Server Operations Guide

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

T INBFOAUCHION .ottt eeenene 7
2. Server Configuration with bw. XIm ... 9
2.1. The entry par €Nt Fi | @ ..o e 9
2.2. User dependent configuration 10
2.3. Command-Line OPtionsccccccoiiiiiiiiiiiiiii 10
2.4. General Configuration OPpHONScocciiiiiii 10
2.5. Billing System Configuration Optionsccccciiiiiiiiiiiiii, 17
2.6. Network Configuration OPtionsccccccoiiiiiiiiiiiiiii e, 18
2.7. Network Address Translation Configuration Optionscc.ccccceeeiiiiiiiiiiiinnien. 19
2.8. Load Balancing Configuration Options 20
2.8.1. Entities Cardinality Configuration Optionscooooiiiiiiiiiiiiiiiii, 21

2.9. BaseApp Configuration OPptionscoeoiiiiiiiiiiiii 21
2.9.1. Secondary Database Configuration Optionsccccoeeviiiiiiii 25
2.9.2. Packet Log Configuration Optionsccccoecoiiiiiiiiiiiiiiii, 26
2.9.3. ID Configuration OPtionsccooeoiiiiiiiiiiiiiiiiiiiiiiiii e 26
2.9.4. Client Upstream Limitsoooiiiiiiiiiiiiiiiiiiiiii e 27
2.9.5. Auxiliary Data Bandwidth Controlsccccocooo 28

2.10. BaseAppMgr Configuration Optionscccccoiiiiiiii 29
2.11. Bots Configuration OPtionscccccooiiiiiiiiiiiiiii 30
2.12. CellApp Configuration OPHONSccoeviiiiiiiiiiii 32
2.12.1. Noise Configuration OPHONSoouiiiiiiiiiiiiiiiiiiiiii e 38
2.12.2. ID Configuration OPtionscooooiiiiiiiiiiiiiii, 38
2.12.3. CellApp Profiles Configuration Optionscceeciiiiiiiiiiii, 39

2.13. CellAppMgr Configuration Optonsccccciiiiiiiiii 40
2.14. DBMgr Configuration Optionscccccooiiiiiiiiiiiiiiii 43
2.14.1. Data Consolidation Optionsoo 46
2.14.2. XML Database OPtONSouuiiiiiiiiiiiiiiiiiiii e 46

2.15. LoginApp Configuration OPtionsccccciiiiiiiiiiiiiiiiiiiiiiiii e 47
2.16. Reviver Configuration OPtionsccccccoiiiiiiiiiii 49
2.16.1. Reviver's BaseAppMgr Configuration Optionscccovviiiiiiin, 50
2.16.2. Reviver's CellAppMgr Configuration Optionsccooevvnin, 51
2.16.3. Reviver's DBMgr Configuration Optionsccoccoiiiiiiiiiii, 51
2.16.4. Reviver's LoginApp Configuration Optionscccccvviiiiniiiiiiiiiiiinn e, 51

3. Cluster Administration ToOIsccccooiiiiiiiii 53
3.1, WebCONSO0Ieoooiiiiiiiiiiiiiiiiiii 53
BT MOAUIES ..o 53
3.1.2. Installation and Configurationcccoccciiiii 54
3.1.3. User Administrationc..ooiiiii e 55
3.1.4. Production Mode vs Development Modecccoouiiiiiiiiiiiiiiiiiiiinni 56
3.1.5. CUSLOMUESING ... 57

3.2. Message LOZEeTooiiiiiiiiiiiiiii i 57
3.2.1. Configurationcoooiiiiiiiiiii 58
3.2.2. File FOTIMALoouiiiiiiiiiiiiiiiiiiiiiiit ettt 58
3.2.3. Command Line Utilities ... 59
3.2.4. Automatic Log Archivingooiiiiiiiiiiiiiiiiiiiii e 60
3.2.5. Production Scalability ..., 61

3.3, SHAtLOZZOroooiiiiiiiiiii 61
3.3.1. Requirementscooooiiiiiiiiiiiiiii 62
3.3.2.0Utput ..o 62
3.3.3. Data Collection and Aggregationccc 63
3.3.4. ConfiGUIAtIONooiiiiiiiiiiiiiiii it 63
3.3.5. Databaseccccviiiiiiiiiii 67

3.4. Server Command-Line Utilitiescccoooooc 69
3.4.1. Control CIUSTETooooiiiiiiiiiiiiiiiiii 69

bigw@RLD"

Server Operations Guide

3.4.2. MessageLogger Related Utilitiesccccccccocciiii 71
3.5.5pace VIBWET ... 71
3.5.1. Selecting Spaces t0 VIEWcccceiiiiiiiiiiiii 73

3.5.2. VIEWING SPACESooooiiiiiiiiiiiiiiii 73

3.5.3. Customising Entity and Display Coloursccceoviiiiiiiiiiiiiniiiiiiiiii e, 74

3.5.4. Running Space Viewer Remotely 75

4. Fault TOLETameeooooiiiiiiiiiiiiiiiiiii e 77
4.1. CellApp Fault TOLEramncecccccooovviiiiiiiiiiiiiiiiiiiii i 77

4.2. BaseApp Fault Tolerancecccccooiviiiiiiiiiiiiiiiiiii 77

4.3. ServiceApp Fault Tolerance ..., 78

4.4. Fault Tolerance with ReVIVer ...ttt 78
4.4.1. Specifying Components to SUppoOrtoooeiiiiii 78

4.4.2. Recommended Reviver Layoutccoooiiiiiiiiiiiiiiiiiiiiiiiiiieieiiiieeeeeeeeeeeeees 79

4.4.3. Command-Line OPtionsccccccciiiiiiiiiii 79

5. Backups and Disaster ReCOVEIYcooooiiiiiiiiiiiiiiiiiiii i 81
5.1. Disaster ReCOVEIYccccoiiiiiiii 81

5.2. Database Snapshot TOOLuuiiiiiiiiiiiiiiiiiiii e 81
5.2.1. Operational Behaviourcooooiiiiiiiiiiiiiiiiiiii e 81

B.2.2, USAZE .oioiniiiiii i 82

5.2.3. Requirementscoooooiiiiiiiiiiii 82

5.2.4. Partitioningcccooiiiiiiiiiiiiiiiiiiiiiiiiii 84

5.2.5. Configurationccocoiiiiiiiiii 85

5.2.6. Restoring From a Snapshotcccccoiiiiiiiiiiiiiis 86

5.3. Data Consolidation Toolcccccccoiiiiiiii 87
5.3.1. Skipping Data Consolidationcccccooiiiiiiiiiiiiii 88

5.3.2. Ignoring SQLite EXTOrSuuiiiiiiiiiiiiiiiiiiiiiii 88

6. Controlled Startup and Shutdownccooiiiii 91
6.1. Server-wide ShutdoOWn ... 91

6.2. Individual Application Retirementcooooiiiiiiii e 91
6.2.1. Base App Retirementcooooiiiiiiiiiiiiiiiiiiii e 92

6.2.2. CellApp Retirementcccccci 92

6.2.3. Retirement via WebConsoleccccccciiiiiiiiiiii 92

6.2.4. Retirement via CONt r 0l _Cl USt 5. PY .cooiiiiiiiiiii e, 92

7. Stress Testing with Bots ... 93
7.1. The LOZin PrOCeSsuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii bbb aaaaanaaes 93

7.2. Python INterfaceooiiiiiiiiiiiiiiiiiiiiiiiiiii e 94
7.2.1. Python Controller (DOt _OP. PY) .oevvriiiiiiiiiiiiiiiiiiiiiiiiiiie e 94

7.2.2. Methods and Attributescooooiiiiiiii e 95

7.3. Controlling MOVemENtccccooiiiiiiiiiiiiiiii 98
7.3.1. NodeProperties Sectionccccooiiiiiiiiiiiiiiiiiiii 100

7.4, Extending Bots ...t 101
7.4.1. Creating New Movement Controllersoooooiiii, 101

7.5. Miscellaneous Bots ISSUEScccccviiiiiiiiiiiiiiiii 101
7.5.1. Running out of File Descriptorsccccccciiiiiiiiii, 101

8. SECUIIEY ..oviiiiiiiiiiiiiiiiiii e 103
8.1. Security of the Serverccccccciiiiiiiiii 103

8.2, SIVEr POItScooouiiiiiiiiiiii 104

8.3. Blocking Ports and Related Security Considerations 105

9. BigWorld Server Across Multiple Machinesccooooiiiiiiiiiiiiiiiii e, 107
9.1. How T Startoooiiiiiiiiii s 107
9.1.1. WebComsole ..o 107

9.1.2. Auto Configuration Via cont rol _Cl USter. pycccccccvuumiimiiiiiiiiiiiiiiiiiiiiieieee 107

9.1.3. Manual Start ...t e 107

9.2, HOW TO SEOP ooenniiiiieee et 107

9.3. HOW To MOMIOToooviiiiiiiiiiiiiii e 107

9.4. LoginApp and Scalabilitycccccoiiiiiiiiii 107

iv Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Operations Guide

10. Multiple BigWorld Servers in a Single LAN ... 109
10.1. Keeping Processes Separatecccccceiiiiiiiiiiiii 109

10.2. Centralised Cluster Monitoringccccccooiiiiiiiii 109

10.3. Auto-Detection of LOGINAPPScoooiiiiiiiiiiiiiiiiiiiiiiiiiii e 109

11 MySOQL SUPPOTE ..ooviniiiiiiii e 111
11.1. Compiling DBMgr with MySQL Supportccccoiiiiiiiiiiiiiiiiiiiiiiiiiiieeeee 111

11.2. Update bw. xm To Use MySQL ... 111

11.3. Synchronise Database With Entity Definitionscccccoocoo 112

11.4. Enabling Secondary Databasesccccccciiiiiiiiiiiiiii 112

T1.5. PriVII@GES ...ooeiiiiiiiiiiiiiiiii e 112

11.6. The ClearAutoLoad t00]oooiiiiiiiiiiiiiiii e 113

20 LN g P 115
12.1. Directory Structures and Files ... 115

12.2. How to Generate Binary RPM Packagesccccccccoiiiiiiiiiiii 115

12.3. Customising RPM Packagescccccccoiviiiiiiiiiiiiiiiiii e 116

12.4. Setting up a Yum Repositorycccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie 117

12.5. Install, Upgrade and Uninstall using Yum Commandcccccccoeeiiiiiiiiiinn, 118
12.5.1. Install and Upgrade using a RPM Package Directlyccccccvviiiiiiiiiiiiiiiininnnn. 118

12.5.2. Install and Upgrade using Yum Repository 119

12.5.3. Remove an Installed Packagecccoovviiiiiiiiiiii 119

12.6. How to Obtain Version Number of an Installed Packagecccoooviinnn, 119

13. First Aid After @ Crash ... 121
13.1. Change your coredump output directory, if NeCesSSarycccoevivviiiiiiiiiiiiieeeeee 121

13.2. Determine the first process(es) that crashedcccccoiiiiii e, 121
13.2.1. BigWorld 108Soooovviiiiiiiiiiiiiiiii 122

13.2.2. Chronologically listing core filesccccooiiiiiiii 122

13.3. Generate a stack trace of the process that crashedcoooooo, 122
13.3.1. Troubleshootingoooo 124

13.4. Retrieve relevant log informationcoooii 125
13.4.1. Generating a log summary from a core fileL 125

13.4.2. Archiving all 108Suuuuiiiiiiiiiiiiiiiiii e 125

13.5. Back up the crash informationcooooii 126

13.6. Notify BigWorld Support of the crashccoooi 126
13.6.1. Uploading large filescccoooiiiiiiiiiiiiiii 126

13.6.2. Providing BigWorld access to your server clusterccccccooiiiiiiiiiiiiiinn 127

14. Common Log MeSSaZESuuuiiiiiiiiiiiiiiiiii i 129
T4 1. WAININES ...oovviiiiiiiiiiiiiiii e 129

357 o 0 RN 130

I5. CLOCK ettt ettt e e eeee e 133
15.1. BigWorld Timing Methods ... 133

15.2. LINUX ClOCK SOUICEeuiiiiiiiiiiiiiii e e 133

16. Machine Groups and CategOriesccccooiiiimiiiiiiiiiiii e 135
16.1. Introduction ...ttt 135
16.2. Configurationcccoiiiiiiiiiiiiiiiiii 135
16.3. User Defined Categoriescoccvviiiiiiiiiiiiiiiiiii 135

bigw@RLD" v

Chapter 1. Introduction

BigWorld Technology is BigWorld's middleware for implementing Massively Multiplayer Online Games.
This document is a guide to performing operations with the server software. It is not intended for game
designers or game logic implementers, but rather for 'machine room' or 'cluster control' operators and ad-
ministrators.

