
How To Build a Friends List

BigWorld Technology 2.1. Released 2012.

Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

iii

Table of Contents
1. Introduction .. 5
2. Features ... 7
3. Example Code ... 9

3.1. Where should the friends list be stored? ... 9
3.2. Admirers ... 9
3.3. DBID ... 9
3.4. Persistent friends list .. 10
3.5. Client friendsList ... 11
3.6. Using list indexes as friend identifiers .. 11
3.7. Base online friends list .. 12
3.8. Console commands ... 12
3.9. Initialisation and destruction ... 13
3.10. Adding and deleting friends .. 15
3.11. Interacting with friends ... 18
3.12. Declaring the methods ... 21

4. Variations .. 23
4.1. Asking for permission to be someone’s friend ... 23
4.2. Enforcing mutual friendship ... 23
4.3. Matching request and response ... 24

5

Chapter 1. Introduction
Most MMOGs allow a player to designate a list of other players as friends. These friends are stored in a friends
list. Players like to be notified when their friends log on or off. The player is usually able to interact with a
friend (e.g., chat) directly using the friends list without having to be in close proximity to the friend in the
game world.

For an alternative approach to friends lists and integrating friend presence notification mechanisms please
refer to the document How To Use XMPP With BigWorld.

howto_xmpp#dest=HowTo_XMPP

7

Chapter 2. Features
In this example, we will implement the following features:

• Add and delete a friend by username from a player’s friends list. The friend does not need to acknowledge
that he is being added.

• Player will be notified when his friends log on and off.

• Player can see a list of his friends and their current status (i.e., online or offline).

• Send a message to an online friend regardless of where he is in the game world.

• Request an online friend’s health and location, regardless of where he is in the game world.

For details on how to implement other variants of friends list, see Variations on page 23 .

Note

We are placing a fixed limit on the number of friends a player can have, which influ-
ences the design.

The limit is defined by the constant MAX_FRIENDS in the base part of Avatar.

9

Chapter 3. Example Code
The example code is part of the FantasyDemo example game.

• In FantasyDemo, the player entity is called Avatar.

• The example does not implement any graphical UI elements. It uses the FantasyDemo console for user
interactions.

3.1. Where should the friends list be stored?

In this example, the friends list is part of the player entity (Avatar).

Since friends list is persistent, it needs to be part of the base of the player entity. But because the list is accessed
often in the client, there will be a copy of it in the client part of the player entity as well.

3.2. Admirers

To speed up the notification process, each Avatar base also stores a list of admirers, i.e., other players who
have added the player to their friends list.

Thus, when player logs on or off, Avatar's base can notify all interested parties without having to search
through friends list of all players in the database.

From player A’s perspective:

• The friends list is a list of players A is interested in.

• The admirers list is a list of players that are interested in A.

Note

UNLIMITED ADMIRERS?

Though there is a limit on the number of friends that a player can have, there is no limit
on the number of admirers. Since each admirer must correspond to someone else’s friend,
the maximum total storage cost is:

number of players × max. friends per player.

Since friends are limited for each player, from a system-wide perspective, admirers are
limited as well.

Still, there is the possibility that one player is spectacularly popular and has an incred-
ibly large admirers list. This will result in a long delay when the player logs on or off,
as Avatar's base notifies player’s online status to each of his admirers.

In extreme circumstances, the notification process may block the game on server, and
thus have to be processed on a separate thread. For simplicity, we do not handle this
case in our example.

3.3. DBID

A DBID can uniquely identify an entity within a type (e.g., Avatar), whether the entity is running or is just an
entry in the database.

Example Code

10 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Since lookup by DBID is quicker than by name, Avatar's base also stores friend’s DBID (alongside its name)
in friends list.

In fact, the admirers list is a list of DBIDs, since we are not concerned about players' names.

