p. heal t hPercent = Heal th; $p.set_heal thPercent ()",
m nMax = (0, 100))

Creation of integer field

e Fl oat (("<name>" [, def aul t = <value>] [, updat eComrand
"<pyt hon_updat e_source>" [, setCommand = "<python_set_source>" [, ninMax
(<smin><max>) 1 11)

This widget creates a float field with the specified name and default value (if default is present).

If updateCommand is specified, then <python_update_source> will be used as the Python value from the
client that will be displayed.

If setCommand is specified, then when the field is edited, <python_set_source> will be executed.
If minMax is specified, then the field will have the specified (inclusive) value range.

For example:

Fl oat ("Speed Multiplier",
default = 1.0,
updat eConmand = "$p. speedMul tiplier",
set Command = "$p. speedMul tiplier = Speed_Miltiplier",
mnvax = (1.0, 10.0))

Creation of float field

e FloatSlider (("<name>" [, updateConmand = "<python_update source>" [, set-
Command = "<python_set _source>" [, mnMax = (<min> <max>)]]])

This widget creates a float slider with the specified name and default value (if default is present).

If updateCommand is specified, then <python_update_source> will be used as the Python value from the
client that will be displayed.

If setCommand is specified, then when the field is edited, <python_set_source> will be executed.
If minMax is specified, then the field will have the specified (inclusive) value range.

For example:

Fl oat Sl i der (" Canera_Di st ance",

updat eConmand = "Bi gWorl d. canera() . pi vot MaxDi st ",

set Conmand = "Bi gWor | d. canera() . pi vot MaxDi st =Caner a_Di st ance",
m nMax = (0.01, 200.0))

Creation of float slider

e List ("<nanme>", ("<optionl>", "<option2>", ...), [, default = "<option9>" [,
updat eConmand = "<pyt hon_update_source>"]])

bIgW@RED"

Debugging

This widget creates a drop-down menu with the specified name, containing the entries specified in the list
passed as the second argument.

If default is specified, then the value entered must be present in the list passed as the second argument.

In a similar fashion to the Int and Float widgets, the drop-down menu can be given an associated Python
variable.

Enum ("<name>", (("<option_1>",<valuel>), ("<option_2>",6 <value2>), ...)
L updat eCommand = " <pyt hon_updat e_sour ce>" [, set Conmand
"<python_set _source>"]])

This widget creates a drop-down menu with the specified name, containing the entries specified in the list
of 2-tuple passed as the second argument.

Each entry will be associated with the value specified on the second element of its tuple.

If updateCommand is specified, then <python_update_source> will be used as the Python value from the
client that will be displayed.

If setCommand is specified, then when the field is edited, <python_set_source> will be executed.

For example:

Enun{ " Mbde",

(("walk",0), ("Run",1), ("Dash",2)),

updat eConmand = "2*$p. i sDashing + $p.i sRunni ng",

set Conmand = """
i f Mode==0: $p.switchToRun(1); $p.sw tchToDash(0)
i f Mode==1: $p.switchToRun(0); $p.sw tchToDash(0)
i f Mode==2: $p.switchToRun(1); $p.sw tchToDash(1)
)

Creation of drop-down menu with associated numeric values

Bool ("<name>", [, updateConmand = "<python_update _source>" [, setCommand =
"<python_set source>"]])

This widget creates a drop-down menu with the specified name, with just one entry having two possible
values: true or false.

If updateCommand is specified, then <python_update_source> will be used as the Python value from the
client that will be displayed.

If setCommand is specified, then when the field is edited, <python_set_source> will be executed.

For example:

Bool ("Wal ki ng", updateCommand = "1-$p. isRunning ", setCommand = " $p.
swi tchToRun (Wl king)")

Creation of drop-down menu with true/false entry

25.6.3.1.3. Watchers

Watchers allow you to view the value of specific variables in a live system.

198

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Debugging

These values can be accessed from the Debug (Watchers) Console in the FantasyDemo (accessed by pressing
DEBUGH F7). However, CAT gives you a much simpler way to manipulate them.

Whenever adding a CAT control, it is essential to ensure that there is a matching M=_WATCHER that corre-
sponds to the value in question. The best way to check that is by looking for the value in the watcher console
within the game.

The value is retrieved from and saved to the value that matches the value path M=_WATCHER
Below is a list of commands that allow you to manipulate watchers:
* Wat cher CheckBox("<nane>", "<val ue_pat h>")
Shows a check box with the specified name.
e Wat cher Fl oat ("<name>", "<value_path>" [, minMax = (<m n>, <max>)])

Shows a float field with the specified name. If minMax is specified, then the field will have the specified
(inclusive) value range.

* WAt cher Fl oat Enum ("<nane>", "<value_path>", (("<optionl>", <valuel>),
("<option2>", <value2>)))

Shows a dropdown menu with the specified name, containing the entries specified in the list of 2-tuple
passed as the third argument.

Each entry will be associated with the value specified on the second element of its tuple.

e Wat cher Fl oat Sli der ("<nanme>", "<val ue_path>", minMax = (<m n>, <max>))
Shows a float slider with the specified name, and with the specified (inclusive) value range.

e WatcherlInt("<name>", "<value_path>" [, mnMax = (<m n>, <max>)])

Shows an integer field with the specified name. If m nMax is specified, then the field will have the specified
(inclusive) value range.

e WatcherIntSlider("<nanme>", "<value_path>", mnMax = (<m n>, <max>))
Shows a slider with the specified name, and with the specified (inclusive) value range.
° Wat cher Text ("<name>", "<val ue_path>")
Creates a field with the specified name.
25.6.3.2. Block commands
These are commands that appear as buttons in CAT, shown below the elements specified in the block args.

They execute a given Python script. Each command to be added takes the following format:
("<description>", "<script>"),

where <descri pti on> is the button's caption, and <scri pt > is the Python script to be executed.