It is assumed that the server has been installed according to the instructions in the document Server Instal-
lation Guide. An understanding of the basic BigWorld processes is also assumed. For more details on these
processes, see the document Server Overview's chapters Design Introduction and Server Components.

For details on BigWorld terminology, see the document Glossary of Terms.

bigw@RLD" :

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Chapter 2. Server Configuration with bw. xm

The single most important configuration file on the server is <r es>/ ser ver/ bw. xrm , where <r es> is the
resource tree used by the server (usually specified in ~/ . bwmaichi ned. conf).

All sever processes read this file. It contains many parameters, all of which are described in this chapter. The
default values are appropriate for many different games, and care should be taken when changing them,
since it might affect performance.

On the description of the parameters, please note the following:

* Boolean parameters should be specified as true or false.

* Where a tag is specified as t agl/ t ag2, the second tag is specified inside the scope of the first one. For
example, the tag dbMgr / al | owEnpt yDi gest is specified as:

<dbMgr >
<al | owenpt yDi gest > true </al | owEnpt yDi gest >
</ dbMgr >

2.1. The entry parentFil e

The entry par ent Fi | e in the configuration file specifies the next file in the chain of files where BigWorld
should look for an entry for a configuration option.

To assign a default value to a configuration option, BigWorld follows the steps below:
* Searches for an entry for the configuration option in file <r es>/ ser ver/ bw. xm .

o If the file does not contain an entry for the configuration option, then the chain of configuration files is
inspected, until the entry is found.

o If the entry is not specified in any of these files, a hard-coded default is used.

All default values for a production environment are stored in file bi gworl d/res/serv-
er/ production_defaults.xm . The file bi gworl d/ res/server/devel opnent _defaul ts. xnl
specialises this with default values for a development environment. Typically, the entry parent -
Fi | e in file <res>/ server/ bw. xm is set to either server/ producti on_defaul ts.xm or serv-
er/ devel opnent _def aul t s. xm , and only non-default options are stored in your ser ver/ bw. xni .

The example below shows the configuration option maxCPUC f | oad in section bal ance having its default
value overridden:

bIgW@RLED" :

Server Configuration with bw. xmi

“<res>fzarivrar /b .aonl
= Troaot -

“parentFile’ seprer fdevelopment _defanlte.manl Sfparentliles

<kalance>
“mauCPUI0ffload: £fltHonDefamltTalue < ma=<CPO0f£f]l 0 ad-

BigWiard will use this value
<resrfsenrer fdevelopment defanlte. il ta c-:-nflgure the entry.
= Toot -

<balance>
“mauCPUI0Efload:r £fltDafaml+eValne < fma=CFI0ffloads

Overriding default values for configuration options

2.2. User dependent configuration

A file that is user dependent can be used instead of bw. xm . This is useful to allow multiple users to run
from the same resource tree. In a production environment, for example, you may run the resources using a
test user before using the production user.

If a file with the name ser ver/ bw_<user name>. xnl exists, this is used as the start of the server configu-
ration chain instead of ser ver/ bw. xm .

Typically, the par ent Fi | e section in this file would refer to ser ver/ bw. xm and only options specific to
the user, such as dbMyr / dat abaseName would be in this file.

2.3. Command-Line Options

The configuration options specified in file <res>/ server/bw. xml can also be overridden via com-
mand-line arguments.

To override a default value, add arguments in the format +opt i onNare value.

The example shows the baseApp section's configuration option pyt honPort having its default value
changed to 40001, and the option ar chi vePer i od changed to 0:

baseapp +baseApp/ pyt honPort 40001 +baseApp/ archivePeriod 0

Values changed via the command line are not sent to components started via BWMachined. This includes
using WebConsole, cont r ol _cl ust er. py, and components started by a Reviver process.

2.4. General Configuration Options

The list below describes the general configuration options:
* bi t sPer SecondToCl i ent (Integer)

Desired default bandwidth from server to the client. To calculate the number of bytes to be sent in each
packet, the formula below is used (where UDP_OVERHEAD is 28 bytes):

10

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

packet Si ze = (bitsPerSecondToCient / 8 / gameUpdateHertz) - UDP_OVERHEAD
e channel Ti neout Peri od (Float)

Number of seconds before an anonymous channel will timeout. An example of these are channels from
the BaseApps and CellApps to the DBMgr. If a process becomes unresponsive for this amount of time, the
DBMgr will drop the channel to this process.

This setting should be significantly larger than baseAppMyr / baseAppTi neout and cel | AppMyr/ cel -
| AppTi nmeout .

* debugConfi gOpt i ons (Integer)

Level of logging information generated when processing configuration parameters in file <r es>/ ser v-
er/ bw. xm .

The possible values are described in the list below:
°0
No log is generated.
°1
A log message is generated for each configuration option read.
2
A verbose message is generated for each configuration option read.
* desi r edBaseApps (Integer)
Number of BaseApps that need to be running for the server to start.
e desi redCel | Apps (Integer)
Number of Cell Apps that need to be running for the server to start.
e desi redServi ceApps (Integer)
Number of ServiceApps that need to be running for the server to start.
* external I nterface (String)
Network adapter interface to use for external communication, if not explicitly set by the server component.

In a production environment, BaseApps are recommended to have two Ethernet adapters: one adapter
connected to the Internet, and a separate one connected to the internal LAN.

During development, there is no problem with using the same interface.
Accepted formats are:

* Adapter name — Examples: et hO, et hl

e IP[/ net mask] — Examples: 10. 5. 2. 1, 10.0.0.0/8,192.168.5. 0/ 24

* Domain name — Examples: i nt er n0. cl ust er/ 24, ext er n5. cl ust er/ 24

This value can be overridden by a tag with same name in the following sections:

bIgW@RLED" .

Server Configuration with bw. xmi

* baseApp — For more details, see “BaseApp Configuration Options” on page 21 .
* | ogi nApp — For more details, see “LoginApp Configuration Options” on page 47 .
ext er nal Lat encyMax (Float)

Maximum number of seconds by which packets sent from the server process will be artificially delayed.
Each packet will be randomly delayed between this value and externalLatencyMin.

This value can be overridden by a tag with the same name in the following sections:

* baseApp — For more details, see “BaseApp Configuration Options” on page 21 .

* | ogi nApp — For more details, see “LoginApp Configuration Options” on page 47 .
This feature is useful for testing during development.

See also ext er nal LossRat i o, xref _ext ernal Lat encyM n

ext ernal Lat encyM n (Float)

Minimum number of seconds by which packets sent from the server process will be artificially delayed.
Each packet will be randomly delayed between this value and externalLatencyMax.

This value can be overridden by a tag with the same name in the following sections:

* baseApp — For more details, see “BaseApp Configuration Options” on page 21 .

* | ogi nApp — For more details, see “LoginApp Configuration Options” on page 47 .
This feature is useful for testing during development.

See also xr ef _ext ernal LossRati o, xr ef _ext er nal Lat encyMax

ext ernal LossRat i o (Float)

Proportion of outgoing packets that will be dropped by this processes external nub to simulate loss on
the external network. This is a value between 0.0 and 1.0 indicating what proportion of packets will be
dropped.

This value can be overridden by a tag with the same name in the following sections:

* baseApp — For more details, see “BaseApp Configuration Options” on page 21 .

* | ogi nApp — For more details, see “LoginApp Configuration Options” on page 47 .
This feature is useful for testing during development.

See also xr ef _ext er nal Lat encyM n, xr ef _ext er nal Lat encyMax

ganmeUpdat eHert z (Integer)

Number of times per second that the server should send an update to the clients. This corresponds to the
game tick frequency.

hasDevel opnment Asserti ons (Boolean)
Flag indicating whether server should be aggressive in its use of assertions.

This option should be set to true during development, and to false when running a production server.

12

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

For example, if this option is set to true, then a corrupted packet sent from a client can cause an assertion
on the server, while if this is set to false, then only an error message is generated and the server component
continues to run.

° internal I nterface (String)

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview’s section
Server Components = “BWMachined” — “BWMachined Interface Discovery”.

Network adapter interface to use for internal communication, if not explicitly set by the server component.
Accepted formats are:

* Adapter name — Examples: et hQ, et h1

e IP[/ net mask] — Examples: 10. 5. 2. 1, 10.0.0.0/8,192. 168. 5. 0/ 24

* Domain name — Examples: i nt er n0. cl ust/ 24, ext ern5. cl ust/ 24

This value can be overridden by a tag with the same name in the following sections:

° baseApp — For details, see “BaseApp Configuration Options” on page 21 .

* baseAppMyr — For details, see “BaseAppMgr Configuration Options” on page 29 .

cel | App — For details, see “CellApp Configuration Options” on page 32 .

cel | AppMyr — For details, see “CellAppMgr Configuration Options” on page 40 .

dbMyr — For details, see “DBMgr Configuration Options” on page 43 .
* | ogi nApp — For details, see “LoginApp Configuration Options” on page 47 .
e i nt ernal Lat encyMax (Float)
Maximum number of seconds by which packets sent from the application's internal nub will be delayed.
For more details, see i nt er nal Lat encyM n.
See also i nt er nal LossRati o.
e i nternal Lat encyM n (Float)
Minimum number of seconds by which packets sent from the application's internal nub will be delayed.
Each packet will be randomly delayed between this value and i nt er nal Lat encyMax.
This feature is useful for testing during development.
This value can be overridden by a tag with the same name in the following sections:

* baseApp — For details, see “BaseApp Configuration Options” on page 21 .

baseAppMyr — For details, see “BaseAppMgr Configuration Options” on page 29 .

cel | App — For detalils, see “Cell App Configuration Options” on page 32 .

cel | AppMyr — For detalils, see “CellApp Configuration Options” on page 32 .

dbMyr — For details, see “DBMgr Configuration Options” on page 43 .

bIgW@RLD" 5

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xmi

* | ogi nApp — For details, see “LoginApp Configuration Options” on page 47 .
* revi ver — For details, see “Reviver Configuration Options” on page 49 .
See also options i nt er nal Lat encyMax and i nt er nal LossRat i o.

e internal LossRati o (Float)

Proportion of packets on this application's internal nub that will be dropped to simulate loss on the internal
network. This is a ratio between 0.0 and 1.0.

This feature is useful for testing during development.
This value can be overridden by a tag with the same name in the following sections:

* baseApp — For details, see “BaseApp Configuration Options” on page 21 .

baseAppMyr — For details, see “BaseAppMgr Configuration Options” on page 29 .

cel I App — For details, see “CellApp Configuration Options” on page 32 .

cel | AppMyr — For detalils, see “CellApp Configuration Options” on page 32 .

dbMgr — For details, see “DBMgr Configuration Options” on page 43 .
* | ogi nApp — For details, see “LoginApp Configuration Options” on page 47 .
* revi ver — For details, see “Reviver Configuration Options” on page 49 .
See also options i nt er nal Lat encyMax and i nt er nal Lat encyM n.

