How To Avoid Files Being
Loaded in the Main Thread

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

1. Entity Preloads ..o 5
2 ENTT LY. Prer @QUI ST T ES(1) wuuuieiiiiiieiiii ettt ettt ettt ettt ettt e ettt e e ettt e e e eaaa e eees 7
2.1. Using ENtity. prerequi Si T eS() .o 8
3. Dynamically loading reSOULCEScccccciiiiiiiiiiiiiiii 11
3.1. Using Enti ty. prerequi sites and Bi g\Wr | d. | oadResour ceLi StBE)cccccvvvveeenenes 11

b [Y
IgW ~NEU i

Chapter 1. Entity Preloads

When the client starts up, it will query each entity Python module for a function named pr el oad. Resource
names returned by this function will be loaded on client startup and kept in memory for the entire life-time
of the client (i.e. it will be instantly available for use at any time). This is useful for commonly used assets
to avoid potentially loading and re-loading at a later time. The tradeoff, however, is that the client will take
longer to start and will use more memory (if the resource isn't actually being used at some point).

To use the preloads mechanism, create a global function called pr el oad in the relevant entity module. It
must take a single parameter which is a Python list containing resource to preload. Modify this list in place
(e.g. using list.append or list concatenation), inserting the string names of each resource to be preloaded by
the client.

For example,

Avat ar. py
i mport BigWrld

class Avatar(BigWrld.Entity):
def __init__(self):

def preload(list):
|ist.append("characters/avatars/hunan_avat ar. nodel ")
|'ist.append("system maps/fx_flare_glow tga")

The type of resources which can be prel oaded are,
e Fonts

e Textures

* Shaders

* Models

bIgW@RLD" 5

Chapter 2. Entity. prerequi sites()

Assets may also be loaded from specific requests issued by the scripted logic. For instance, when the player
equips a special item for the first time, that item's model and texture will have to be in memory before it can
be displayed. In these cases, if that resource is not already resident, then the main thread will pause, waiting
for the load request to complete.

To prevent this kind of problems from creeping into the game, the BigWorld Client
issues a warning in the debug output whenever an access to disk is requested from the
main thread while the 3D scene is visible'. Programmers are encouraged to fix these
warnings as soon as they start to pop-up.

The pr er equi si t es() method is the recommended method of pre-loading the resources that may be re-
quired by the scripts in order to avoid pauses in the gameplay. It allows gameplay programmers to specify
which assets can potentially be used by an entity instance. It will guarantee that the entity will not enter the
world until all required resources have been loaded from disk, and are ready to be used by the main thread .

In a truly dynamic game environment it is not possible to anticipate which resources
will be requested by the scripts. In these cases, Bi g\Wor | d. | oadResour celLi st BE)
can be used to load further resources.

Although the entity entry into the world may be delayed, that usually is not noticeable,
since most entities enter the player Aol at a great distance. Even when that is not the
case (after teleporting to a location close to the player, for instance), that is still better
than pausing the game or having avatars swing invisible swords

The function differs from “Preloads” by working on a per-entity instance basis, instead of globally. That
allows a much more rational management of resources, since only assets with real potential of being used
are stored in memory at any one time. Entity preloads on the other hand, are kept in memory for the whole
life of the client application.

The fact that prerequisites work on a per-entity instance basis, as opposed to per-entity type, allows pro-
grammers to customise the prerequisites list depending on the state of the entity, further adding to the ef-
ficiency of the system. When a non-player entity enters the player Aol, for instance, only those items that
the entity is currently carrying would be required to load. The Entity Manager system guarantees that the
entity's properties are up-to-date before the prerequisites list is requested.

For details on this function, see the Client Python API's entry Class List - Entity, sec-
tion Callback Method Documentation.

'For details, see the Client Python API's entry Modules — BigWorld, section Member Functions, function
Bi gWor | d. wor | dDr awEnabl ed.

DIgW@RLD"

#dest=
api_python/client/index.html#dest=Client_Python_API
api_python/client/index.html#dest=Client_Python_API

Entity. prerequisites()

2.1. Using Entity. prerequisites()

TheEntity. prerequisites() methodis,infact, very straightforward to use. After an entity is initialised,
alongside its properties, but before the onEnt er Wor | d() method is called, the Ent i t yManager class calls
the prer equi si t es() method on the entity. The method must return a list of all assets that must be loaded
before the entity enters the world.

A simple example is illustrated below:

cl ass TradeKi osk(BigWwrld.Entity):
MODEL = ' nodel s\ ki osk. nodel '

def prerequisites(self):
return list even if it is just a single file
return [TradeKi osk. MODEL]

def onEnterWorld(self, prerequisites):
sel f.nodel = prerequisites[TradeKi osk. MODEL]

Simple example of loading prerequisite assets

A more realistic scenario is when the required resources vary according to the entity state. In this case, a
single entity type is used to model all types of pickable flowers. The t ype property is used to differentiate
each instance. Since t ype is guaranteed to be initialised when the pr er equi Si t es method is called, the
script can customise which resources are loaded. In this case, the type property will not change over the
lifetime of this particular entity, so we only need to load resource once.

cl ass Pickabl eFl ower (Bi gWorl d. Entity):

ASSETS = {
"lili' : ('rmodels\lili.nmodel', 'effects\sparkles.xn")
"daisy' : ('nodels\daisy.nodel', 'effects\spirits.xm")
"orchid" : ('nodels\orchid.nodel', 'effects\petals.xm")
}