DBIDs are 64-bit integers. They are defined in <res>/scripts/entity_defs/alias.xml for conve-
nience:

<root>
 ...
 <DBID> INT64 </DBID>
 ...
</root>

Excerpt of <res>/scripts/entity_defs/alias.xml

3.4. Persistent friends list

We declare the persistent properties of Avatar in <res>/scripts/entity_defs/Avatar.def:

<root>
 ...
 <Properties>
 ...
 <friendsList>
 <!-- List of tuples: (string, DBID) -->
 <Type> PYTHON </Type>
 <Flags> BASE </Flags>
 <Default> [] </Default>
 <Persistent> true </Persistent>
 </friendsList>
 <admirersList>
 <Type> ARRAY <of> DBID </of> </Type>
 <Flags> BASE </Flags>
 <Default> [] </Default>
 <Persistent> true </Persistent>
 </admirersList>
 ...
 </Properties>
 ...
</root>

Excerpt of <res>/scripts/entity_defs/Avatar.def

The friendsList variable is a Python list of tuples of player's friends' names and their DBIDs.

Because the properties are declared as <Persistent>, when the base of the Avatar entity is destroyed, the
content of the friendsList and admirersList is written to the database. When the base of the Avatar
entity is re-created, both lists are initialised with data from the database. The lists are initialised with their
<Default> value if there is no data in the database.

Example Code

11

Note

Why isn't the BASE_CLIENT flag used for friendsList?

It was mentioned earlier in this document that a copy of friends list should be kept on
the client part of the Avatar entity because it is frequently accessed there.

So it would seem logical to use the BASE_CLIENT flag, as this would make the list
automatically replicated to the client as well.

Unfortunately, this would be true only during initialisation. Changes to friends list
during the lifetime of the Avatar object would not be propagated between the client
and the base.

Hence, it is made explicit that friendsList variable in the base and the client are
separate ones, and that they need to be kept in sync manually.

3.5. Client friendsList

Since the BASE_CLIENT flag is not used, the structure of the friendsList variable on the client does not
need to be identical to the one on the base.

Therefore, the client's friendsList variable is implemented as a Python list of tuples (<friend’s name>,
<whether they are online>), dropping DBID because it is not used in the client.

3.6. Using list indexes as friend identifiers

Even though the friendsList variable in the client and the base are different lists, both have the same
order of items in them.

This allows the Avatar entity to use the list index as the identifier for a friend when communicating between
the client and base.

The index will save on communication costs (it is only one byte if a player cannot have more than 256 friends)
and will allow faster list lookup.

The friends list index is defined in <res>/scripts/entity_defs/alias.xml for convenience, as well
as for consistency, in case you need to implement lists with more than 256 friends.

<root>
 ...
 <FRIENDIDX> UINT8 </FRIENDIDX>
 ...
</root>

Excerpt of <res>/scripts/entity_defs/alias.xml

Example Code

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note

Indexes and race conditions

Because the Avatar entity is using indexes in communications between the client and
the base, both lists have to be kept in sync at all times, otherwise the index in the client
may correspond to a different friend than at the base.

This is impossible to achieve in the presence of race conditions.

For example, if someone modifies the list in the base, the base sends an update to the
client. But the client sends a message to the base prior to reception of the update mes-
sage, so it may contain an index that refers to a different friend.

In this document's example, the only operation that can make indexes inconsistent is
deleting a friend in the middle of the list. Hence, the Avatar entity could handle the
race condition by setting the list entry to "empty", instead of removing it, and then re-
using that slot later on. For simplicity, this is not shown.

3.7. Base online friends list

The friendsList variable as defined in Avatar.def does not include any field for storing the online
status of a friend, i.e., whether he is currently online or offline. This is because the online state is volatile and
should not be persistent.

Therefore, the Avatar base creates an additional list called friendBases, which is a list of mailboxes to
the bases of friends that are currently online. The index of items in friendBases and friendsList
should match, i.e., friendBases[i] should be the base for the friend in friendsList[i]. If the friend is
not currently online, friendBases[i] is set to None.