For example:

fromcontrols inport *

bIgW@RLED"

Debugging

commands =\

(
("Hde_Gu", "BigWwrld. hideGui()"),
("Show_ aUl ", "BigWrld.showGui ()")
) Exanpl e i npl ementati on of bl ock conmmands

Example implementation of block conmands

25.7. Timing

The BigWorld libraries provide a number of timing tools for analysing game performance. One of the most
important of these is the DogWatch timer class.

When a DogWatch is created, it is registered in a global list. Whenever that timer is started, it is automatically
entered into a timing statistics hierarchy, based on what other timers are running when it is started. The same
timer can have multiple instances in the hierarchy if it is run more than once in different contexts.

The root timer is called Frame, and is always running for the entire frame time at every frame. All other timer
instances are children of this timer's instance. Care is taken at the frame boundary to ensure that no time
goes unaccounted for. Timers can even be running across the frame boundary. If this is the case, then they
are momentarily stopped, and then restarted in the next frame's time slice.

A view of the DogWatch timer hierarchy is displayed in a debug console, which shows the average of the
DogWatch times over the last second. The user can navigate and drill down in the hierarchy, which is dis-
played using indentation on a single console page. Any of the timer instances can also be graphed, and there
can be as many graphs displayed simultaneously as desired. By default, the client keeps 120 frames of Dog-
Watch timer history.

200 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 26. Releasing The Game

This chapter lists the steps necessary to prepare the game for its release.

The following sections detail each of these steps.

26.1. Configure the engine for limited user accounts

In order to allow the client to run on a system with limited privileges, the engine should not try to write to
the installation directory (which, depending on how the game is installed, is usually a privileged location).
Certain files that need to be written must be configured to be written to the user's directory.

* The prefrences.xml file contains end-user specific settings such as graphics settings and is written whenever
the client closes or when Bi g\Wor | d. savePr ef er ences() is called. To configure where this file is saved,
edit the pr ef er ences/ pat hBase configuration key in engine_config.xml.

For example, you may want to configure preferences.xml to be written to MY_DOCS/ GaneTi -
tl el preferences. xn.

See “File <pr ef er ences>. xm ” on page 13 for details on how to configure this setting.

* Screenshots can be taken either by pressing PrtScn or by calling Bi g\Wr | d. scr eenShot () . To configure
where screenshots are saved, edit the pr ef er ences/ scr eenShot / pat h/ pat hBase configuration key
in engine_config.xml.

For example, you may want screen shots to be written to MY_DOCS/ GaneTi t | e/ Scr eenshot s.

See “Taking Screenshots” on page 162 for details on how to configure this setting.

26.2. Prepare the assets

Since "just-in-time" resource processing is not enabled in the Consumer Release client (e.g. converting tex-
tures to DDS format on the fly), all resources must be pre-prepared for release. A command line tool, called
r es_packer, is provided which will process a given list of assets. A higher level wrapper for r es_packer
is bi n_convert (implemented in Python), which will batch process an entire resource tree.

This section provides an overview of how to use both r es_packer and bi n_convert.

26.2.1. bi n_convert

bi n_convert is a command-line tool implemented in Python that prepares assets in batch, which makes
use of the r es_packer binary. Its usage is described below:

bin_convert [--res|-r search_paths] [source_path [dest_path [base_path]]]

The options for invoking bi n_convert. py are described below:
e search_pat hs

Search paths of the original source assets, as specified in <r es> (the resources folders list) — for details
on how BigWorld compiles this list, see the document Content Tools Reference Guide's chapter Starting
the Tools.

This value overrides the local pat hs. xm , if there is one.
e source_path

Path of the original source assets.

bigw@RLD"

#dest=
#dest=
#dest=

Releasing The Game

e dest _path
Path of the final game, i.c., the destination of processed assets.
* base_path
The resource root for dest _pat h, only needs to be specified if not converting the entire resource folder.

This tool can be customised in different ways, so it can skip certain files, skip entire folder, have special
handlers for asset types (overriding r es_packer).

For more information on customising bi n_conver t. py, please refer to its source code.

If the desired processing cannot be achieved in Python, then you can modify the source of r es_packer
using any of the included packer classes as example.

The list below shows some example of usage of bi n_convert. py:
e python bin_convert.py /nf/fantasydeno/res /nf/fantasydeno/packed
Converts all FantasyDemo assets in res to packed folder.

e python bin_convert.py --res /nf/fantasydeno/res;/nf/bigworld/res /nf/fantasy-
deno/res /nf/fantasydenon/ packed

Converts all FantasyDemo assets in res to packed folder, specifying the search paths in the command line.

e python bin_convert.py /nf/fantasydeno/res/characters /nf/fantasydeno/ packed/
characters /nf/fantasydeno/ packed

Converts all FantasyDemo assets in the r es/ char act er s folder to the packed/ char act er s folder.

Note that base_pat h (in this case c: / nf/ fant asydenp/ packed) must be specified to ensure that
res_packer works properly.

26.2.2.res_packer

res_packer is a command-line tool that is capable of processing assets depending on their type, pre-pro-
cessing assets to make them load faster and stripping information that is not needed when running the game.
Usually, it is called from bi n_convert and is not used directly by the developer. Its usage is as follows:

Batch list mode:
res_packer [--res|-r search_paths] [--encrypt] --list]|-l asset_list _file --
in -i src_path --out|-o dest_path [--err|-e error_log_file]

Compatible mode:
res_packer [--res|-r search_paths] [--encrypt] source_file [dest_file

[base_path]]

The options for invoking r es_packer are described below:
Batch list mode:
e search_pat hs

Search paths of the original source assets, as specified in <r es> (the resources folders list) — for details
on how BigWorld compiles this list, see the document Content Tools Reference Guide's chapter Starting
the Tools.

202 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

Releasing The Game

This value overrides local pat hs. xmi , if there is one.

For some asset types, search paths have to be specified, either in the command line,
in the game's pat hs. xm , or in the BW RES_PATH environment variable.

These paths should be the source search paths used by the game, so that
res_packer can find other source files that might be needed in the processing.