* | ogger | D(String)
The ID used by the process when registering with MessageLoggers. If this ID does not match a
MessageLogger's filter, the process will not log to that MessageLogger. (For details on MessageLogger, see
“Message Logger” on page 57).
Multiple BigWorld servers can share the same logger process. If this behaviour is not desired, then you
can use a unique loggerID per server instance — this will cause MessageLogger to filter out all messages
that do not match the loggerID it has been told to monitor.

° | ogSpanPat t er ns (List of Strings)
Alist of log message prefixes can be specified which will be suppressed on a per-second basis if the number
sent to MessageLogger exceeds a certain threshold. Note that this is not intended a mechanism to sweep
error messages "under the carpet'; it is designed to reduce the network load that can be generated by log
traffic, which tests have indicated can be in excess of actual game traffic in some situations if suppression

is disabled.

This option can be overridden by a tag with the same name in any app section. Note that the overriding
does not merge the suppression lists, it simply replaces the global list with the one defined at the app level.

Additionally, the list of suppression patterns can be modified at runtime using the | ogger / addSpam
Suppr essi onPat t ern and | ogger/ del SpanSuppr essi onPat t er n watchers.

Please see bi gwor | d/ r es/ server/ producti on_def aul ts. xm for an example of a suppression list.

* | ogSpanirhr eshol d (Integer)

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

The number of a particular log message that can be sent to MessageLogger in a single second before sup-
pression will take place. Note that only messages matching one of the <I ogSpanPat t er ns> (see above)
will be suppressed.

* maxQOpenFi | eDescri pt or s (Integer)

Set a minimum value for the number of simultaneous open file descriptors an application can have open.
The default maximum for this value is 16384 for applications started from bwmachined, and 1024 for
applications started directly, but that maximum can be adjusted using the 'ulimit -n' shell built-in command
or by changing the pam_limits configuration.

This is particularly useful for increasing the maximum number of simultaneous bots that a single bots
process can create.

The default value of -1 causes the app to not attempt to change this value on startup.
* noni tori ngl nterface (String)

Network adapter interface to use for non-game communications, such as logging output, telnet sessions,
and watcher requests. For example: et h0.

See the BaseApp's configuration option externallnterface for accepted formats.
* networkCompression/external (String)

The type of compress to use on large some external messages sent over the network. The supported options
are NONE and ZI P. For zip compression, a compression level can be set between 1 and 9 with 1 being the
fastest and 9 being the best compression.

<net wor kConpr essi on>
<internal > ZIP <level > 3 </l evel > </internal >
<ext ernal > NONE </ ext ernal >

</ net wor kConpr essi on>

This setting can be overwritten entity type via Net wor kConpr essi on/ ext er nal section of the entity
type's . def file.

* networkCompression/internal (String)
The type of compress to use on some large internal messages sent over the network.

This setting can be overwritten entity type via Net wor kConpr essi on/ i nt er nal section of the entity
type's .. def file.

See net wor kConpr essi on/ ext er nal for more information.
° nuntt art upRet ri es (Integer)
Number of times that CellApps and BaseApps will try to locate other components when starting up.

Each attempt is one second apart, so this value roughly indicates the number of seconds that these two
components can be started before the other 'global’ server components have started.

e out put Fi | ter Threshol d (Integer)
Value used to filter the messages that are printed and sent to the logger.

All messages are tagged with an integer value. If the message number is greater than or equal to the filter
value, then the message is allowed (the bigger the value, the more messages are filtered out).

bIgW@RLD" -

Server Configuration with bw. xmi

For example, a threshold of 2 allows only INFO messages and higher (TRACE and DEBUG messages are
filtered out).

The possible values and their message thresholds are described in the list below:
* 0 — MESSAGE_PRI ORI TY_TRACE

* 1— MESSAGE_PRI ORI TY_DEBUG

° 2 — MESSAGE_PRI ORI TY_I NFO

* 3 — MESSAGE_PRI ORI TY_NCTI CE

* 4 — MESSACGE_PRI ORI TY_WARNI NG

* 5 — MESSAGE_PRI ORI TY_ERROR

® 6 — MESSAGE_PRI ORI TY_CRI Tl CAL

* 7 — MESSAGE_PRI ORI TY_HACK

* 8 — MESSAGE_PRI ORI TY_SCRI PT
personal ity (String)

Name of the personality module for the server.

This module should contain things such as methods to be called back from the server (for example, when
the server is ready). The personality module is usually named after your game.

If not specified, the module named BWPer sonal i ty is used.
pr oduct i on (Boolean)

If set to t r ue, enables the server processes to run in a production mode which makes a best attempt
at emitting ERROR messages when encountering configuration settings that are considered detrimental
for a production environment. In rare cases this may also prevent server processes from starting if the
configuration options are seen to be completely unrealistic for a production environment.

Currently this is a global configuration option and cannot be set per server application type.
shut DownSer ver OnBadSt at e (Boolean)
Flag indicating whether server should be shut down when in an unrecoverable state.
Currently, the following scenarios are handled:
o All CellApps are dead.
* An attempt to restore Base entities after a BaseApp crash fails. This could happen if:

* All BaseApps are dead.

* Two BaseApps die in quick succession. This can cause the loss of base entities that were on the first
BaseApp to crash and being backed up on the second BaseApp to crash.

shut DownSer ver OnBaseAppDeat h (Boolean)

If set to true, the entire server will be shut down if a single BaseApp dies. Normally, the fault tolerance
system would allow the server to continue running.

16

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

* shut DownSer ver OnCel | AppDeat h (Boolean)

If set to true, the entire server will be shut down if a single CellApp dies. Normally, the fault tolerance
system would allow the server to continue running.

* shoul dUseChecksuns (Boolean)

If set to true, then all packets sent between server components will be checksummed to verify their cor-
rectness. This is in addition to the UDP checksum automatically provided by the Linux kernel and protects
against packet corruption by buggy network drivers. If a corrupted packet is detected by Mercury (mean-
ing that it has somehow passed the UDP checksum), you will see an error message like:

ERROR Packet : : val i dat eChecksum Packet (flags 178, size 1459) failed checksum
(want ed 3dc56738, got 9fe7000a)

If after running servers for long enough and not seeing this error message you feel confident that the
UDP checksum is reliable enough on your hardware, you can disable this option for a small performance
improvement. The checksum is very simple and fast to calculate so this is likely to have only a small impact
on performance.

e shutti ngDownDel ay (Float)

Number of seconds that the server should wait before a requested controlled shutdown is actually per-
formed.

e tickStatsPeriod (Float)

Number of seconds between ticking statistics that keep a moving average. There can be a lot of statistics
that need to be ticked. If too much time is spent maintaining these statistics, consider increasing this value.
The time taken ticking statistics is measured by the tickStats profile. For example, see pr of i | es/ sum
mari es/ ti ckSt at s watcher value.

e ti meSyncPeri od (Float)

Number of seconds between each synchronisation of game time between CellAppMgr and other applica-
tions.

e useDef aul t Space (Boolean)
Flag indicating whether to automatically create an initial space when he server starts.

This option is ignored if spaces are loaded from the database during start-up.

2.5. Billing System Configuration Options

The configuration options specified in this section relate to user authentication and billing systems.
e billingSystem aut henti cateVi aBaseEntity (Boolean)

This option is used to indicate that user authentication and billing system integration will be done via
base entity script.

If t r ue, the usual user authentication done by DBMgr is bypassed and a base entity of type entity-
TypeFor UnknownUser s is always created. The DBMgr attempts to load the entity with the username. If
this does not exist, a new entity is created.

This new entity is not initially stored in the database. It is up to the base entity script to call
Base. wri t eToDB() if it wants the entity to persist.

See also option ent i t yTypeFor UnknownUser s.

bigw@RLD" .

Server Configuration with bw. xmi

° billingSystenentityTypeFor UnknownUser s (String)

This specifies the type of the entity to create when shoul dAccept UnknownUser s or aut henti cat e-
Vi aBaseEnt ity are used.

See also options shoul dAccept UnknownUser s and shoul dRemenber UnknownUser s.
* i sPasswor dHashed (Boolean)

Flag indicating whether the password stored in the database's bi gwor | dLogOnMappi ng table is hashed.
Hashing is recommended for security reasons. With hashing, it is very difficult to determine the original
password from the database. For more details, see “Default Authentication via MySQL”.

e bi |l i ngSyst em shoul dAccept UnknownUser s (Boolean)

If t r ue, a user can log in with an unknown login name and a new entity of type specified in enti ty-
TypeForUnknownUsers will be created.

See also options ent i t yTypeFor UnknownUser s and shoul dRenmenber UnknownUser s.
e billingSystem shoul dRemenber UnknownUser s (Boolean)

If t r ue, the entity created for an unknown user will be stored in the database and an account record will
be stored for this entity. This option is only used when shoul dAccept UnknownUser s ist r ue.

See also option shoul dAccept UnknownUser s.
° billingSystenitype (String)

Setting as to which billing system to use. Not all values are valid depending on the type of BigWorld
package you have purchased. Possible valid values are:

* bwauth

This billing system is only intended for use by the Indie version of BigWorld which authorises client
login accounts against an online service. It is compiled into the DBMgr and is not able to be modified.

* custom

This billing system is an example of a custom billing system implemented in C++ as available in the
files bi gwor | d/ src/ server/dbngr/ custom bil |l ing_system [ch] pp.In order to compile this
billing system into DBMgr you need to toggle the Makefile variable USE_CUSTOM Bl LLI NG_SYSTEM
in bi gwor | d/ src/ server/ dbngr/ Makefil e.

¢ standard

This is the standard billing system used by BigWorld in which account information is stored in DBMgr's
MySQL database and Python hooks are available to customise the login / authorisation process.

2.6. Network Configuration Options

The configuration options specified in this section relate to network communication and the behaviour of
various aspects of communication channels.

The options specified in the following list are specifically related to the behaviour of channels when packets
start overflowing. This can occur when the send window fills up and buffering of packets is required in order
to handle packet resends.

The maximum packet options defines a per channel type threshold to assist in preventing channels from
using indefinite amounts of memory while buffering overflow packets.

18 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=

Server Configuration with bw. xm

* maxChannel Overfl ow i sAssert (Boolean)
Specifies whether the offending channel should raise a program assertion, effectively terminating the pro-
cess, when the maximum number of overflow packets has been reached. This only applies to internal
channels and does not apply for channels to client applications.

* maxChannel Overf | ow ext er nal (Integer)

Number of packets to allow to overflow on an external channel before raising an ERROR message, or
ASSERT'ing if <i sAssert > has been set to t r ue. A value of 0 disables any log messages and assertions
from occurring.

* maxChannel Overfl ow i nt ernal (Integer)
Number of packets to allow to overflow on an internal channel before raising an ERROR message, or
ASSERT'ing if <i SAsser t > has been set to t r ue. A value of 0 disables any log messages and assertions
from occurring.

* maxChannel Overfl ow i ndexed (Integer)
Number of packets to allow to overflow on an indexed channel before raising an ERROR message, or
ASSERT'ing if <i SAsser t > has been set to t r ue. A value of 0 disables any log messages and assertions

from occurring.

An indexed channel is a channel that is used for communicating directly between the cell and base parts
of an entity.

2.7. Network Address Translation Configuration Options

The configuration options specified in this section relate to running the server behind a NAT (Network
Address Translator). This may be useful during development to allow a BigWorld server to run behind a
NAT'ing firewall.

These configuration options are specified in file <r es>/ ser ver/ bw. xm under the section <net wor kAd-
dressTransl ati on>, and are described below:

* ext er nal Addr ess (String)
Address to be returned to client if he is outside the server cluster LAN.
If the client is outside the server cluster LAN (the option localNetMask is used to determine that), then
LoginApp will return the IP address set in this option, instead of the address that the BaseApp thinks it
is on.
This option is intended for use only during development, when the machines that the BaseApps are run-
ning on do not have real IP addresses (i.e., they are behind a NAT'ing firewall), but you still want clients
to log in from the Internet.
See also option | ocal Net Mask.