This is how you would declare/initialise friendBases as any ordinary Python member variable in <res>/
scripts/base/Avatar.py:

class Avatar(BigWorld.Proxy, AvatarCommon):

 def __init__(self):

 self.friendBases = []

Excerpt of <res>/scripts/base/Avatar.py

Note

friendBases not in Avatar.def

Note that it is not necessary to declare non-persistent properties in .def file.

3.8. Console commands

This example uses the FantasyDemo console for user interaction.

We will add the following commands to the console: addfriend, delfriend, listfriends, msgfriend,
and infofriend.

Example Code

13

Commands begin with the '/' character, so the user would type "/addfriend simon" to add simon as a
friend, for example.

For the purposes of this document, typing the command "/addfriend" would automatically call the
Avatar.addFriend() method on the client. And FantasyDemo.addChatMsg(-1, <message>)
outputs a message to the console.

For those interested in more details, look at <res>/scripts/client/Helpers/ConsoleCommands.py
file and search for its usage in Python code.

3.9. Initialisation and destruction

Described below is the mechanism by which a friend list is created and destroyed.

• The steps during initialisation:

• On the base, send the friends list to the client.

• On the base, find out which friends are currently online and store their base mailboxes in friendBases.
Tell the client which friends are online.

• On the base, notify all online admirers that the player is currently online.

• The steps during destruction:

• On the base, notify all online admirers that the player is going offline.

• When the player receives a notification from a friend about his online status:

• On the base, store the friend’s mailbox or None in friendBases and forward notification to client.

• In <res>/scripts/base/Avatar.py:

class Avatar(BigWorld.Proxy, AvatarCommon):
 ...
 def onEntitiesEnabled(self):
 ...
 self.initFriendsList()

 def onLoseCell(self):
 self.notifyAdmirers(False)
 ...

 def initFriendsList(self):
 # Send list of friend names to client.
 self.client.newFriendsList([x[0] for x in self.friendsList])

 # Set friend base mailboxes to None (i.e. assume they are offline)
 # Note: Client also assumes friends are offline during
 initialisation.
 self.friendBases = [None for x in self.friendsList]
 for i in range(len(self.friendsList)):
 BigWorld.lookUpBaseByDBID("Avatar", self.friendsList[i][1], \
 partial(self.onInitDBLookUpCb, i))

 self.notifyAdmirers(True)

 def onInitDBLookUpCb(self, idx, friendBase):
 if type(friendBase) is not bool:
 # Friend is online

Example Code

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

 self.friendBases[idx] = friendBase
 self.client.setFriendStatus(idx, True)

 def notifyAdmirers(self, online):
 if online:
 ourBase = self
 else:
 ourBase = None
 for admirerDBID in self.admirersList:
 BigWorld.lookUpBaseByDBID("Avatar", admirerDBID, \
 partial(Avatar_onNotifyAdmirersDBLookUpCb, self.databaseID,
 \
 ourBase))

 # friendBase is None if friend is going offline.
 # friendBase is friend's base mailbox if they are coming online
 def onFriendStatusChange(self, friendDBID, friendBase):
 for i in range(len (self.friendsList)):
 if self.friendsList[i][1] == friendDBID:
 self.friendBases[i] = friendBase
 online = friendBase != None
 self.client.setFriendStatus(i, online)
 break

this callback needs to be a global instead of a method of Avatar because
 we
notify our admirers when the Avatar is being destroyed.
def Avatar_onNotifyAdmirersDBLookUpCb(ourDBID, ourBase, admirerBase):
 if type(admirerBase) is not bool:
 # Admirer is online
 admirerBase.onFriendStatusChange(ourDBID, ourBase)

<res>/scripts/base/Avatar.py

• In <res>/scripts/client/Avatar.py:

class Avatar(BigWorld.Entity):
 ...
 def __init__(self):
 ...
 self.friendsList = []

 def newFriendsList(self, friendsList):
 self.friendsList = [(x, False) for x in friendsList]

 def setFriendStatus(self, idx, online):
 friend = self.friendsList[idx]
 self.friendsList[idx] = (friend[0], online)
 if online:
 FantasyDemo.addChatMsg(-1, friend[0] + " is online.")
 else:
 FantasyDemo.addChatMsg(-1, friend[0] + " has logged off.")