For instance, to process a model file, other assets such as the visual, textures, and
animations must be also read.

e --encrypt

This option encrypts the assets so they cannot be viewed by the user. This may be required as a license
condition by some vendors of assets. Generally it is not required.

e asset _list file
A text file that contains a list of all the assets to process. This expected the dissolved paths with one per line.
e src_path
The root path of the input files.
e dest _path
The root path of the output files.
eerror_log file
An optional error output log. Any files that fail to process will be added to this log.
Compatible mode:
e source file
Source file (with path) to process.
e dest _file
Destination file (with path) of the processed assets.

In some cases, sour ce_f i | e might not be copied at all (. bnp files are not copied), or the processed file
could be of a different type than the original source file (. bnp files are converted to . dds files).

If this argument is missing, then sour ce_f i | e will not be processed, and a message will be sent to the
standard output (useful for examining XML files, for instance).

* base_path
Base path of the final game — usually corresponds to dest _fi | e's path.

This argument is used when packing file types that require special processing, such as images, models,
and chunk files.

If this argument is missing, then the dest _fi | e's path is used.

bigw@RLD"

ing The Game

To modify r es_packer 's default behaviour for an asset type, or to add new asset types for processing,
modify the source code using any of the included packer classes as example.

When processing Pyt hon files, r es_packer does not compile the . py files into . pyc
when called directly without bi n_convert. Compiling of . py files is done direct-
ly inside bi n_convert. Furthermore, if old . pyc files exist in the source folder,
res_packer copies them to the destination folder without recompiling when run di-
rectly without bi n_convert.

26.2.3. Processing done in bi n_convert and res_packer

The default processing done by these tools is as follows:

* bin_convert

Skips the scri pts/editor,scripts/cell andscri pts/base folders.
Skips the ani mat i ons, . bwt hunbs and CVS folders.

Skips the thumbnail files (i.e., files with . t humbnai | . * extension).

For . py files

Generates . pyc compiled Python files and skips the source . py, using a custom handler.

° res_packer:

For. bnp,.tga,.jpg,.png,.texformt and . dds files:

Generates DDS for source image files that do not have one, and copies DDS files that do not have a
corresponding source image file. The . t exf or mat files are skipped after processing.

For . nodel and . anca files:

Loads models to generate . anca files. The .animation files are skipped after processing, and the . nodel
files are packed.

For . cdat a files:

Strips thumbnail.dds and navgen sections.

For . chunk files:

Strips entities that are not client-only, then packs the file.
For.fx,.fxhand. f xo files:

By default it ignores . f X and . f xh files, and only copies . f X0 files, but it can also be configured to
copy the source . f X and . f xh (requires recompiling, see sr ¢/ t ool s/ res_packer/confi g. hpp).

res_packer itself does not rebuild shaders, it only copies any existing binaries.
Use the utility script located in bi gwor | d/ t ool s/ mi sc/ r ebui | d_shader s/
Rebui | dShaders. py to pre-build all shader combinations before running
res_packer.

Releasing The Game

¢ For all other file types:

Text XML files — i.e., files beginning with the < (left angle bracket) character, regardless of extension —
will be packed, while others will just be copied.

26.2.4. Files and folders that do not need to be shipped to the end user

Both bin_convert and res_packer try their best to slim down the game's assets that will be shipped to the
end user, but because each game has different architecture and requirements, some final tuning might be
needed for your game. Following is a list of files and folders to help identify what should not be shipped
to the end user:

* Files *. bnp, *.tga, *.jpg, *. png, *. texformat: The final dds files are generated and packed by
res_packer, so the source images are not needed.

e Files *.t humbnai | . *: These files are not packed, as these are generated and used in the tools' Asset
Browser only.

* Files *. ani mati on: Packed .anca files are generated from the source .ani mation files by
res_packer.

* Files *.py: Compiled .pyc files are generated by bi n_conver t, so Python source is not needed.

 Folders to skip: ani mati ons, .bwt hunbs, scripts/editor, scripts/cell, scripts/base,
scripts/db, scripts/bot, bigworld/res/server, bigworld/res/hel pers.

26.2.5. Font Licensing issues with bi n_convert and res_packer

By default, r es_packer will pack any font DDS files into your game's destination folder, and font authors
usually require buying a license in order to allow their font(s) to be used. Please make sure you own license(s)
to the font(s) you use in your game.

26.3. Zip assets and specify paths

To pack assets to zip files, simply create one or more zip files containing the game's assets. To create a set of
Zip files that can be used by the BigWorld client application:

1. Zip files bigger than 2GB are not supported. More than one Zip file might be required.
The maximum Zip file size supported is 2GB.

2. Before creating the Zip files, the assets should be prepared via bin_convert.py.
This tool is located under bi gwor | d/ t ool s/ mi sc/res_packer folder.

3. Zip file access is done through zlib, and the supported Zip compression methods are DEFLATE and
STORE. Non-ASCII file names should be encoded as UTF-8.

Zip files created with WinRAR, WinZip and 7-Zip have been successfully tested. If Non-ASCII file names
are included, make sure they are encoded as UTE-8, ie. in the case of 7-Zip, choose "Add to archive..", set
"cu" as the parameters which will force the file names to be encoded as UTEF-8.

bIgW@RLED"

Releasing The Game

Add to Archive
Archive:
R v (]
Archive format: | Fip w | Update mode:
Add and replace files w |
Compression level: | Mormal w |
Options
Compression method: | Dieflate b | b O = _
Dictionany size: | 12 KB L | [] Compress shared files
Ward size: | 32 w | Encryption
Solid Block size: Enter password:
Number of CPU threads: /1
Feerter password:
Memary usage for Compressing: IME | |
Memony usage for Decompressing: 2MB [] Show Password
Split to volumes, bytes: Encryption method: ZipCrypto e |
L _ v|
Faramaters:
8 |
[QK] [Cancel] [Help]

7-Zip Add to Archive dialog
Create Zip files for the base BigWorld resources.

Navigate to the folder containing BigWorld's packed assets, and create the Zip files for its files and sub-
folders.

Create Zip files for the actual game assets.