* | ocal Net Mask (String)

Mask to be used against the client's IP address in order to determine whether he is inside the server cluster
LAN.

The net mask is an IP address followed by the number of bits to match. For example, 10. 0. 0. 0/ 8 would
match any IP starting with 10 (i.e.,, 10. *. *. *). The default is 0. 0. 0. 0/ 0, in which case no redirecting
will be done.

bigw@RLD" 5

Server Configuration with bw. xmi

If it is determined that the client is not on the server cluster LAN, the LoginApp will return the IP address
set in option externalAddress.

See also option ext er nal Addr ess.

2.8. Load Balancing Configuration Options

The load balancing configuration options are specified in file <r es>/ ser ver/ bw. xm under the section
<bal ance>, and are described below:

e aggr essi onDecr ease (Float)
When load balancing, if the movement of a partition changes direction, the aggression of that partition's
movement is decreased by this amount. This helps avoid thrashing if the load balancing continuously
overshoots its mark.
A larger value will make thrashing less likely but will reduce the responsiveness in these occasions.
This value should be in the range 0.1 to 1.0.

e aggr essi onl ncr easePeri od (Float)

This is the minimum number of seconds taken to revive back to the same level of aggression after an
aggr essi onDecr ease has been applied.

This is used to calculate how much the aggression should revive each balance tick if movement continues
in the same direction.

* maxAggr essi on (Float)
This is the maximum aggression that can be reached. Typically this would be about 1.
During load balancing, the CellAppMgr attempts to offload work between Cells. With an aggession of 1,
it will try to move the its optimal position immediately. If aggression is less than this, it will attempt to
offload only this fraction of the optimal load amount.

° maxAggr essi onl ncr easePeri od (Float)

This is the minimum number of seconds taken to revive from the minimum aggression level to the max-
imum aggression level.

A smaller value for this increases the rate of recovery from a period of minimum aggression to maximum
aggression.

e maxCPUX f | oad (Float)

Maximum estimated amount of CPU processing that can be offloaded from a cell to another in one tick
of load balancing.

A larger value should result in faster changes to the server's load balancing. This value is a fraction of 100%
CPU usage, and its range is from 0.0 through 1.0, but is likely to always be less than 0.1.

° nunCPUCF f | oadLevel s (Integer)

This is the number of candidate offload levels that the CellApp informs the CellAppMgr about. During
load balancing, the CellAppMgr uses this information when considering where to move a cell boundary.
The first level is calculated to offload maxCPUOffload. Addition levels get smaller expontentially. Each
attempts to offload half what the previous level does.

20 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

2.8.1. Entities Cardinality Configuration Options

The configuration options for load balancing based on the number of entities are specified in file <r es>/
server/ bw. xml under section <bal ance>/ <denop>, and are described below:

* enabl e (Boolean)
Flag indicating whether the number of entities should be used to calculate load, rather than CPU load.

In normal situations, the server uses the CPU load on the CellApps to load balance. But sometimes it is
desirable to use the number of entities per Cell App instead.

This may be useful, for example, when running multiple CellApps on a single machine for testing.
See also option deno/ nunEnt i ti esPer Cel | .
* nunEntitiesPerCell (Float)
If option denp/ enabl e ist r ue, then this option is used for calculating a CellApp's load.
The load is calculated as nunEntities / nunEntitiesPerCell.

See also option deno/ enabl e.

2.9. BaseApp Configuration Options

The BaseApp configuration options are specified in file <res>/server/bw. xm under the section
<baseApp>, and are described below:

e ar chi veEmer gencyThr eshol d (Float)

This represents the amount of the DBMgr send window as a percentage that can be used for archiving
entities. Archiving will be temporarily skipped if this threshold is reached. Valid values are from 0.0 to 1.0.

e archi vePeri od (Float)

Period length in seconds where each entity is written to the database for the purpose of disaster recovery.
Each Entity is guaranteed to have an archive less than 2 x ar chi vePer i od old. Setting it to zero switches
off archiving.

A large value increases performance, but reduces the effectiveness of eventual disaster recovery. The op-
posite is true for a small value.

If secondary databases are disabled, this configuration option controls how often the entity is written to
the primary database. In this case, this configuration option has a dramatic impact on the performance of
the primary database when there are a large number of BaseApps. It is recommended to start with large
values (a few minutes), and perform database testing and tuning before reducing it.

If secondary databases are enabled, this configuration option controls how often the entity is written to the
secondary database. In this case, this configuration option can be set to a relatively small value (less than
a minute) since it only impacts the BaseApp machine and the load is independent of number of BaseApps
- unless the secondary database directory is on a shared network drive. For more details on secondary
databases, see Server Programming Guide's chapter “Secondary Databases”.

This option is also available for CellAppMgr, controlling space data archiving.
e backupPeri od (Float)

Number of seconds between backups of each base entity to its backup BaseApp. This value is rounded
to the nearest game tick.

bigw@RLD" &

#dest=
#dest=

Server Configuration with bw. xmi

As a first level of fault tolerance, base entities can be copied to a backup BaseApp (i.e., backup to RAM),
while cell entities are copied to their base entity. For more details on BaseApp and Cell App fault tolerance,
see the document Server Programming Guide's chapter Fault Tolerance.

The value for this option is very dependant on the game. A small value means frequent backups, and
consequently less lost data in case a BaseApp fails. But backups cost bandwidth and CPU on the BaseApp.

In general this period can be much smaller than the one specified in option archivePeriod.
Setting this to 0 disables backups.

See also option backupPer i od on “Cell App Configuration Options” on page 32 .
backUpUndef i nedPr operti es (Boolean)

Flag indicating whether undefined properties should be backed up.

Properties of an entity are defined in the entity's definition file. However, it is possible to define addition-
al properties for this entity in the base script of this entity. For example, an additional property can be
defined by initialising it in the constructor of this entity class. These additional properties are referred to
as undefined properties.

If this option is set to true, undefined properties will be backed up and an error will be emitted for each of
the properties that cannot be pickled. If this option is set to false, undefined properties will not be backed
up. Default value is true.

clientOverfl owLi mt (Integer)

If the send window for the channel to the client grows larger than this many packets, the client is discon-
nected.

Generally, it is better to rely on i nact i vi t yTi meout to detect an unresponsive client and so this option
should be set to greater thani nacti vi tyTi mreout * ganeUpdat eHert z.

See also option i nacti vi t yTi meout on “BaseApp Configuration Options” on page 21
creat eBaseEl sewher eThr eshol d (Float)

Threshold of local BaseApp load below which calls to Bi g\Wor | d. cr eat eBaseAnywher e cause the new
base entity to be created locally.

external Interface

For details, see “General Configuration Options” on page 10 .
ext er nal Lat encyMax

For details, see “General Configuration Options” on page 10 .
ext ernal LatencyM n

For details, see “General Configuration Options” on page 10 .
external LossRatio

For details, see “General Configuration Options” on page 10 .
ext ernal Ports/ port (Integer)

Port that may be used for the BaseApp's external socket — the BaseApp can have more than one ext er -
nal Port s/ port definition.

22

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=

Server Configuration with bw. xm

This option is useful when BaseApp is running behind a firewall and NAT port mappings need to be set up.

If the BaseApps are run behind a firewall, then each BaseApp expected to run on a single machine should
have an externalPort definition.

If this option is not specified, or all specified externalPorts are taken then the BaseApp will bind to any
available port on the external interface.

<baseApp>
<ext er nal Ports>
<port> 40013 </port>
<port> 40014 </port>
<port> 40015 </port>
</ ext ernal Port s>
</ baseApp>

e inactivityTi meout (Float)

Number of seconds that a proxy will proceed without communication from the client before it considers
the connection to be dead.

See also option cl i ent Over f | owLi mi t on “BaseApp Configuration Options” on page 21
einternallnterface
For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview’s section
Server Components = “BWMachined” — “BWMachined Interface Discovery”.

* i nt ernal Lat encyMax
For details, see “General Configuration Options” on page 10 .
* internal LatencyM n
For details, see “General Configuration Options” on page 10 .
e internal LossRatio
For details, see “General Configuration Options” on page 10 .
e | oadSnoot hi ngBi as (Float)
Value to smooth the load changes on a component by when calculating new load.

The BigWorld server uses the load on a component to perform its load balancing. Unfiltered, the load can
change too quickly to be useful. The option loadSmoothingBias is used to smooth out this value.

The filtered value is calculated at each game tick as follows:

newSnoot hedLoad = (1 - | oadSnoot hi ngBi as) * ol dSnpot hedLoad + | oadSnoot hi ngBi as
* | oad

This option is also available for CellApps and CellAppMgr.
* pyt honPort (Integer)

Port that the Python telnet session listener should listen on.

bIgW@RLED" -~

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xmi

If set to zero, then a random port is chosen.
If the option is missing, then the port number will be set according to the formula:
40, 000 + BaseApp ID
If the desired port is not available in any case, then a random one is used.
This option is also available for CellApps.
* reservedTi ckFracti on (Float)
Fraction of tick time that should be remaining on current tick so the next one is considered to be pending.

This value is expressed as fraction. For example, setting it to 0.2 means that the next tick will be considered
pending when there is still 20% of the current tick's time remaining.

Increasing this parameter will make the server more conservative in its CPU usage.

This affects how aggressive the method Bi gWr | d. f et chFr omChunks will be about yielding processing
to the next tick.

This affects the Bi gWor | d. i sNext Ti ckPendi ng() Python method.
Note: This should rarely be changed from the default value.
* sendAut hToCl i ent (Boolean)

Flag indicating whether BaseApps must send authentication messages to clients (clients always send au-
thentication to the server).

Use this feature to avoid hacking of clients, and prevent users from spoofing server messages to other
clients.

Without this authentication, someone can send fake messages to clients, pretending to be the server (they
will need the IP address of the client, and the port that the server is using, which can only be determined
from the target client's data stream).

This option's value defaults to false, in order to save bandwidth.

* sendW ndowCal | backThr eshol d (Float)

The fraction of an entity channel's send window that needs to be used before the onW ndowOver f | ow
callback is called on the associated Base entity.

e shoul dResol veMai | Boxes (Boolean)

Flag indicating whether a mailbox should be resolved to a Base entity, when possible. If a mailbox refers
to a Base entity on the local BaseApp, the entity is used instead of the mailbox.

Although it is more efficient to have this option set, it is generally better to have it disabled. Having this
enabled can lead to hard to find errors as behaviour changes depending on whether an entity happens
to be local or not.

* ver boseExt ernal I nt er f ace (Boolean)

Flag indicating whether to generate verbose log output related to external network traffic.

e war nOnNoDef (Boolean)

24 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

Flag indicating whether to generate a warning when Base entity properties are set that do not have a
description in the entity's def file.

* wat cher Val ues (String)

This is not an actual configuration option, but instead a sub-section inside the section <baseApp>, used
to set arbitrary watcher values for the BaseApp at initialisation time.

This might be useful when there is a watcher value with no corresponding entry on file <r es>/ ser v-
er/bw. xm .

For example, to set value of | ogger/ cppThr eshol ds/ baseapp. cpp to 2:

<baseApp>
<wat cher Val ues>
<debug>
<baseapp. cpp> 2 </ baseapp. cpp>

Do not use this feature if there is a parameter that can be set directly. Like all configuration options,
this one is only evaluated once. It means that if there is an entry for watcherValues in <r es>/ ser v-
er/ production_def aul ts. xm , then all tags defined in it will be ignored if <r es>/ ser ver/ bw. xm
also has an entry for wat cher Val ues (even if different tags are specified in each one). This option is also

available for Cell Apps.
“resrfserirer fbw . oml “rms>lserirar fdefanlts . aml
S Tootk <Toot -
“parentFiler> seprerfdefaalts.amlc;]“_: R DD
<baredpp> “matcherValuer
<matche rifalues -
“wmtobe oA ralnef < fwatcheris- <watcherf> valueh ...