<res>/scripts/client/Avatar.py

Example Code

15

Note

Maximum message size and method arguments

Remote method calls (e.g., from base to client), are sent as messages.

The maximum size of a message is limited by the UDP packet size. So there is, in fact,
a limit on the amount of data (i.e., data contained in the method arguments) that can
be passed in a single remote method call.

A call like self.client.newFriendsList may be needed to be broken up into
multiple calls if the friends list has a large number of items.

3.10. Adding and deleting friends

Described below is the mechanism by which a friend is added or deleted from player's friend list.

• Steps in adding a friend:

• On the client, check that the new friend is not already in the list. Tell base to add the friend.

• On the base, check whether the friend is currently online. If not online, check whether the friend exists in
the database. If the friend exists, tell him to add player as an admirer.

• On the base, tell the client that the friend was added.

• On the client, add the new friend to the list.

• Steps in deleting a friend:

• On the client, find the friend in friendsList and delete it. Tell the base to delete friend by index.

• On the base, delete the friend from friendsList and friendBases. Tell the friend to delete player
from his admirersList.

• In <res>/scripts/base/Avatar.py:

class Avatar(BigWorld.Entity):
 ...
 MAX_FRIENDS = 30

 def addFriend(self, friendName):
 if friendName == self.playerName:
 self.client.showMessage(3, 'System',\
 "Adding yourself as a friend is not allowed.")
 if len(self.friendsList) >= self.MAX_FRIENDS:
 self.client.showMessage(3, 'System',\
 "You already have the maximum number of friends allowed: " \
 + str(self.MAX_FRIENDS))
 else:
 BigWorld.createBaseFromDB("Avatar", friendName, \
 partial(self.onAddFriendCreateBaseCb, friendName))

 def onAddFriendCreateBaseCb(self, friendName, friendBase, dbID, \
 wasActive):
 if friendBase != None:
 if wasActive:
 friendBase.addAdmirer(self.databaseID, self, False)
 else:

Example Code

16 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

 # addAdmirer() needs playerName to be set.
 friendBase.playerName = friendBase.cellData["playerName"]
 friendBase.addAdmirer(self.databaseID, self, False)
 # Should destroy the base that we've created temporarily
 friendBase.destroy()
 else:
 self.client.showMessage(3, 'System',
 "Cannot add unknown player: " + friendName)

 def onAddedAdmirerToFriend(self, friendName, friendDBID, friendBase):
 # Double check here due to race condition of multiple addFriends
 # when we have MAX_FRIENDS - 1 friends
 if len(self.friendsList) >= self.MAX_FRIENDS:
 self.client.showMessage(3, 'System', \
 "You already have the maximum number of friends allowed: " \
 + str(self.MAX_FRIENDS))
 else:
 self.friendsList.append((friendName, friendDBID))
 self.friendBases.append(friendBase)
 online = friendBase != None
 self.client.onAddedFriend(friendName, online)

 def delFriend(self, friendIdx):
 friendBase = self.friendBases.pop(friendIdx)
 if friendBase != None:
 friendBase.delAdmirer(self.databaseID)
 else:
 BigWorld.createBaseFromDBID("Avatar", \
 self.friendsList[friendIdx][1],
 self.onDelFriendCreateBaseCb)
 del self.friendsList[friendIdx]

 def onDelFriendCreateBaseCb(self, friendBase, dbID, wasActive):
 if friendBase != None:
 friendBase.delAdmirer(self.databaseID)
 # Should destroy the base that we’ve created temporarily
 friendBase.destroy()

 def addAdmirer(self, admirerDBID, admirerBase, online):
 self.admirersList.append(admirerDBID)
 if online:
 onlineBase = self
 else:
 onlineBase = None
 admirerBase.onAddedAdmirerToFriend(self.playerName,
 self.databaseID, \
 onlineBase)

 def delAdmirer(self, admirerDBID):
 self.admirersList.remove(admirerDBID)

<res>/scripts/base/Avatar.py

• In <res>/scripts/client/Avatar.py:

Note

We have added additional code on the client to get the name of the player currently
targeted, in the case that it is not specified in the console command.