Navigate to the game assets folder, and create the Zip files for its files and sub-folders.

Specify Zip files as paths in the paths.xml file, in order of precedence.

The paths.xml file's Path tag can be set either to a path, or to a Zip file. Usually, game asset folders/zip
files are listed before BigWorld resources folders/zip files. All paths must be specified relative to the client
executable.

Assuming the following;:

* Common BigWorld resources compressed to bwr es001. zi p.

* Final game assets compressed to r es001. zi p and r es002. zi p.

206

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Releasing The Game

* The resource packages are located next to client executable.

Your pat hs. xm file should look similar to this:

<r oot >
<Pat hs>
<Pat h> res001l. zip </ Pat h>
<Pat h> res002. zi p </ Pat h>
<Pat h> bwes001.zip </Path>
</ Pat hs>
</ root >

You can also combine Zip file paths with normal file system paths as well, so that you can have additional
assets in unzipped folder (this is required, for example, by streamed FMOD sound banks).

If your unzipped folder is called r esunpacked, then pat hs. xm will look like this:

<r oot >
<Pat hs>
<Pat h> res001. zip </ Pat h>
<Pat h> res002. zi p </ Pat h>
<Pat h> bwes001.zip </Path>
<Pat h> resunpacked </ Pat h>
</ Pat hs>
</root >

26.4. Prepare the game executable

e If this has not already been done, compile the final release of your game's executable. This can be done in
the VisualStudio's Configuration Manager dialog box (accessed by the Build — Configuration Manager
menu item).

The Active Solution Configuration drop-down list must be set to Consumer_Release.

* Copy binaries to their final location in the redistributable directory structure. The final structure is quite
flexible, as long as the resource paths are specified as relative to the executable. For example, if the
paths.xml described in the previous section is used, then the final structure would look like:

e [nstall Dir/bwlient.exe

Instal I Dir/res001. zip

Instal I Dir/res002. zi p

Install Di r/ bwes001. zi p

Install Di r/resunpacked/

bIgW@RED"

Chapter 27. Shared Development Environments

As the workflow of creating a game requires a large number of people working on a numerous components
simultaneously within a variety of environments it is nescessary to ensure that everybody can work together
in as seamless a manner as possible. This chapter aims to outline the key areas in which interaction is required
and the recommended methods to avoid conflicts.

Currently there are three areas that have been identified that may cause potential interaction conflict for an
unprepared development team:

1. Windows and Linux cross platform development.
2. Using BigWorld with a Version Control System.

3. DBMgr database conflicts.

27.1. Windows and Linux cross platform development

For anyone not familiar with both Windows and Linux, running a BigWorld server on a Linux box to test
game scripts and assets can be intimidating and error prone. Since designers and artists typically do most
of their work on Windows, the process of synchronising files between Windows and Linux machines can
be tedious.

The solution outlined below aims to simplify this task by having all assets and game scripts reside on a
Windows machine, with a Linux machine (which can be shared among multiple users) hosting and running
a BigWorld server for each user that requires their own development environment.

Linux Windows

BigWorld Server BigWorld Client

(Connect to server

............

Windows Share

>

%, "
............

Game resources Game resources

Sharing game resources between Windows and Linux
This solution can be summarised as follows:

1. A game developer on a Windows machine creates a network share of the root BigWorld directory (i.e.,
the directory containing bi gwor | d, f ant asydeno, and sr ¢ folders).

2. On the Linux machine, the Windows share from Step 1 is mapped to a directory and the relevant <r es>
directories and used when a BigWorld server is started.

Cross-mounting development resources has been found within the BigWorld offices to be the most effective
method for Windows based developers and artists to work, as all editable files reside on the machine they
are working on.

bIgW@RLED"

Shared Development Environments

This solution intentionally keeps the server binaries on the Linux box.

Running server executables that exist on Samba mounted filesystems can cause unex-
pected problems, and is not recommended.

Running server binaries from NFS mounted filesystems works correctly and is a rec-
ommended alternative.

27.1.1. Sharing resources from Windows

For the purposes of this example we assume that all the game resources have been checked out into a direc-
tory called C: \ Bi gVor | d.

To share the C: \ Bi gWor | d directory on the Windows machine, follow the steps below for your version of
Windows.

27.1.1.1. Windows XP

1. Browse to the C: \ drive in Explorer.

2. Select the Bi gWor | d directory and right-click it.

3. In the context menu, select the Sharing and Security... menu item.

4. On the mf Properties dialog box, select the Share This Folder option button.

5. In the Share Name field, type the name to share the folder by (in our example, mf-win).

6. Click the Permissions button.

7. In the Permission For mf dialog box's Group or User Names list box, select the Everyone item.

8. In the Permissions For Everyone list box's Full Control entry, select the Allow check box.
27.1.1.2. Windows 7

1. Browse to the C:\ drive in Explorer.

2. Select the Bi gWor | d directory and right-click it.

3. In the context menu, select the Properties menu item.

4. Select the Sharing tab.

5. Click the Advanced Sharing... button.

6. In the Advanced Sharing dialog box, select the Share this folder check box.

7. If necessary, click the Permissions button to enable all users access privileges to this share.

8. Click OK when finished.

27.1.2. Accessing Windows share from Linux

To assist the process of mounting the Windows share, BigWorld provides the script set up_wi n_dev. The
location of this script may differ depending on your edition.

Shared Development Environments

Indie Edition For customers using the Indie edition, set up_wi n_dev will be installed into /
opt/ bi gwor | d/ current/server/bin by the server RPM package. This di-
rectory has also been placed into your $PATH so you can run set up_wi n_dev
from any directory.

Commercial Edition Customers using the Commercial edition can find the setup_win_dev script lo-
cated in bi gwor | d/ t ool s/ server/install/setup_w n_dev. py.

Please note, however, that it was designed for developers working at BigWorld, and hence it uses default val-
ues appropriate for BigWorld as well. Before artists and game programmers use it, a sysadmin or program-
mer should edit this file to change the defaults to values appropriate for your development environment.