“matoherE - ralusb
“matcherl > wralusC

Athough <watcherWaluae s -in b, xml defines onby atag for<watcherd -,
all tags defined in that section in def aults . wml will be ignored by Bigiiordd.

File hierarchy

2.9.1. Secondary Database Configuration Options

The BaseApp secondary database configuration options are specified in file<r es>/ ser ver/ bw. xnl under
section <baseApp>/ <secondar yDB>, and are described below:

* enabl e (Boolean)
Flag indicating whether to use secondary databases.

For more details about secondary databases, see Server Programming Guide's section “Secondary Databas-

”

es .
e maxConmi t Peri od (Float)

Maximum number of seconds between each commit. Higher values will result in better performance. Low-
er values will reduce the amount of data loss in case of a total system crash.

bIgW@RLD" %

#dest=
#dest=
#dest=

Server Configuration with bw. xm

Explicit Bi g\Wr | d. wr i t eToDB calls will always result in a commit. This option only affects the automatic
archiving of entities.

If set to zero or this option is empty, the value defaults to 5.
e di rectory (String)
Directory where the secondary database files are stored. Secondary databases are SQLite files.

The secondary database files are cleaned up when the system shuts down. However, these files should
not be treated as normal temporary files since they are crucial to the data recovery process in case of a
complete system crash.

If the first character of the pathisa/ character, the path is treated as an absolute path. Otherwise, the path
is treated as relative to the first <r es> path that contains the directory.

It is not recommended to set the SQLite secondary database directory to reside on a
network file-system. SQLite has specific requirements with regards to using file locking
services from the file-system which may not be implemented properly for network file-
systems.

It is recommended that each BaseApp machine has a dedicated space on a local file-
system for storing secondary database files.

2.9.2. Packet Log Configuration Options

The BaseApp packet logging configuration options are specified in file <r es>/ server/ bw. xm under
section <baseApp>/ <packet Log>, and are described below:

° addr (String)
Client for which the packet's content should be logged.
The address is specified as dotted decimal format (e.g., 10.40.1.1).
If this option is empty, then all packets will be logged.
* enabl e (Boolean)
Flag indicating whether to write all packets to a local log file proxy.log.
This can be useful for debugging.
e fl ushMode (Boolean)
Flag indicating whether the log file should be flushed after each write.
This option is useful to ensure all log writes are captured if the BaseApp is crashing.
* hexMbde (Boolean)

Flag indicating whether the logged packets' contents should be written in hexadecimal.

2.9.3. ID Configuration Options

The BaseApp ID configuration options are specified in file <res>/server/bw. xm under section
<baseApp>/ <i ds>, and are described below:

Server Configuration with bw. xm

e criticallylLowSi ze (Integer)

Minimum number of IDs in the BaseApp's available ID pool before the other limits are automatically
adjusted.

The adjustment aims to help avoid this from occurring again.

* desi r edSi ze (Integer)
Target number of IDs in the BaseApp's available ID pool when requesting IDs to the parent broker ID (in
case it fell below | owWSi ze), or returning IDs to it (in case it rose above highLevel) — for CellApps and
BaseApps, the parent ID broker is the CellAppMgr, while for CellAppMgr it is DBMgr.

* hi ghSi ze (Integer)

Maximum number of IDs in the Base App's available ID pool before IDs are returned to the parent ID broker
— for Cell Apps and BaseApps, the parent ID broker is the CellAppMgr, while for CellAppMgr it is DBMgr.

ID recycling is currently disabled, so this value is actually never used.
* | owSi ze (Integer)
Minimum number of IDs that should be available in the BaseApp's available ID pool before a request is

sent to the parent ID broker to restore it to the value specified in configuration option desi r edSi ze —
for Cell Apps and BaseApps, the parent ID broker is the CellAppMgr, while for CellAppMgr it is DBMgr.

2.9.4. Client Upstream Limits

The client upstream bandwidth can be limited so as to prevent denial-of-service attacks from malicious
clients, or errant script code that cause messages from the client to be sent in high volume. This can lead to
Mercury channels within the server to become heavily loaded.

To prevent this, limits can be specified on the count and size of incoming messages from clients to BaseApps.
Once hard limits are reached on the count/size of incoming messages, messages are buffered and played
back over time. Once the hard limits on buffering are reached, clients are disconnected.

The configuration parameters are specified in the file <res>/server/bw. xm in the <baseApp>/
<cl i ent Upst r eamli mi t s> section. The available sub-elements are described in the following table.

* war nMessagesPer Second (Integer)

This is a warning limit for the number of received messages from a client that are dispatched, measured
in number of messages per second. When messages are received above this limit, a warning is emitted.
No further warnings for this client of this type are emitted until the incoming message frequency drops
below this limit.

° maxMessagesPer Second (Integer)
This is a hard limit for the number of received messages from a client that are dispatched, measured in
number of messages per second. When messages are received above this limit, those and subsequent mes-
sages are buffered for later playback until the buffer is empty. The message queue for all clients are checked
every tick to replay any eligible messages.

* war nByt esPer Second (Integer)
This is a warning limit for the throughput (in bytes) of received messages that are dispatched, measured

in bytes per second. When this limit is exceeded, a warning is emitted. No further warnings for this client
of this type are emitted until the incoming message data throughput drops below this limit.

bigw@RLD" &

Server Configuration with bw. xmi

* maxByt esPer Second (Integer)
This is a hard limit for the size of data (in bytes) in received messages that are dispatched per second. When
messages are received above this limit, those and subsequent messages are buffered for later playback
until the buffer is empty. The message queue for all clients are checked every tick to replay any eligible
messages.

* war nMessagesBuf f er ed (Integer)
This is a warning limit for the number of received messages that may be buffered from the client. When
this limit is exceeded, a warning is emitted. No further warnings for this client of this type are emitted
until the number of queued messages drops below this threshold as a result of queue playback.

* maxMessagesBuf f er ed (Integer)
This is a maximum limit for the number of received messages that may be buffered from the client. When
this limit is exceeded, the client is disconnected and any messages that are buffered are discarded and not
dispatched.

* war nByt esBuf f er ed (Integer)
This is a warning limit for the total number of bytes that may be buffered for a client. When this limit is
exceeded, a warning is emitted. No further warnings for this client of this type are emitted until the total
size of buffered messages drops below this threshold as a result of queue playback.

* maxByt esBuf f er ed (Integer)

This is a maximum limit for the total number of bytes that may be buffered for a client. When this limit is
exceeded, the client is disconnected and any messages that are buffered are discarded and not dispatched.

2.9.5. Auxiliary Data Bandwidth Controls

Auxiliary data bandwidth can be limited to control total cluster bandwidth usage, as well as per-client band-
width usage. See the document Server Programming Guide's chapter “Sending Auxiliary Data to the Client
Via Proxy” for details of auxiliary data streaming.

The configuration parameters are specified in the file <r es>/ ser ver / bw. xm in the <baseApp>/ <down-
| oadSt r eami ng> section. The available sub-elements are described in the following table.

* bi t sPer SecondTot al (Integer)

This is the maximum amount of bandwidth the auxiliary data streaming may use per BaseApp. It is cal-
culated per-tick.

Setting this value to 0 indicates that there is no total bandwidth limitation, while setting it below 640 (if
<gameUpdat eHer t z> is 10Hz) will cause auxiliary data to never stream, as each auxiliary data message
carries a 7-byte overhead.

* bi t sPer SecondPer Cl i ent (Integer)

This is the maximum amount of bandwidth the auxiliary data streaming will allocate to each client. It is
calculated per-tick.

Setting this value to 0 indicates that there is no per-client bandwidth limitation, while setting it below
640 (if <ganmeUpdat eHer t z> is 10Hz) will cause auxiliary data to never stream, as each auxiliary data

message carries a 7-byte overhead.

* ranmpUpRat e (Integer)

28 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

Server Configuration with bw. xm

This is the bandwidth (in bits per second) which is added to the bandwidth available for the auxiliary data
stream to a client, every tick, until <backLogLi mi t > packets are outstanding on that link or <bi t sPer -
SecondPer d i ent > is reached.

Once it appears the auxiliary data stream is using nearly all of the spare bandwidth to a client, the streaming
rate continues to ramp up at a small fraction of this value.

* backLogLi m t (Integer)
This is the limit on the number of unacknowledged packets which may have been sent to the client before

auxiliary data streaming to that client is throttled. This is used to determine the spare capacity of the
connection between the BaseApp and an individual client which may be used for auxiliary data.

2.10. BaseAppMgr Configuration Options

The BaseAppMgr configuration options are specified in file <res>/server/bw xm under section
baseAppMyr, and are described below:

* baseAppOver | oadLevel (Float)

Minimum load level that all BaseApps should reach for the system to be considered in overload, and thus
reject new logins.

Similar overload levels are specified for for any CellApp (by option <cel | AppOver | oadLevel > — for
more details, see “CellAppMgr Configuration Options” on page 40), and for DBMgr (by option
<over | oadLevel > — for more details, see “DBMgr Configuration Options” on page 43).

e baseAppTi meout (Float)
Number of seconds for a BaseApp to respond before it is considered dead.
° creat eBaseRat i o (Float)

This option specifies the desired proportion of available BaseApps to consider as destinations for creating
new base entities.

BaseAppMgr will periodically partition the available BaseApps into groups and allocate to each group
a destination BaseApp to use for new base entity creations when using cr eat eBaseAnywher e() . The
destination BaseApps are chosen as the least-loaded BaseApps.

For example, assume we have a cluster of 20 BaseApps and cr eat eBaseRat i 0 is 4. The 20 BaseApps are
partitioned into groups of 4 (5 groups in total). The 5 least-loaded BaseApps are chosen and allocated to
each of the 5 groups as the destination to create Base entities using cr eat eBaseAnywher e() .

This partitioning is randomised, and the calculation is done periodically according to the option updat e-
Cr eat eBasel nf oPeri od.

See also the option updat eCr eat eBasel nf oPer i od.
e har dKi | | DeadBaseApps (Boolean)
Determines if a non-responsive BaseApp will be terminated with a SIGQUIT signal.
Non-responsive BaseApps must be terminated in order for its backup to take over its IP address and ID.
BaseApp non-responsiveness is determined by its backup, so a BaseApp running without a backup will

never be reported as being non-responsive.

When this option is set to false, no signal is sent to the non-responsive BaseApp.

bigw@RLD" =

Server Configuration with bw. xmi

Only use this option for debugging, e.g., to attach a debugger to the hung process.
einternallnterface
For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview’s section
Server Components = “BWMachined” — “BWMachined Interface Discovery”.

* i nt ernal Lat encyMax

For details, see “General Configuration Options” on page 10 .
° internal LatencyM n

For details, see “General Configuration Options” on page 10 .
e internal LossRatio

For details, see “General Configuration Options” on page 10 .
* over| oadLogi ns (Integer)

Maximum amount of logins that will be accepted during the overload tolerance period (see the over -
| oadTol er ancePer i od option) before rejecting any further logins.

e over | oadTol er ancePeri od (Float)

Number of seconds that logins will be accepted during a situation where the BaseApps are overloaded
(see the baseAppOver | oadLevel option). After this period of time, any further logins will be rejected.

e updat eCr eat eBasel nf oPeri od (Float)

Time (in seconds) between updating all BaseApps with information to assist them in creating entities on
other BaseApps when using Bi gWor | d. cr eat eBaseAnywher e().

See also the option cr eat eBaseRat i o.

2.11. Bots Configuration Options

The Bots configuration options are specified in file <r es>/ ser ver/ bw. xml under the section <bot s>, and
are described below:

e control |l erDat a (String)

Default data that the bot's controller will be created with (when bots are created, they get a controller
associated with them to control their movement).