Example Code

17

Helper method to get the target player name if friendName is empty
 def getTargetForFriendlyAction(self, friendName):
 if len(friendName) == 0:
 target = BigWorld.target()
 if target != None and isinstance(target, Avatar):
 return target.playerName
 else:
 FantasyDemo.addChatMsg(-1, \
 "Please specify friend name or have friend targetted.")
 return ""
 else:
 return friendName

 # Helper method to find the index of friendName in self.friendsList
 def getFriendIdxByName(self, friendName):
 for i in range(len(self.friendsList)):
 if self.friendsList[i][0] == friendName:
 return i
 return -1

 def addFriend(self, friendName):
 targetFriendName = self.getTargetForFriendlyAction(friendName)

 if len(targetFriendName) > 0:
 idx = self.getFriendIdxByName(targetFriendName)
 if idx < 0:
 self.base.addFriend(targetFriendName)
 else:
 FantasyDemo.addChatMsg(-1, targetFriendName + \
 " is already your friend.")

 def onAddedFriend(self, friendName, online):
 self.friendsList.append((friendName, online))
 FantasyDemo.addChatMsg(-1, friendName + " is your new friend.")

 def delFriend(self, friendName):
 targetFriendName = self.getTargetForFriendlyAction(friendName)

 if len(targetFriendName) > 0:
 idx = self.getFriendIdxByName(targetFriendName)
 if idx >= 0:
 del self.friendsList[idx]
 self.base.delFriend(idx)
 FantasyDemo.addChatMsg(-1, targetFriendName + \
 " is no longer your friend.")
 else:
 FantasyDemo.addChatMsg(-1, targetFriendName + \
 " is not currently one of your friends.")

 # We received a message
 def showMessage(self, type, source, msg):
 FantasyDemo.addChatMsg(-1,
 ("Debug", "Tell", "Group", "Info")[type] + " - " + source + ":
 " + msg)

<res>/scripts/client/Avatar.py

Example Code

18 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note

Local bases: Synchronous method calls and other goodies

When bases are on the same BaseApp, method calls are synchronous. That is why
onAddFriendCreateBaseCb and onDelFriendCreateBaseCb are able to destroy
friendBases straight after calling one of its methods.

In this case, friendBases is guaranteed to be on the same BaseApp because it was
created using BigWorld.createBaseFromDB, and was not already active.

Plus, local bases can have their properties and methods accessed, even if not declared
in the .def file.

So, in principle, onAddFriendCreateBaseCb would not have to call the addAdmir-
er method and receive a call to the onAddedAdmirerToFriend method, because
it would be able access friendBase.databaseID directly. However, this is would
mean code duplication.

The downside to these "goodies" is that it could mask bugs during initial testing, when
usually only one BaseApp is running, which forces all bases to be local.

Note

Dealing with unreliable remote base method calls

In general, base method calls are not any more unreliable than other components. But
because the BigWorld Server relies on bases for data persistence, things can go wrong
when base methods calls are not executed.

This can happen when the remote base is destroyed during message transit (in which
case the method call might be silently ignored), or when base data changed by a call
is reverted (for example, in the event a BaseApp crash occurs and a backup BaseApp
takes over).

The example in this document is mainly concerned with the addAdmirer and delAd-
mirer calls. If these are ignored or rolled back, player could end up with inconsistent
friends and admirers lists between bases (e.g., John thinks Simon is his friend, but Si-
mon does not have John in his admirers list).

This situation could be dealt with by adding self-correcting code in
Avatar_onNotifyAdmirersDBLookUpCb to remove the admirer from player's ad-
mirersList if player is not one of his friends.

Similarly, self-correcting code could be added to onFriendStatusChange to fix the
friend’s admirersList if he is not a friend of the player.