27.1.2.1. Assumptions and Requirements
This set up_wi n_dev script has following assumptions:
¢ The server binaries can be accessed on the Windows share.
* Your username on the Windows box is the same as your username on the Linux box.
* You are using CentOS 5 or later.
¢ Linux kernel with CIFS module. This should be contained within the default CentOS kernel.
The script will display a list of prerequisites upon startup, which are reproduced here for convenience:
* The user running the script has been entered into the / et ¢/ sudoer s file on the Linux machine.
For details see the system manual page with the command 'man sudoers'.
* You know the location of your home directory on the Linux machine.

This can generally be discovered by running the following command:

$ echo $HOMVE
/ hone/ al i ce

* You have shared the top level BigWorld directory from your Windows machine.
For details on how to achieve this see “Sharing resources from Windows” on page 210 .

* You may also require the Samba client programs. To install the Samba client, run the following command
as the root user:

yuminstall samba-client

27.1.2.2. Mapping a Windows share onto Linux

Once the requirements outlined above have been met, or any necessary modifications have been made to
your environment, running the set up_wi n_dev script will guide you through mounting a Windows share
using Samba onto the Linux machine.

Outlined below is a simple run through of the set up_wi n_dev program discussing each step.

When the program is first run, it attempts to establish root user privileges using the sudo command. This
enables the program to interact with the system devices nescessary to provide access to your Windows share.
This step may not be nescessary if you have recently performed another command using sudo. Enter the
password for the account you are currently logged in as.

bIgW@RLED"

Shared Development Environments

$ setup_wi n_dev
NOTE: If you are inmediately pronpted for a password, enter your *own*
password not that of the root user.

* Validating user has 'sudo' privileges
Passwor d:

Next we see that the program is preparing a destination directory for the Windows share to be placed under.
This directory defaults to $HOVE/ bi gwor | d_wi ndows_shar e.

* Setting up destination |ocation for Wndows resources

The next step involves entering information regarding the location of the Windows machine and the name of
the shared resources. If you are uncertain about any of the details attempt to access your Windows machine
from another machine in the network to establish the machine name and share name.

* Querying location of renote resources

Enter the hostnane of your Wndows machine: nyw ndowsnachi ne
Enter the share name of the shared BigWrld directory: BigWrld_indie

You now need to input the username and password required to access the Windows machine. The username
will default to the username of your unix account, however if your Windows login is different simply enter
that here.

We now need the usernane and password required to connect to the Wndows share
Usernanme [alice]: bob

Passwor d:

Confirm password:

The set up_wi n_dev program now outputs the resource name to be used when accessing the Windows
share. This resource name can be used by other Samba tools such as smbclient if you are having troubles
connecting.

Using renote | ocation: '//myw ndowsmachi ne/ Bi gWorl d_i ndi €'

Finally you will be asked if you wish to have the Windows share always available on the Linux machine.
This allows you to reboot or shutdown the Linux machine whenever you need to without having to re-
mount the Windows share. If you choose 'yes' a new file that is only readable by your user will be created in
$HOME/ . bw_shar e_credent i al s containing your username and password.

Do you want to autonount your W ndows share each tinme this Linux box boots?
This will place a file in your hone directory containing a clear-text copy
of your password that is only readable by your user. [yes]

The setup_win_dev program will now attempt to make the Windows shared resources available for you.

Pat ched /etc/fstab successfully

/I mywi ndowsmachi ne/ BigWrld indie is nounted at /hone/alice/
bi gwor | d_wi ndows_share

* Wndows directory successfully nounted

212 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Shared Development Environments

27.2. Using BigWorld with a Version Control System

It is strongly recommended that a version control system such as CVS, SVN or Perforce is used while de-
veloping a game using BigWorld. In doing so you allow numerous people within your development team
to remain up to date with changes and enable access to all parts of the project resources regardless of the
development platform of an individual.

27.2.1. Customers using the Commercial Edition

Most recipients of an SVN distribution should place the entire release received from BigWorld into their
version control system. This ensures that any changes to the BigWorld source code and resources are prop-
agated to all the game developers at once.

Some files should not be committed into the version control system. Please review the section “Files to ex-
clude from version control” on page 213 for further details.

27.2.2. Customers using the Indie Edition

27.2.2.1. Creating a project repository
Customers using the Indie edition should only commit their own project directories into version control.
Indie customers should only commit their own project directories into version control.

For example in the case of a new game called “my_game” it is recommended to commit the directory C:
\ Bi gWor | d\ my_garre into your version control system.

Some files should not be committed into the version control system. Please review the section “Files to ex-
clude from version control” on page 213 for further details.

27.2.2.2. Checking out an existing project

When setting up a new client machine run the installation procedures outlined in the Client Installation
Guide and then checkout your project into the new installation.

When setting up a new server machine run the installation procedures outlined in the Server Installation
Guide. You will then need to checkout your project into the home directory of the user running the server,
or follow the instructions outlined in “Windows and Linux cross platform development”on page 209 to
use resources mounted from a Windows machined. After preparing the server and the game resources for
use you will also need to ensure that the .bwmachined.conf file has been updated accordingly. Details on
the .bwmachined.conf file can be found in the Server Installation Guide.

27.2.3. Files to exclude from version control

There are numerous files that are automatically generated while running a the BigWorld Technology Suite
which are only relevant to the user currently running a program. These files should be excluded from
your version control system to avoid conflicts with other users. Each version control system provides its
own mechanism to ignore or exclude files. For example Subversion allows you to set a directory property
svn: i gnor e to a list of file match patterns for that directory.

Below is listed a set of files and directories that should be considered for adding exclusion rules to your
version control repository and configuration files.

27.2.3.1. General exclusion rules

Application log files such as pyt hon. | og orwor | dedi t or . | og should not be committed into your repos-
itory.

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=

Shared Development Environments

*.1og

When you run the game client or the tools, some resources will be created on-disk as 'processed’ or 'compiled’
versions of source files. These files are regenerated on demand based on comparing the timestamp of the
source with the timestamp of the automatically generated file. These files should not be committed into your
repository.