This may have different meanings for different controller types. For example, some controller types may
interpret this as a filename to load data from.

e control | er Type (String)
Type of the controller to be created with bot.
° i nterface (String)

Network adapter interface to use for game communication. For example: et h0. If not specified, the process
will bind to all interfaces and report one of them. This should be appropriate in most situations.

30 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xm

See the BaseApp's configuration option externallnterface for accepted formats.
* passwor d (String)

Password that the bots should use when logging in to the server.
° port (Integer)

Port on the server machine in which bots process will log to (only used if the option <ser ver Nanme> is
specified).

Ignored if bots automatically locates the LoginApp.
° pyt honPort (Integer)
Port that the Python telnet session listener should listen to.
* randonmName (Boolean)
Flag indicating whether a random suffix should be added to each bots name, in order to make them unique.

You should only set this option to false if you plan to use only a single bot. If you plan to use more than one
bot, then you will need them to have different names — otherwise only the first one will be able to log in.

See also option user nane.
* server Name (String)
Name of the server machine that the bots process should log in to (i.e., the machine running LoginApp).

If this option is empty, then the bots process will attempt to find an appropriate LoginApp on the local
network.

e shoul dLog (Boolean)

Flag indicating whether messages generated by the bots process should be sent to the central logger.
e shoul dUseScri pt's (Boolean)

Flag indicating whether the bots process should use Python scripting for received entities.

If set to f al se, then received entities are effectively ignored. Turning this option on has a significant
performance penalty.

e standi nEnti ty (String)

Default entity script to be used when a specific Entity type does not have its corresponding game script.
* | ogi nMD5Di gest (String)

MD5 digest string (in hex readable form) for server login.
* user Nane (String)

Username that bots should use when logging in to the server.

When randomName is true, this is the prefix before the randomly generated part of the name.

See also option r andonNane.

bIgW@RLED" =

Server Configuration with bw. xmi

2.12. CellApp Configuration Options

The CellApp configuration options are specified in file <r es>/ ser ver/ bw. xm under the section <cel -
| App>, and are described below:

* absol ut eMaxCont rol | er s (Integer)

Number of controllers that an entity must have before an exception is raised on attempts to create a new
controller on it.

* aoiUpdateSchemes (Section)

This section contains a list of the different schemes that can be used when calculating the update rate of
entities in an Area of Interest. The update rate of entities depends on their distance from the viewing client.
The greater their update delta, the less frequent an entity's position is sent to the viewing client.

Each scheme contains the following values:

* name - The name of the scheme.

* minDelta - The update delta when the distance to the entity is 0 metres.

* maxDelta - The update delta when the distance to the entity is maxAol Radi us metres.

The delta value for distances between this is calculated by a linear interpolation between these two points.

Setting minDelta to 1 and maxDelta to 101 means the delta for a given distance would be:

delta = 1 + 0.2 * distance
This means that entities at 20 metres (with a delta of 5) would be updated roughly 4.2 times more frequently
than entities at 100 metres (with a delta of 21).
The scheme can be set for an entity with the Ent i ty. aoi Updat eSchene property or for an entity pair
with the Enti ty. set Aol Updat eSchene() method.

<cel | App>

.<;'=1;)i Updat eSchenes>
<schene>
<nanme> defaul t </ nane>

<mi nDelta> 1 </ m nDelta>
<maxDel ta> 101 </ nmaxDel t a>

</ scheme>

<!-- Update rate is not dependant on distance. This could be used on
entities that are in sniper scope, for exanple. -->

<scheme>

<name> sni per </ nanme>
<m nDel ta> 10 </ m nDel t a>
<maxDel ta> 10 </ nmaxDel t a>

</ scheme>

<I-- Update twice as frequently as other entities at the same distance.
Useful for large entities |like dragons. -->

<scheme>

<nanme> | argeEntity </nane>
<mnDelta> 0.5 </mnDel ta>

32 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

<nmaxDel ta> 50.5 </ nmaxDel t a>
</ schenme>

</ aoi Updat eSchenes>
</ cel | App>
e backupPeri od (Float)

Number of seconds between backups of each cell entity to its base entity. This value is rounded to the
nearest game tick.

As a first level of fault tolerance, cell entities are copied to their base entities, while base entities can be
copied to their backup BaseApps. For more details on BaseApp and Cell App fault tolerance, see the doc-
ument Server Programming Guide's chapter Fault Tolerance.

The value for this option is very dependant on the game. A small value means frequent backups, and
consequently less lost data in case a Cell App fails. But backups cost bandwidth and CPU on the Cell App.

Setting this to 0 disables backups.

See also options ar chi vePeri od and backupPeri od on “BaseApp Configuration Options” on page
21.

e checkO fl oadsPeri od (Float)
Number of seconds between offload checks.
This is a periodic check if entities need to be offloaded, or new ghosts created.
e chunkLoadi ngPeri od (Float)
Number of seconds between checks on the progress of loading and unloading chunks.

Chunk loading occurs in a separate thread, but this check in the main thread queues up more chunks for
the loading thread to load (or unload).

e def aul t Aol Radi us (Float)

The default Aol radius of new cell entities for proxy entities when they are created. See also the CellApp
Python API's entry Main — Cell - BigWorld — Classes — Entity — set Aol Radi us.

Note: This must not be larger than the option maxAol Radi us.
* enf or ceGhost Decor at or s (Boolean)

Specifies whether to enforce the requirement of adding a decorator to methods that can safely be called
on ghost entities.

When enabled, methods that have not been labelled as safe and are called on an entity that could be a ghost
will generate a Python exception. To be considered safe, the method must either be described in the . def
file or be decorated with @wdecor at or s. cal | abl eOnGhost .

i nport bwdecorators
class Table(BigWwrld.Entity):
@wdecor at ors. cal | abl eOnGhost
def getArea(self):
return self.width * self.height

° entitySpanti ze (Integer)

bIgW@RLED" _

#dest=
#dest=
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API

Server Configuration with bw. xmi

Number of bytes that an entity in a player's Aol can add to an update packet to that player before a warning
message is displayed.

This can be useful to identify entities that are causing a lot of downstream network traffic.
* expect edMaxCont rol | er s (Integer)

Minimum number of controllers an entity must have before a warning is generated on attempts to create
a new controller on it.

e f ast Shut down (Boolean)

Specifies whether to avoid normal chunk unloading when the system is being shut down. This consider-
ably speeds up the shutdown process.

e ghost Di st ance (Float)

The distance in metres outside the active cell boundaries where entities will be ghosted.
* ghost Updat eHer t z (Integer)

Number of times per second channels to neighbouring Cell Apps are flushed.

Channels are created between neighbouring Cell Apps. Messages (such as ghost data) sent over these chan-
nels are not sent immediately, but are instead flushed periodically. This is done to avoid the high overhead
of sending a packet.

If the value of this option is decreased, then there will be more lag for cross-cell communications.
Note: Bases always flush messages immediately.

einternallnterface
For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview’s section
Server Components, “BWMachined”, “BWMachined Interface Discovery”.

* i nternal Lat encyMax
For details, see “General Configuration Options” on page 10 .
e i nternal LatencyM n
For details, see “General Configuration Options” on page 10 .
e internal LossRatio
For details, see “General Configuration Options” on page 10 .
e | oadDom nant Text ur eMaps (Boolean)
Specifies whether to load the terrain's dominant texture maps. By default, this flag is set to f al se.

Loading the dominant texture maps enables using features such as material kinds returned by
Bi gworl d. col |'i de.

* | oadSnoot hi ngBi as (Float)

Value to smooth the load changes on a component by when calculating new load.

34 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xm

The BigWorld server uses the load on a component to perform its load balancing. Unfiltered, the load can
change too quickly to be useful. The option | oadSnoot hi ngBi as is used to smooth out this value.

The filtered value is calculated at each game tick as follows:

newSmoothedLoad = (1 - loadSmoothingBias) * oldSmoothedLoad + loadSmoothingBias
*load

This option is also available for CellAppMgr and BaseApps.

* maxAol Radi us (Fl oat)
Maximum Aol Radius for any entity. This will usually have the same value as the option ghost Di st ance.
See also def aul t Aol Radi us.
Note: Increasing this reduces the precision of the entity position data sent to the client. For example,
doubling this will reduce the precision of the data by half, whereas halving it will double the precision.
maxAol Radi us must not be larger than the option ghost Di st ance.

* maxGhost sToDel et e (Integer)

Maximum number of ghosts to be deleted from other cells on every offload check (the frequency of this
check is set via checkOffloadsPeriod).

This option is useful for adding antihysteresis and for smoothing the load caused by ghost deletion.
e mi nCGhost Li f espan (Float)
Minimum number of seconds for which a real entity will keep a ghost one.
This is useful for adding antihysteresis to the ghost creation and to the deletion process.
e maxPhysi csNet wor kJi tt er (Float)
Maximum number of seconds to allow for when network jitter when considering movement cheating.

The movement of a player may vary slightly due to variations in network latency. This value sets the level
of tolerance for this jitter.

* maxTi ckSt agger (Float)

Maximum fraction of a tick that Cell App ticks will be staggered. This helps to avoid large spikes in network
traffic. These large spikes can cause dropped packets with some network hardware.

The dropped packets are most likely to occur at your connection to the internet. If a large number of
dropped packets are noticed, consider increasing this value.

This value should be between 0 and 1. 0 means that there is no staggering. 1 means that the Cell App ticks
are staggered over the entire tick.

e shoul dNavi gat i onDr opPosi ti on (Boolean)

This option determines whether calls to Entity navigation methods such as Enti ty. navi gat eSt ep()
should drop the Y position of the entity from the navigation mesh down onto the collision scene.

This option is disabled by default.

e navi gati onMaxd i nb (Float)

bIgW@RLD" %

Server Configuration with bw. xmi

Used in combination with shoul dNavi gat i onDr opPosi ti on to specify the maximum allowable dis-
tance an entity can be above the terrain before it is dropped. It is recommended this value match the largest
maxCl i mb in the gi rt hs. xm
This option is 0.65 by default.
navi gat i onMaxSl ope (Float)
Used in combination with shoul dNavi gat i onDr opPosition to specify the maximum slope of
the navigation mesh in degrees. It is recommended this value match the steepest maxSl ope in the
gi rths. xm
This option is 45 by default.
navi gat or UseG rt hGri ds (Boolean)
Specifies if the waypoint search optimisation scheme should be used.
Girth grid is an optimisation scheme for waypoint search in a chunk. When this scheme is used, a chunk
is divided up into a set of 12x12 grids according to the girth provided (you can have a list of 12x12 grid
set for different girth sizes). Every grid square contains a subset of waypoints that overlap the covered
area in a chunk.
During a (waypoint) search, only targeted grid squares (i.e., subset of waypoints) are searched for the
waypoint, instead of searching through the full set of waypoints. This scheme will generally improve the
waypoint search performance.
obst acl eTr eeDept h (Integer)
Depth of the obstacle tree to create.
Higher numbers increase the speed of collision detection but use more memory.
pyt honPort (Integer)
Port that the Python telnet session listener should listen on.
If set to zero, then a random port is chosen.
If the option is missing, then the port number will be set according to the formula:

50,000 + CellApp ID
If the desired port is not available in any case, then a random one is used.
This option is also available for BaseApps.
reservedTi ckFracti on (Float)

Fraction of tick time that should be remaining on current tick so the next one is considered to be pending.

This value is expressed as fraction. For example, setting it to 0.2 means that the next tick will be considered
pending when there is still 20% of the current tick's time remaining.

Increasing this parameter will make the server more conservative in its CPU usage.
This affects the Bi gWor | d. i sNext Ti ckPendi ng() Python method.

Note: This should rarely be changed from the default value.