Alternatively, the design could have be changed to have a dedicated base or database
table responsible for storing the friends and admirers list for all players. Player entities
(Avatars) would then talk to this base (or database) to update their friendsList.

3.11. Interacting with friends

Interacting with friends is not very different to interacting with other players.

Example Code

19

In fact, the following methods could have been implemented as general methods for interacting with any
player (identified by his username). The advantage of limiting these interactions to friends is efficiency. Since
the Avatar entity already knows their online status and has a copy of their base mailboxes, it can make smarter
decisions (e.g., reject the operation when target player is not online) and avoid accessing the database.

• When sending a message to a friend:

• On the client, check that the friend is in friendsList. Tell base to send the message to the friend.

• On the base, check that the friend is online. Tell the friend’s base to send the message to his client.

• When getting info on a friend:

• On the client, check that the friend is in friendsList. Tell the base to get info on the friend.

• On the base, check that the friend is online. Tell the friend’s base to get info on him.

• On the friend’s base, get info for the admirer and tell our cell to get info for the admirer.

• On friend’s cell, get info for the admirer and tell the admirer’s base to send that info to his client.

An extra access to the cell is made because that is where most of the information is.

• When getting list of friends:

• On the client, display names and online status from friendsList.

• In <res>/scripts/base/Avatar.py:

class Avatar(BigWorld.Entity):
 ...
 def sendMessageToFriend(self, friendIdx, message):
 friendBase = self.friendBases[friendIdx]
 if friendBase != None:
 friendBase.client.onReceiveMessageFromAdmirer(self.playerName,
 \
 message)
 else:
 self.client.showMessage(3, 'System',
 "Cannot send message to offline player.")

 def getFriendInfo(self, friendIdx):
 friendBase = self.friendBases[friendIdx]
 if friendBase != None:
 friendBase.getInfoForAdmirer(self)
 else:
 self.client.showMessage(3, 'System', \
 "Cannot get information on offline player.")

 def getInfoForAdmirer(self, admirerBase):
 friendNames = [name for (name, dbid) in self.friendsList]
 self.cell.getInfoForAdmirer(\
 "[Friends: " + str(friendNames)[1:-1] + "]", admirerBase)

• In <res>/scripts/cell/Avatar.py:

class Avatar(BigWorld.Entity):
 ...
 def getInfoForAdmirer(self, baseInfo, admirerBase):

Example Code

20 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

 info = "[Health: " + str(self.healthPercent) + "%]"
 info += "[Frags: " + str(self.frags) + "]"
 info += "[Position: " + str(self.position) + "]"
 admirerBase.client.onRcvFriendInfo(self.playerName, info +
 baseInfo)

• In <res>/scripts/client/Avatar.py:

 def infoFriend(self, friendName):
 targetFriendName = self.getTargetForFriendlyAction(friendName)

 if len(targetFriendName) > 0:
 idx = self.getFriendIdxByName(targetFriendName)
 if idx >= 0:
 self.base.getFriendInfo(idx)
 else:
 FantasyDemo.addChatMsg(-1, targetFriendName + \
 " is not one of your friends.")

 def onRcvFriendInfo(self, friendName, info):
 FantasyDemo.addChatMsg(-1, info)

 def listFriends(self):
 FantasyDemo.addChatMsg(-1, "You have " + str(len(self.friendsList))
 + \
 " friend(s):")
 onlineFriends = [name for (name, online) in self.friendsList \
 if online]
 onlineFriendsStr = " online:" + str(onlineFriends)[1:-1]
 FantasyDemo.addChatMsg(-1, " online: " + str(onlineFriends)
[1:-1])
 offlineFriends = [name for (name, online) in self.friendsList \
 if not online]
 FantasyDemo.addChatMsg(-1, " offline: " + str(offlineFriends)
[1:-1])

 def msgFriend(self, friendName, message):
 targetFriendName = self.getTargetForFriendlyAction(friendName)

 if len(targetFriendName) > 0:
 idx = self.getFriendIdxByName(targetFriendName)
 if idx >= 0:
 self.base.sendMessageToFriend(idx, message)
 FantasyDemo.addChatMsg(-1, "You say to " + targetFriendName
 + \
 ": " + message)
 else:
 FantasyDemo.addChatMsg(-1, targetFriendName + \
 " is not one of your friends.")

 def onReceiveMessageFromAdmirer(self, admirerName, message):
 FantasyDemo.addChatMsg(-1, admirerName + ": " + message)

Example Code

21

Note

Special remote entity properties

Though it is not generally possible to access a remote entity’s properties, it is possi-
ble to access its mailboxes to other parts of itself (i.e., base.client, base.cell,
cell.client, cell.base).