* . dds # Conpressed texture map files
* . anca # Conpressed animation files
*. font # Processed font files

font/*.dds # Cenerated font bitmaps

Python scripts used for client and server game logic will generate a compiled byte-code file when they are first
run or updated. As these files will be changing frequently during development they should not be included
in the repository to help reduce clutter with each changeset.

*.pyc

27.2.3.2. Tools specific exclusion rules

The art pipeline tools automatically generate user preference files when they are run. As these will differ
between artists they should be excluded from the repository.

bi gwor | d/ t ool s/ wor | dedi t or/ opti ons. xm
bi gwor | d/ t ool s/ wor | dedi t or/resour ces/ graphi cs_preferences. xm

bi gwor | d/ t ool s/ particl eeditor/options.xmn

bi gwor | d/ t ool s/ nodel edi t or/ opti ons. xm

The art tools Asset Browser also generates history files as it is being used.

bi gwor | d/ t ool s/ nodel edi t or/resources/ ual / hi story. xm
bi gwor | d/ t ool s/ nodel edi t or/ resour ces/ ual / favouri tes. xm

bi gwor | d/ t ool s/ particl eeditor/resources/ual/history.xmn
bi gwor | d/ t ool s/ particleeditor/resources/ual/favourites.xn

bi gwor | d/ t ool s/ wor | dedi t or/resources/ ual / hi story. xm
bi gwor | d/ t ool s/ wor | dedi t or/ resources/ ual / favouri tes. xm

World Editor will create a space. | ocal set ti ngs file when creating a new space.
<your _gane>/res/ spaces/ <your _new_space>/ space. | ocal settings

World Editor will also create two files containing a space map. Both these files must be committed to revision
control or neither.

<your _gane>/res/ spaces/ <your _space>/ space. t hunbnai | . dds
<your _gane>/res/ spaces/ <your _space>/ space. t hunbnai |l . ti nest anps

214 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Shared Development Environments

The BigWorld game client will also generate a preferences file in the directory it is run from.

Substitute 'fantasydeno' for your game nane
f ant asydeno/ gane/ pr ef erences. xni

27.3. DBMgr database conflicts

For customers using a MySQL database to store persistent data, shared development environments can
present an issue with multiple servers contending for the same database.

The database used by DBMgr is exclusive per server cluster instance so it is nessecary for multiple users
running a server on the same machine to use different databases. To do this requires adding or modifying the
the <res>/server/bw.xml configuration file entries for dbMyr / host and dbMyr / dat abaseNane. Specifically
the dat abaseName should be unique per user. For more information on these options refer to the Server
Operations Guide section “DBMgr Configuration Options”.

bIgW@RED"

#dest=
#dest=
#dest=

	Client Programming Guide
	Table of Contents
	Chapter 1. Overview
	1.1. Client in context
	1.2. Outline
	1.3. Resource search paths
	1.3.1. paths.xml
	1.3.2. Command line switch

	1.4. Configuration files
	1.4.1. File resources.xml
	1.4.2. File <engine_config>.xml
	1.4.3. File <scripts_config>.xml
	1.4.4. File <preferences>.xml

	1.5. Coordinate System

	Chapter 2. User Input
	2.1. Key events
	2.1.1. Character events
	2.1.2. Auto-repeat
	2.1.3. Sequence of events
	2.1.4. Sinking events
	2.1.5. Mouse cursor position

	2.2. Mouse
	2.2.1. Movement
	2.2.2. Buttons

	2.3. Joystick
	2.3.1. Axis events
	2.3.2. Buttons
	2.3.3. Controlling player direction
	2.3.4. Avatar movement

	Chapter 3. Cameras
	3.1. The Cursor Camera
	3.2. The Free Camera
	3.3. The FlexiCam

	Chapter 4. Terrain
	4.1. Advanced Terrain
	4.1.1. Overview
	4.1.2. Key Features
	4.1.3. Texturing
	4.1.4. Lighting
	4.1.5. Shadows
	4.1.6. LOD
	4.1.6.1. Geometry
	4.1.6.2. Collision Geometry
	4.1.6.3. Texture
	4.1.6.4. Normal maps

	4.1.7. Memory footprint
	4.1.8. terrain2 resources
	4.1.8.1. heights sections
	4.1.8.2. layer sections
	4.1.8.3. normals & lodNormals sections
	4.1.8.4. holes section
	4.1.8.5. horizonShadows section
	4.1.8.6. lodTexture.dds section
	4.1.8.7. dominantTextures section

	4.1.9. terrain section in space.settings

	4.2. Simple Terrain
	4.2.1. Key features
	4.2.2. Overview
	4.2.3. Chunking
	4.2.4. Disk footprint
	4.2.5. Memory footprint
	4.2.6. Texture spacing

	4.3. Terrain specular lighting

	Chapter 5. Cloud shadows
	5.1. Requirements
	5.2. Implementation
	5.3. Effect File Implementation
	5.4. Tweaking

	Chapter 6. Chunks
	6.1. Definitions
	6.2. Implementation files
	6.3. Details and notes
	6.3.1. Includes
	6.3.2. Models
	6.3.3. Entities
	6.3.4. Boundaries and portals
	6.3.5. Transforms
	6.3.6. Other items

	6.4. Loading and ejecting
	6.5. Focus grid
	6.5.1. Hull tree
	6.5.2. Quad tree

	6.6. Collisions
	6.7. Sway items

	Chapter 7. Entities
	7.1. Entity Manager
	7.2. Entity scripts
	7.3. Entity resources
	7.3.1. Preloads
	7.3.2. Prerequisites

	Chapter 8. User Data Objects
	8.1. .1. User Data Objects are Python script objects
	8.2. .2. Accessing from the Client

	Chapter 9. Scripting
	9.1. Functional components
	9.1.1. Entity skeleton
	9.1.2. Python script object
	9.1.3. Model management
	9.1.4. Filters
	9.1.5. Navigation
	9.1.5.1. Configuring a Space to Use Navigation
	9.1.5.2. Distributing Navigation Meshes with the Client
	9.1.5.3. BigWorld.navigatePathPoints()
	9.1.5.4. BigWorld.findRandomNeighbourPoint()
	9.1.5.5. BigWorld.findRandomNeighbourPointWithRange()