36

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

e sendW ndowCal | backThr eshol d (Float)

The fraction of an entity channel's send window that needs to be used before the onW ndowOver f | ow
callback is called on the associated entity.

e shoul dResol veMai | Boxes (Boolean)

Flag indicating whether a mailbox should be resolved to a Cell entity, when possible. If a mailbox refers
to a Cell entity on the local CellApp, the entity is used instead of the mailbox.

Although it is more efficient to have this option set, it is generally better to have it disabled. Having this
enabled can lead to hard to find errors as behaviour changes depending on whether an entity happens
to be local or not.

etreatAll G herEntiti esAsGhosts (Boolean)

Puts the CellApp in a debugging mode in which a script running on it will see only its own entity as real
— all other entities will be treated as ghosts.

Method calls, property access, and other functions will operate as if the other entities really are ghosts.
This mean that:

* Method calls will go via the network.
* Property access will be read-only, and limited to CELL_PUBLI C (or more public) propertiesl.
* Many internal functions will not work, e.g., adding a new Controller.

This is very useful for testing how your scripts work when dealing with ghost entities, especially if two
interacting entities are nearby and would consequently rarely be ghosts.

* wat cher Val ues (String)

This is not an actual configuration option, but instead a sub-section inside the section cel | App, used to
set arbitrary watcher values for the Cell App at initialisation time.

This might be useful when there is a watcher value with no corresponding entry on <r es>/ serv-
er/bw. xm .

For example, to set the watcher value | ogger / cppThr eshol ds/ cel | app. cpp to 2:

<cel | App>
<wat cher Val ues>

<debug>
<cel I app. cpp> 2 </cel | app. cpp>

Do not use this feature if there is a parameter that can be set directly.

Like all configuration options, this one is only evaluated once. It means that if there is an entry for watcher-
Values in <r es>/ server/ production_defaul ts. xm, then all tags defined in it will be ignored if
<res>/ server/bw. xm also has an entry for wat cher Val ues (even if different tags are specified in
each one). This option is also available for BaseApps.

!For more details, see the Server Programming Guide's section Properties - “Data Distribution”.

bIgW@RLED" =

#dest=
#dest=
#dest=

Server Configuration with bw. xmi

“resxzarirar fbw aoml “rmsxlserirar fdefaults . aml
< oot < root-
“parentFile> seprerfdefamlts. oml ... -c:]:-.'l.s mAppi-
<baselppr <matcherifalues:-
“<mpatche rilalues >
“wmtche chr ralnef < watchera:- “watcherh walush ...

“mratohe B > ralusb
“mataoherl > ralual

Athough <watcherWaluae s=in ke . xml defines onby atag for<watcherd s,
all tags defined in that section in def aults . w1 will be ignored by Bigiiordd.

File hierarchy

2.12.1. Noise Configuration Options

The CellApp noise configuration options are specified in file <r es>/ ser ver / bw. xnl under section <cel -
| App>/ <noi se>, and are described below:

e hori zont al Speed (Float)
If an entity's horizontal speed exceeds this value (in metres per second), the entity makes a noise.

See Enti ty. makeNoi se script method for more information. The event and info are 0 for noises gener-
ated this way.

e st andar dRange (Float)
Distance in metres through which a noise is propagated.

This value is multiplied by the level of a noise. For details, see the CellApp Python API's entry Main —
Cell - BigWorld — Classes — Entity - makeNoi se.

e verti cal Speed (Float)
If an entity's falling speed exceeds this value (in metres per second), the entity makes a noise.

This is done via script method Ent i t y. makeNoi se — for noises generated this way, the parameter event
and info are set to 0. For details, see the CellApp Python API's entry Main - Cell —» BigWorld — Classes
- Entity —» makeNoi se.

2.12.2. ID Configuration Options

The CellApp ID configuration options are specified in file <r es>/ ser ver/ bw. xm under section <cel -
| App>/ <i ds>, and are described below:

e criticallylLowSi ze (Integer)

Minimum number of IDs in the CellApp's available ID pool before the other limits are automatically ad-
justed.

The adjustment aims to help avoid this from occurring again.
* desi redSi ze (Integer)

Target number of IDs in the CellApp's available ID pool when requesting IDs to the parent broker ID (in
case it fell below | owSi ze), or returning IDs to it (in case it rose above hi ghSi ze) — for CellApps and
BaseApps, the parent ID broker is the CellAppMgr, and for CellAppMgr it is DBMgr.

38 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API

Server Configuration with bw. xm

* hi ghSi ze (Integer)

Maximum number of IDs in the Cell App's available ID pool before IDs are returned to the parent ID broker
— for CellApps and BaseApps, the parent ID broker is the CellAppMgr, and for CellAppMgr it is DBMgr.

ID recycling is currently disabled, so this value is actually never used.
° | owSi ze (Integer)

Minimum number of IDs that should be available in the CellApp's available ID pool before a request is
sent to the parent ID broker to restore it to the value specified in configuration option desiredSize — for
CellApps and BaseApps, the parent ID broker is the CellAppMgr, and for CellAppMgr it is DBMgr.

2.12.3. CellApp Profiles Configuration Options

The CellApp profiles configuration options are specified in file <r es>/ server/bw. xml under section
<cel | App>/ <pr of i | es>. It contains sub-sections for enabling profiling of specific CellApp functionality.
All the profiling options specified below can be modified after server startup on a per CellApp basis by using
Watchers. The values are exposed in the Cell App watcher tree under pr of i | esConfi gs/ <opti on>.

The list below details the available profiling sub-sections and options:
* initGhost

The i ni t Ghost sub-options define profiling information relating to the initialisation of ghost entities.
Specifically the maximum time taken and network stream size required to initialise ghost entities from
their reals after which a WARNI NG message will be generated. The initialisation primarily consists of the
streaming of ghosted entity properties.

* si zeVWar ni ngLevel (Integer)
The size (in bytes) that an i ni t Ghost () method receives before a WARNI NG message is displayed.
e ti meWar ni ngLevel (Float)

The amount of time (in seconds) that an i ni t Ghost () method can take before a WARNI NG message is
displayed. An example of the type of message generated is as follows.

WARNI NG Profile initGhost/timeWarni ngLevel exceeded (Creature 23 of size
12338 bytes took 0.00477 seconds)

° initReal

Similar to the i ni t Ghost option, thei ni t Real sub-options define profiling information relating to the
initialisation of real entities. Specifically the maximum time taken and network stream size required to
initialise real entities from their reals after which a WARNI NGmessage will be generated. The initialisation
primarily consists of the streaming of entity properties.

* si zeWar ni ngLevel (Integer)

The size (in bytes) that an i ni t Real () method receives before a WARNI NG message is displayed. An
example of the type of message generated is as follows.

WARNI NG Profile initReal/sizeWarningLevel exceeded (Creature 13 of size
68765 bytes took 0.3726 seconds)

e ti mevar ni ngLevel (Float)

bIgW@RLD" &

Server Configuration with bw. xmi

The amount of time (in seconds) that an i ni t Real () method can take before a WARNI NG message is
displayed.

e onLoad

The onLoad() operation is invoked when creating a real entity that had been offloaded from another Cel-
1App.

* si zeVWar ni ngLevel (Integer)
The size (in bytes) that an onLoad() method receives before a WARNI NGmessage is displayed. An exam-
ple of the type of message generated is as follows. The size is considered as the total size of the real entity
and which is comprised of non-ghosted (i.e. CELL_PRIVATE) properties and other state information
such as entities in the Aol, controller state etc.

e ti meWar ni ngLevel (Float)

The amount of time (in seconds) that an onLoad() method can take before a WARNI NG message is dis-
played.

* backup/ si zeWar ni ngLevel (Integer)
backup is the operation of performing a fixed point in time copy of the cell entity to the database (via the

base). The size (in bytes) is the maximum persistent size of the entity (i.e. only persistent properties) after
which a WARNI NGmessage is displayed.

2.13. CellAppMgr Configuration Options

The CellAppMgr configuration options are specified in file <r es>/ server/bw. xm under the section
<Cel | AppMyr >, and are described below:

e ar chi vePeri od (Float)

Number of seconds between database writes of space data and game time, for the purpose of disaster
recovery.

The default setting of zero switches off database writes of space data completely, and disables periodic
database writes of game time.

If your space data must persist across server restarts, or your game time needs to be monotonic across
server restarts, you should change this value.

A large value increases performance, but reduces the effectiveness of eventual disaster recovery. The op-
posite is true for a small value.

Please note that unlike the BaseApp configuration option of the same name, this configuration option is
not affected by the use of secondary databases. The data is always written to the primary database. It is
recommended to start with large values (a few minutes), and perform database testing and tuning before
reducing it.
This option is also available for BaseApps, controlling entity archiving.

e cel | AppLoad/ | ower Bound (Float)

Minimum average load that a CellApp must achieve before being retired.

This value is a fraction, and its range is 0.0 through 1.0.

40 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

Retiring cells is mainly useful if low loads are causing instability in load balancing and causing excessive
chunk loading. This value can typically be kept very small (or zero).

This value must be less than the cel | AppLoad/ upper Bound.

See also option cel | AppLoad/ upper Bound.
e cel | AppLoad/ saf et yBound (Float)

Limit that the load balancing can increase a cell's load to.

This value has to be greater than cellAppLoad/upperBound.

In some situations, such as adding a new cell, some cells may have their load temporarily increased.
e cel | AppLoad/ saf et yRat i o (Float)

Cell's average load safety ratio.

When the average load of the cells in a space is high, the limit that the load balancing can safely increase a
cell's load to is calculated by multiplying this value by the average load. The real boundary is calculated as:

max(cellAppLoadSafetyBound, avgCellAppLoad * cellAppLoadSafetyRatio)
e cel | AppLoad/ upper Bound (Float)
Minimum average load that a CellApp must achieve before a new cell is considered to be required.
This value is a fraction, and its range is 0.0 through 1.0.

It is generally desired to keep this value small to make use of most CellApps all of the time. Doing so,
allows for faster response to increases in load.

This value must be greater than the cel | AppLoad/ | ower Bound.
See also option cel | AppLoad/ | ower Bound.
e cel | AppLoad/ war ni ngLevel (Float)

Minimum value that average load of CellApps must achieve (when there are no other Cell Apps available
to share the load) before warning messages are sent to the log.

e cel | AppLoad/ over| oadLevel (Float)

Minimum load level that any CellApp should reach for the system to be considered in overload, and thus
reject new logins.

Similar overload levels are specified for all BaseApps (by option <baseAppOver | oadLevel > — for de-
tails, see “BaseAppMgr Configuration Options” on page 29), and for DBMgr (by option <over -
| oadLevel > — for details, see “DBMgr Configuration Options” on page 43).

e cel | AppTi neout (Float)
Number of seconds for a CellApp to respond before it is considered dead.
e hardKi | | DeadCel | Apps (Boolean)
Determines if a non-responsive CellApp will be terminated with a SIGQUIT signal.

CellApp non-responsiveness is determined by cellAppTimeout option.

bIgW@RLED" .

Server Configuration with bw. xmi

It is important to terminate the non-responsive CellApp, in order to prevent duplicate entities, since some
of the entities on the non-responsive Cell App will be recreated on neighbouring CellAppsz.

When this option is set to false, no signal will be sent to the non-responsive CellApp. This option should
only be used for debugging purposes, e.g., to attach a debugger to the hung process.

einternalInterface
For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview's section
Server Components, “BWMachined”, “BWMachined Interface Discovery”.

e i nternal Lat encyMax
For details, see “General Configuration Options” on page 10 .
e internal Lat encyM n
For details, see “General Configuration Options” on page 10 .
e internal LossRatio
For details, see “General Configuration Options” on page 10 .
* | oadBal ancePeri od (Float)
Number of seconds between adjustments of the cell boundaries to improve the load balance on CellApps.
e | oadSnoot hi ngBi as (Float)
Value to smooth the load changes on a component by when calculating new load.