Hence, the call friendBase.client.onReceiveMessageFromAdmirer
in base method sendMessageToFriend and the call
admirerBase.client.onRcvFriendInfo in cell method getInfoForAdmirer
are perfectly legitimate.

3.12. Declaring the methods

Methods must be declared in the .def file if they are called remotely (i.e., calls between client and base),
between bases, between cell and base, etc. Furthermore, methods called by the client must be declared <Ex-
posed/>.

• In <res>/scripts/entity_defs/Avatar.def:

<root>
 ...
 <ClientMethods>
 ...
 <newFriendsList>
 <Arg> ARRAY <of> STRING </of> </Arg> <!-- array of friend
 names -->
 </newFriendsList>
 <onAddedFriend>
 <Arg> STRING </Arg> <!-- friend's name -->
 <Arg> BOOL </Arg> <!-- is friend online? -->
 </onAddedFriend>
 <setFriendStatus>
 <Arg> FRIENDIDX </Arg> <!-- friend's list index -->
 <Arg> BOOL </Arg> <!-- is friend online? -->
 </setFriendStatus>
 <onReceiveMessageFromAdmirer>
 <Arg> STRING </Arg> <!-- admirer's name -->
 <Arg> STRING </Arg> <!-- message -->
 </onReceiveMessageFromAdmirer>
 <onRcvFriendInfo>
 <Arg> STRING </Arg> <!-- friend's name -->
 <Arg> STRING </Arg> <!-- friend's info -->
 </onRcvFriendInfo>
 <showMessage>
 <Arg> UINT8 </Arg> <!-- type of message -->
 <Arg> STRING </Arg> <!-- source of message -->
 <Arg> STRING </Arg> <!-- message to show on console
 -->
 </showMessage>
 </ClientMethods>

 <BaseMethods>
 ...
 <addFriend>
 <Exposed/>
 <Arg> STRING </Arg> <!-- friend's name -->
 </addFriend>

Example Code

22 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

 <delFriend>
 <Exposed/>
 <Arg> FRIENDIDX </Arg> <!-- friend's list index -->
 </delFriend>
 <addAdmirer>
 <Arg> DBID </Arg> <!-- admirer's dbid -->
 <Arg> MAILBOX </Arg> <!-- admirer's base -->
 <Arg> BOOL </Arg> <!-- are we online? -->
 </addAdmirer>
 <onAddedAdmirerToFriend>
 <Arg> STRING </Arg> <!-- friend's name -->
 <Arg> DBID </Arg> <!-- friend's dbid -->
 <Arg> MAILBOX </Arg> <!-- friend's base -->
 </onAddedAdmirerToFriend>
 <delAdmirer>
 <Arg> DBID </Arg> <!-- admirer's dbid -->
 </delAdmirer>
 <onFriendStatusChange>
 <Arg> MAILBOX </Arg> <!-- friend's base -->
 <Arg> BOOL </Arg> <!-- is friend online? -->
 </onFriendStatusChange>
 <sendMessageToFriend>
 <Exposed/>
 <Arg> FRIENDIDX </Arg> <!-- friend's list index -->
 <Arg> STRING </Arg> <!-- message -->
 </sendMessageToFriend>
 <getFriendInfo>
 <Exposed/>
 <Arg> FRIENDIDX </Arg> <!-- friend's list index -->
 </getFriendInfo>
 <getInfoForAdmirer>
 <Arg> MAILBOX </Arg> <!-- admirer's base -->
 </getInfoForAdmirer>
 </BaseMethods>