	9.1.6. Action Queue
	9.1.6.1. Debugging animations

	9.1.7. Action Matcher
	9.1.7.1. Using the Action Matcher

	9.1.8. Trackers
	9.1.9. Timers and Traps
	9.1.9.1. Pot
	9.1.9.2. Mat

	9.2. Personality script
	9.2.1. init
	9.2.2. fini
	9.2.3. handleKeyEvent
	9.2.4. handleMouseEvent
	9.2.5. handleAxisEvent
	9.2.6. handleIMEEvent
	9.2.7. handleLangChangeEvent
	9.2.8. onChangeEnvironments
	9.2.9. onGeometryMapped
	9.2.10. onRecreateDevice
	9.2.11. onTimeOfDayLocalChange
	9.2.12. start

	Chapter 10. Models
	10.1. Performance
	10.2. Hard Points
	10.2.1. Naming scheme
	10.2.2. How it works
	10.2.3. Syntax
	10.2.4. Data

	10.3. SuperModel
	10.3.1. Design
	10.3.2. SuperModel classes
	10.3.2.1. ChunkModel
	10.3.2.2. PyModel

	Chapter 11. Animation System
	11.1. Basic keyframed animations
	11.2. Animation layering and blending
	11.3. Animation data files
	11.4. Animation data streaming
	11.5. Actions

	Chapter 12. Integrating With BigWorld Server
	12.1. Overview
	12.2. Generating Code With the ProcessDefs tool
	12.2.1. ProcessDefs/GenerateCPlusPlus Operation
	12.2.2. Generating C++ Code

	12.3. Customising ProcessDefs Output
	12.3.1. Modifying the Generated Code Templates
	12.3.2. Implementing a New Processing Module

	12.4. The connection_model Library
	12.4.1. Dependencies
	12.4.2. BWConnection
	12.4.2.1. LoginApp Public Key
	12.4.2.2. Entity Definitions Digest
	12.4.2.3. Ticking the Connection Instance
	12.4.2.4. Logging Into a Server

	12.4.3. BWEntity
	12.4.3.1. Avatar Filtering

	12.4.4. BWEntityFactory
	12.4.5. BWEntitiesListener
	12.4.6. Server Discovery
	12.4.6.1. Probing a Running Server

	12.5. Example Clients
	12.5.1. python/simple
	12.5.2. c_plus_plus/sdl
	12.5.3. c_plus_plus/ios

	Chapter 13. Server Communications
	13.1. Login
	13.2. Online
	13.3. Firewalls

	Chapter 14. Particles
	14.1. Particle Systems
	14.2. Particle Actions
	14.2.1. Source actions
	14.2.2. Movement actions
	14.2.3. Sink actions
	14.2.4. Alteration actions

	14.3. Particle types
	14.4. Attaching particle systems to bones

	Chapter 15. Detail Objects
	15.1. Flora
	15.1.1. Placement
	15.1.1.1. Visual consistency

	15.1.2. Implementation
	15.1.3. Frame coherency
	15.1.4. Animation
	15.1.5. Lighting
	15.1.6. File format

	Chapter 16. Water
	16.1. Code overview
	16.2. Scene generation
	16.3. Render settings
	16.3.1. Setting the quality

	16.4. Simulation
	16.5. Rain
	16.6. Water depth
	16.7. Watchers

	Chapter 17. Graphical User Interface (GUI)
	17.1. C++ GUI support
	17.1.1. SimpleGUIComponent
	17.1.2. GUIShader
	17.1.3. SimpleGUI

	17.2. Python GUI support
	17.3. XML
	17.4. XML and Python
	17.4.1. onLoad(self,section)
	17.4.2. onBound(self)
	17.4.3. onSave(self,section)

	17.5. Input events
	17.5.1. Keyboard Events
	17.5.2. Axis Events
	17.5.3. Mouse Events
	17.5.3.1. Button events
	17.5.3.1.1. handleMouseButtonEvent
	17.5.3.1.2. handleMouseClickEvent

	17.5.3.2. Cross events
	17.5.3.3. Move events

	17.5.4. Drag-and-drop events
	17.5.4.1. Drag events
	17.5.4.1.1. handleDragStartEvent
	17.5.4.1.2. handleDragStopEvent

	17.5.4.2. Drop events
	17.5.4.2.1. handleDragEnterEvent
	17.5.4.2.2. handleDragLeaveEvent
	17.5.4.2.3. handleDropEvent

	17.5.5. Component PyGUI

	17.6. Mouse cursor

	Chapter 18. Fonts
	18.1. Creating and Using Fonts
	18.1.1. Creating a Font Definition File
	18.1.1.1. Secondary Font Families

	18.1.2. Preloading Glyphs
	18.1.3. Specifying the widest character
	18.1.4. Displaying Text

	18.2. Artist modified Fonts
	18.2.1. Generating a Snapshot of a Font's Glyph Cache
	18.2.2. Modifying the Font Texture
	18.2.3. Explaining the Font Grid .dds File

	Chapter 19. Input Method Editors (IME)
	19.1. Components of an IME interface
	19.1.1. Examples
	19.1.2. Recommended Reading

	19.2. IME Python API
	19.2.1. Enabling IME
	19.2.2. Receiving IME events
	19.2.2.1. BWPersonality.handleInputLangChangeEvent
	19.2.2.2. BWPersonality.handleIMEEvent
	19.2.2.3. Finalising characters

	19.2.3. Displaying the IME
	19.2.3.1. Japanese
	19.2.3.2. Korean

	Chapter 20. BigWorld Web Integration
	20.1. Architecture
	20.2. Using the Web Integration
	20.2.1. In Game Web GUI Component
	20.2.1.1. Creating an Interactive 2D Web GUI Component
	20.2.1.2. Creating a Game Integrated 2D Web GUI Component