Pl CK_SOUND = ' sounds\ pi ck_f | ower. wav'

def prerequisites(self):
prereq = []
pr ereq. append(Pi ckabl eFl ower . ASSETS[sel f. type][0])
prereq. append(Pi ckabl eFl ower . ASSETS[sel f. type][1])
prereq. append(Pi ckabl eFl ower . Pl CK_SOUND)
return prereq

def onEnterWrld(self, prerequisites):
nodel varies according to the type of flower.
prerequisites can be accessed |like a map, and returns python objects.
in this case, we know that .nodel files becone PyMdels.
sel f.nodel = prerequisites[PickableFl ower. ASSETS[self.type][0]]

it is up to us whether or not to hold onto the PyResourceRefs instance
passed into onEnterWrld. In this case, we will be using the particle
systemat a later date, so we'll sinply hold onto the object until it
i s needed.

sel f.prerequisites = prerequisites

def onPi ckEvent (self):
picking sound effect is constant between types
sel f. nodel . pl aySound(Pi ckabl eFl ower. Pl CK_SOUND)

8 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Entity. prerequisites()

particle effect varies according to the type of flower

particles = self.prerequisites[PickableFl ower. ASSETS[sel f.type][1]]
sel f.nodel .root. attach(particles)

particles.force(1)

Another example of load prerequisite assets

bIgW@RLD" 9

Chapter 3. Dynamically loading resources

There are times when you will need to dynamically load resources for an entity, instead of just when they
enter the world. This might be due to a property change causing the entity's model to change, or perhaps
the entity switches an item it is holding to one not yet seen before. In these cases, you will need to load and
display a new model or other resource, and you will need load them in the background thread.

The BigWwrld.|oadResourceLi stB&) method works just like a dynamic version of
Entity. prerequisites, it returns an object which existence ties the lifetime of the requested resources
to itself. The actual resource loaded can be retrieved from the PyResour ceRef s instance that is passed into
the callback function. The types of Python resources that can be retrieved are:

* Models (type : PyModel)

e Particle Systems (type : PyMetaParticleSystem)
¢ Textures (type : PyTextureProvider)

* XML files (type : PyDataSection)

* FXfiles (type : PyMaterial)

The Pi xi e. | oadBGmethod can be used to asynchronously load a PyMet aPar ti cl eSyst em For details
on this method, see the Client Python API.

Additionally Bi gWor | d. | oadResour ceLi st B) canbe used to hold onto C++ only resources, when you
know that these are causing a problem. Here are the following types that can be loaded, and held onto, but
not retrieved in Python:

* Visuals

* Lens Effects

3.1.Using Entity. prerequisites and
Bi gWor | d. | oadResour celLi st BE)

The Bi gWr | d. | oadResour ceLi st BE) method is useful for more complicated entities. For example,
say you have an entity that can change its look at anytime to any of a large number of combinations. In this
case, you can setup your initial look using prerequisites, but there is no way of knowing at which resources
will be required in the future.

In order to implement this case, load the model asynchronously when needed, as in the following example:

cl ass Pickabl eFl ower (Bi gWorl d. Entity):

ASSETS = {
“lili' : ("rodels\lili.nmodel', 'effects\sparkles.xnm")
"daisy' : ('nodels\daisy.nmodel', 'effects\spirits.xm")
"orchid" : ('nodels\orchid.nodel', 'effects\petals.xm")
}

Pl CK_SOUND = ' sounds\ pi ck_f | ower. wav'
def __init__(self):

pass

This event handler is called after the entity is initialised,
and its initial properties have been set. W should return

bIgW@RLD" 8

api_python/client/index.html#dest=Client_Python_API

Dynamically loading resources

a list of resources that nust be |oaded into nenory before
onEnterWorld is called.
def prerequisite(self):

prereqs = []

prereqs += Pickabl eFl ower. Pl CK_SOUND

prereqs += Pickabl eFl ower. ASSETS[sel f. type]

return prereqgs

This event handler is called when the entity is first visible to
the client, and when the prerequisite resources have been | oaded.
The prerequisites paraneter is a PyResourceRefs instance, and
can be used both to access the | oaded resources, and to nanage
their lifetine.
def onEnterWorl d(sel f, prerequisites):

sel f.set_type(-1, prerequisites)

This event handler is called whenever the entity type property
is changed. This can occur at anytinme. |If we are calling this
directly fromonEnterWrld, the resources are already |oaded and
we can use themdirectly. O herw se we nmust queue up an
asynchronous | oad of the required resources.
def set_type(self, old_type, prerequisites = None):
if self.type != old_type
if prerequisites == None:
resourceli st = Pi ckabl eFl ower. ASSETS[sel f. t ype]
Bi gWor | d. | oadResour ceLi st BG resourcelist, self.onlLoad)
el se:
sel f.onLoad(prerequisites)

This user-defined call back function is called either when the

| oadResour celLi st Bg nmet hod has finished, or is called by ourselves

fromenterWrld

def onLoad(self, resourceRefs):
sel f.nodel = resourceRefs[Pickabl eFl ower. ASSETS[sel f.type][0]]
sel f.particles = resourceRefs[Pickabl eFl ower. ASSETS[sel f.type][1]]
sel f.nodel .root. attach(self.particles)

def onPi ckEvent (sel f):
picking sound effect is constant between types
sel f. nodel . pl aySound(Pi ckabl eFl ower . PI CK_SOUND)
sel f.particles.force(1)

Asynchronously loading the model

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

	How To Avoid Files Being Loaded in the Main Thread
	Table of Contents
	Chapter 1. Entity Preloads
	Chapter 2. Entity.prerequisites()
	2.1. Using Entity.prerequisites()

	Chapter 3. Dynamically loading resources
	3.1. Using Entity.prerequisites and BigWorld.loadResourceListBG()