 <CellMethods>
 ...
 <getInfoForAdmirer>
 <Arg> STRING </Arg> <!-- our base info for admirer
 -->
 <Arg> MAILBOX </Arg> <!-- admirer's base -->
 </getInfoForAdmirer>
 </CellMethods>

<res>/scripts/entity_defs/Avatar.def

23

Chapter 4. Variations
The example here is a starting point for building your own friends list. We have pointed out areas that need
further work before it would be suitable for use in a production system. Certainly you will also have specific
requirements for your game. This section discusses some obvious variations and their implications.

4.1. Asking for permission to be someone’s friend
This could be a requirement if friends have special access (e.g., the getInfo command in this document's
example).

Ideally, the friend can subsequently rescind his friendship after granting it. This means admirers list should be-
come editable by the user. Hence, it should probably store more than just the DBID for performance reasons.

It may also be a good idea then to limit the size of the admirers list, since there would be usability problems
when this list is large.

Each "Can I be your friend?" request should also be stored somewhere. Places they could be stored:

• On the client of the player being asked (the askee).

• This is the bare minimum, since the askee must have visual indication of being asked.

• When the askee logs off, requests are forgotten.

• The asker cannot keep track of outstanding requests.

• A possible situation exists where acceptance is rejected because the asker’s friends list has become full
since the request was made.

• On the client of the askee and on the base of the player who is asking (the asker).

• The asker can keep track of outstanding requests, therefore will not exceed friends list limit.

• The asker can withdraw the request.

• The askee can notify the asker when he logs off (by using info in the request from the asker) and the asker
can remove outstanding requests.

• It is possible, but it does not make much sense for the asker to persist requests because askee will forget
requests when he logs off.

• On the client and base of the askee, and on the base of the asker.

• Same as above except...

• Both askee and asker can persist requests, and requests can be accepted independent of each other’s online
status.

• Possible data integrity problems because we have persistent data in two entities that needs to be kept
in sync.

4.2. Enforcing mutual friendship
Where mutual friendship is enforced, it will be possible to eliminate the separate friends list and admirers list.

So when player A adds player B into his friends list, he is automatically added to B’s friends list.

It is highly recommended that players be forced to ask permission before forming friendships (see above).
This is to prevent total strangers from using up the limited number of friends each player is allowed to have.

Variations

24 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note that enforcing mutual friendship would not allow a game world to have "leader" characters with many
more admirers than friends.

4.3. Matching request and response

In this document's example, the base would often call self.client.showMessage(<type>,
<source>, <message>) as response to a request from the client.

Often this is not sufficient for real GUIs. For example, a button may be disabled while the operation is in
progress and re-enabled when the operation completes. So the client must know that the showMessage
corresponds to an outstanding request, and not some unsolicited message (e.g., message from a friend).

One solution would be to make a separate callback method for each operation (e.g., onAddedFriend, on-
DeletedFriend, etc). But this could make the .def file quite cluttered.

Another solution would be to pass sequence numbers and have them passed back in the result (e.g., showMes-
sage(<sequence_number>, <type>, <source>, <message>)). This would have the advantage
of supporting multiple outstanding requests of the same type (e.g., multiple addFriends), but is obviously
more expensive (extra integer in message and dictionary in the client to map sequence number to request) and
therefore should be limited to infrequent calls.

	How To Build a Friends List
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Features
	Chapter 3. Example Code
	3.1. Where should the friends list be stored?
	3.2. Admirers
	3.3. DBID
	3.4. Persistent friends list
	3.5. Client friendsList
	3.6. Using list indexes as friend identifiers
	3.7. Base online friends list
	3.8. Console commands
	3.9. Initialisation and destruction
	3.10. Adding and deleting friends
	3.11. Interacting with friends
	3.12. Declaring the methods

	Chapter 4. Variations
	4.1. Asking for permission to be someone’s friend
	4.2. Enforcing mutual friendship
	4.3. Matching request and response