	20.2.2. In Game Web Screen
	20.2.2.1. Creating an In Game Web Screen

	20.2.3. Texture Mapping of Web Pages into a world object

	Chapter 21. Sounds
	Chapter 22. 3D Engine (Moo)
	22.1. Features
	22.1.1. D3DXEffects vertex and pixel shader support
	22.1.2. Cubic environment maps
	22.1.3. Render targets
	22.1.4. Lighting
	22.1.4.1. Light maps
	22.1.4.1.1. Flora light map
	22.1.4.1.2. Sky light map

	22.1.5. Normal mapping/bump mapping
	22.1.6. Terrain
	22.1.7. Animation
	22.1.8. Vertex morphing

	22.2. Supported video cards
	22.3. Hardware requirements for special effects
	22.4. Visual
	22.5. EffectMaterial
	22.5.1. Format
	22.5.2. Automatic variables/Globals
	22.5.3. Artist-editable/tweakable variables
	22.5.4. Multiple-layered effects per material
	22.5.5. Recording material states
	22.5.6. Using BigWorld .fx files with 3ds Max

	22.6. Visual channels
	22.6.1. Sorted channel
	22.6.2. Internal sorted channel
	22.6.3. Shimmer channel
	22.6.4. Sorted shimmer channel
	22.6.5. Distortion channel

	22.7. Textures
	22.7.1. Texture detail levels/compression
	22.7.2. Animated textures
	22.7.3. Applying a code-generated texture to a character
	22.7.3.1. Loading textures from disk
	22.7.3.2. Manipulate individual pixels within a texture
	22.7.3.3. Using a shader to build a custom texture
	22.7.3.4. Dealing with the texture cache
	22.7.3.5. Assigning custom textures to a model

	22.8. Vertex declaration
	22.8.1. File format

	22.9. Graphics settings
	22.9.1. Customising options
	22.9.1.1. TEXTURE_QUALITY and TEXTURE_COMPRESSION
	22.9.1.2. SHADOWS_COUNT
	22.9.1.3. FLORA_DENSITY
	22.9.1.4. FAR_PLANE
	22.9.1.5. OBJECT_LOD

	22.9.2. Using settings
	22.9.2.1. Auto-detecting settings
	22.9.2.2. GraphicsPresets class
	22.9.2.3. Delayed settings
	22.9.2.4. Settings that require restarting the client

	22.10. Taking Screenshots
	22.10.1. High Resolution Screenshots
	22.10.1.1. The backBufferWidthOverride watcher
	22.10.1.2. How to take a high resolution screenshot
	22.10.1.3. Troubleshooting
	22.10.1.4. Hardware recommendations

	22.11. Dynamic Entity Shadows
	22.11.1. Splodges
	22.11.2. Shadow maps

	Chapter 23. Post Processing
	23.1. Pipeline Overview
	23.2. Creating a Custom Post-Processing Effect
	23.2.1. Creating the Custom Pixel Shader
	23.2.2. Previewing the Results
	23.2.3. Writing a Custom Pixel Shader for Previewing the Results
	23.2.4. Authoring a Post-Processing Effect in Python

	23.3. Render Targets
	23.4. Performance
	23.4.1. Measuring the Time Spent on the GPU
	23.4.2. Background Loading

	Chapter 24. Job System
	24.1. Overview
	24.2. Under the Hood
	24.3. Wrapper API
	24.4. Job System API
	24.5. An Example
	24.6. Implementing it

	Chapter 25. Debugging
	25.1. Build configuration — conditional feature inclusion
	25.2. Watchers
	25.2.1. Watcher types
	25.2.2. Using watchers
	25.2.3. Watcher Console
	25.2.4. Remote watcher access

	25.3. Memory tracking
	25.3.1. ResourceCounters overview
	25.3.2. Memory allocation taxonomy
	25.3.3. Case studies
	25.3.3.1. DirectX textures
	25.3.3.2. Binary blocks
	25.3.3.3. Terrain height maps
	25.3.3.3.1. CommonTerrainBlock2* terrainBlock2_
	25.3.3.3.2. TerrainQuadTreeCell quadTree_
	25.3.3.3.3. Image<float> heights_

	25.3.3.4. Terrain texture layers

	25.3.4. Displaying the memory tracking console

	25.4. Scripts
	25.4.1. Python Console
	25.4.2. Remote Python Console
	25.4.3. Script reloading
	25.4.4. Common errors

	25.5. Script interactive debugging
	25.6. Client Access Tool (CAT)
	25.6.1. Connecting to the client
	25.6.2. CAT Scripts
	25.6.3. Creating scripts for CAT
	25.6.3.1. Block args
	25.6.3.1.1. Basic Elements
	25.6.3.1.2. Variables
	25.6.3.1.3. Watchers

	25.6.3.2. Block commands

	25.7. Timing

	Chapter 26. Releasing The Game
	26.1. Configure the engine for limited user accounts
	26.2. Prepare the assets
	26.2.1. bin_convert
	26.2.2. res_packer
	26.2.3. Processing done in bin_convert and res_packer
	26.2.4. Files and folders that do not need to be shipped to the end user
	26.2.5. Font Licensing issues with bin_convert and res_packer

	26.3. Zip assets and specify paths
	26.4. Prepare the game executable

	Chapter 27. Shared Development Environments
	27.1. Windows and Linux cross platform development
	27.1.1. Sharing resources from Windows
	27.1.1.1. Windows XP
	27.1.1.2. Windows 7

	27.1.2. Accessing Windows share from Linux
	27.1.2.1. Assumptions and Requirements
	27.1.2.2. Mapping a Windows share onto Linux

	27.2. Using BigWorld with a Version Control System
	27.2.1. Customers using the Commercial Edition
	27.2.2. Customers using the Indie Edition
	27.2.2.1. Creating a project repository
	27.2.2.2. Checking out an existing project

	27.2.3. Files to exclude from version control
	27.2.3.1. General exclusion rules
	27.2.3.2. Tools specific exclusion rules

	27.3. DBMgr database conflicts