The BigWorld server uses the load on a component to perform its load balancing. Unfiltered, the load can
change too quickly to be useful. The option | oadSnoot hi ngBi as is used to smooth out this value.

The filtered value is calculated at each game tick as follows:

newSmoothedLoad = (1 - loadSmoothingBias) * oldSmoothedLoad + loadSmoothingBias
* load

The CellAppMgr further smooths the Cell App loads when it is informed of them.
This option is also available for BaseApps and Cell Apps.
* maxLoadi ngCel | s (Integer)

Maximum number of cells that the meta-load balancing will try to add to a space to help it initially load
its geometry.

To disable this feature, set this value to 0.
See also m nLoadi ngAr ea.
* net aLoadBal anceSchemne (Integer)

The type of scheme that should be used to determine which Spaces should be a priority to meta load
balanced. Current valid values are:

“For details, see “CellApp Fault Tolerance” on page 77 .

42 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xm

* 0 - Largest Space First

The largest space contained in the most loaded group of connected Cell Apps will be chosen as the can-
didate for adding a new Cell into.

* 1 - Smallest Space First

The smallest space contained in the most loaded group of connected CellApps will be chosen as the
candidate for adding a new Cell into. This will enable the space to migrate off onto another CellApp
thus reducing the overall load of the heavily loaded group.

* met aLoadBal ancePeri od (Float)

Number of seconds between checking whether any cells should be added to or removed from any spaces
to improve the load balance on Cell Apps.

* m nLoadi ngAr ea (Integer)

Minimum average area (in square metres) that the cells in a space must have for it to be added by the meta-
load balancing when attempting to initially load the geometry of a space.

If the average area is less than this value, then no more cells will be added to the meta-load balancing —
this is meant to prevent too many cells being allocated to small spaces.

The number of cells that will be used for loading a space can be thought of as:
min(maxLoadingCells, spaceGeometrySize / minLoadingArea) (2.1)
See also maxLoadi ngCel | s.
* over| oadTol er ancePer i od (Float)

Number of seconds that logins will be accepted during a situation where the CellApps are overloaded (see
the cel | AppOver | oadLevel option). After this period of time, any further logins will be rejected.

* shoul dLi m t Bal anceToChunks (Boolean)
Determines if the loaded chunks of cells should be considered when load balancing.

This is enabled by default, so that load balancing will not cause a cell to cover an area that has not yet
been loaded.

2.14. DBMgr Configuration Options

The DBMgr configuration options are specified in file <r es>/ ser ver / bw. xml under the section <dbMyr >,
and are described below:

e al | owEmpt yDi gest (Boolean)
Flag indicating whether DBMgr should allow clients to log in with an empty MD5 digest.

When a client logs in, an MD5 digest of the entity definitions is sent to the server. This is to ensure that the
client is using resources consistent with the server's.

This should be true if you are using either the simple Python example client, as found in bi gwor | d/ sr ¢/
exanpl es/ client_integration/python/sinple, or bots to log in, since those programs do not
read the entity definition files (named <r es>/ scri pts/entity_def s/ <entity>. def).

* dat abaseNane (String)

bIgW@RLD" -

Server Configuration with bw. xmi

Only valid when the MySQL database layer is used.
Name of the underlying database to use.
durmpEnt i t yDescri pti on (Integer)

Level of logging information generated when loading entity definition files (named <r es>/ scri pts/
entity_defs/<entity>. def).

The possible values are described in the list below:

* 0 — No log is generated.

* 1 — Brief details about the entity are generated.

® 2 — Full listing of entity is generated.

* >2 — Full listing of entity is generated with details of database persistence.
host (String)

Only valid when the MySQL database layer is used.

Machine where the database is running.

The localhost identified can be used to refer to the current machine.
i nternal | nterface (String)

For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview's section
Server Components, “BWMachined”, “BWMachined Interface Discovery”.

i nt er nal Lat encyMax (Float)

For details, see “General Configuration Options” on page 10 .
i nt ernal Lat encyM n (Float)

For details, see “General Configuration Options” on page 10 .
i nternal LossRati o (Float)

For details, see “General Configuration Options” on page 10 .
nunConnect i ons (Integer)

Only valid when the MySQL database layer is used.

Number of connections to make to the underlying database.
This must be greater than or equal to 1. The default is 5.
over| oadLevel (Float)

Minimum load level that DBMgr should reach for the system to be considered in overload, and thus reject
new logins.

44

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xm

Similar overload levels are specified for all BaseApp's (using baseAppOver | oadLevel — for details,
see “BaseAppMgr Configuration Options” on page 29), and for any CellApp (using cel | AppOver -
| oadLevel — for details, see “CellAppMgr Configuration Options” on page 40 .

e over | oadTol er ancePeri od (Float)

Number of seconds that logins will be accepted during a situation where the Cell Apps are overloaded (see
the over | oadLevel option). After this period of time, any further logins will be rejected.

* passwor d (String)

Only valid when the MySQL database layer is used.

Password to be used when the DBMgr connects to the underlying database.
* port (String)

Only valid when the MySQL database layer is used.

Port to be used when the DBMgr connects to the underlying database. Set it to 0 to use the MySQL default
port.

e syncTabl esToDef s (Boolean)
Flag indicating whether changes to entity definition should be replicated to the MYSQL database.
The possible values are described below:
» fal se
No changes will be made to MySQL database structure.
° true

Make all necessary changes to the database structure to match the entity definitions. This includes delet-
ing redundant columns and tables.

DBMgr will fail to start if the database structure does not exactly match the entity definitions.

This option is convenient during development as entity definitions change frequently. During production
it is recommended to set this option to a safe mode (i.e., false), then manually update the MySQL database
structure by running the sync_db tool.

* type (String)
Type of database to use. Current options are: xim and nysql .
° uni codeStri ng/ charact er Set (String)

This is the character set that the database should use to store UNI CODE_STRI NGproperties in the database.
This is set to u#f8 by default. It should be rare that this should ever be changed. For more details on the
effects of setting this option please refer to the Server Programming Guide, chapter Character Sets and
Encodings, section “UNICODE_STRING storage”.

See the option dbMyr / uni codeSt ri ng/ col | ati on for for information on setting the collation type.
° uni codeString/ col | ati on (String)

This is the default collation that the database associates with UNI CODE_STRI NG properties. This is set to
utf8_bin by default. This can be set to utf8_general_ci, for example, if case insensitive lookups on identifier

bIgW@RLD" =

#dest=
#dest=
#dest=
#dest=

Configuration with bw. xm

fields are required. With this setting, identifiers need to be unique using a case-insensitive comparison.
For more details on the effects of setting this option please refer to the Server Programming Guide, chapter
Character Sets and Encodings, section “Sorting search results”.
See dbMgr / uni codeSt ri ng/ char act er Set for setting the character set.

° user namne (String)

Only valid when the MySQL database layer is used.

Username used when the DBMgr connects to the underlying database.

2.14.1. Data Consolidation Options

The options for data consolidation tool are located in the <dbMgr >/ <consol i dat i on> section of the server
configuration file <r es>/ ser ver/ bw. xm

For more detail about the data consolidation process, see “Data Consolidation Tool” on page 87).
e directory (String)

Directory where the data consolidation tool puts temporary secondary database files copied from BaseApp
machines. These files are automatically deleted when the data consolidation process completes.

If the first character of the pathisa/ character, the path is treated as an absolute path. Otherwise, the path
is treated as relative to the first <r es> path that contains the directory.

It is not recommended to set the SQLite secondary database directory to reside on a
network file-system. SQLite has specific requirements with regards to using file locking
services from the file-system which may not be implemented properly for network file-
systems.

It is recommended that each BaseApp machine has a dedicated space on a local file-
system for storing secondary database files.

2.14.2. XML Database Options

The options specific to using XML as the database type are located in the <dbMyr >/ <xm > section of the
server configuration file <r es>/ server/ bw. xm

The XML database is written in the main thread. If saving takes a long time, this can
block any processing by DBMgr. To avoid this, disable archiving and automatic saving.

e ar chi vePeri od (Float)

Number of seconds between making an archive of the XML database. The newest archive is scri pt s/
db. xm . 1 thenscri pts/db. xm . 2 etc.

To disable archiving, set this value to 0. 0.

° numAr chi ves (Integer)

#dest=
#dest=
#dest=

Server Configuration with bw. xm

Number of archives to keep of the XML database.
* savePeri od (Float)

Number of seconds between saving the XML database to disk. The previous file is backed up as
scri pts/db. xm . bak.

To disable backing up, set this value to 0. O.

2.15. LoginApp Configuration Options

The LoginApp configuration options are specified in file <r es>/ ser ver / bw. xm under the section<| ogi -
NApp>, and are described below:

e al | owLogi n (Boolean)
Flag indicating whether login attempts should be accepted.

This is useful when the server needs to be started without accepting logins for a while (e.g., to have the
server load chunks before allowing logins).

Logins can be enabled by setting al | owm.ogi n watcher on each LoginApp to t r ue — for a simpler way
to achieve this for all running LoginApps, see cont r ol _cl ust er. py's set command”.

e al | owPr obe (Boolean)
Flag indicating whether login probes should be accepted.
It is recommended to have this flag set to f al se for servers running on the public Internet.
This setting can be changed at runtime by settings the al | owPr obe watcher.
See also option | ogPr obes.
e al | ownencr ypt edLogi ns (Boolean)

Flag indicating whether a client sending a plaintext login request and/or a null session key should be
allowed to connect.

This flag should only be used for testing purposes. Setting this flag to true on a production system is not
recommended.

e external I nterface

For details, see “General Configuration Options” on page 10 .

ext er nal Lat encyMax
For details, see “General Configuration Options” on page 10 .
e ext ernal Lat encyM n

For details, see “General Configuration Options” on page 10 .

external LossRati o

For details, see “General Configuration Options” on page 10 .

FFor details on cont r ol _cluster. py, see “Control Cluster” on page 69 .

bIgW@RLD" -

Server Configuration with bw. xmi

internallnterface
For details, see “General Configuration Options” on page 10 .

This tag is deprecated, and its use is not recommended. For details, see the document Server Overview’s section
Server Components, “BWMachined”, “"BWMachined Interface Discovery”.

i nt ernal Lat encyMax

For details, see “General Configuration Options” on page 10 .
i nternal LatencyM n

For details, see “General Configuration Options” on page 10 .
i nternal LossRatio

For details, see “General Configuration Options” on page 10 .
| ogi nRat eLi m t (Integer)

Specifies the number of allowed logins when rate-limiting. As many logins as this are allowed during each
rate-limiting period as specified in option r at eLi ii t Dur at i on.

For example, if option | ogi nRat eLi mi t is set to 100, and optionr at eLi mi t Dur at i on is set to 10, then
100 logins will be allowed every 10 seconds. If the login rate limit quota is exceeded during this period, no
further logins are allowed until the start of the next 10 second period.

See also optionr at eLi mi t Dur ati on.
| ogPr obes (Boolean)
Flag indicating whether login probe attempts should generate a log message.

This might be useful for servers running on the public Internet, to verify users who are attempting to probe
and/or hack the server.

See also option al | owPr obe.
ext ernal Port s/ port (Integer)
Port that the LoginApp should listen to for login requests.

If set to zero, then a random port is chosen, which is useful when running multiple BigWorld server in-
stances in a LAN. The client would then need to auto-detect the available servers. For more details, see
“Auto-Detection of LoginApps” on page 109 .

Multiple port entries may be specified if necessary in order to provide a range of ports to use on a machine.
This is useful if multiple LoginApps are intended to be used on the same machine, and would generally
be used in conjunction with the option shoul dShut Downl f Por t Used. For example:

<l ogi nApp>
<ext ernal Port s>
<port> 20013 </port>
<port> 20014 </port>
<port> 20015 </port>
</ ext er nal Port s>
<shoul dShut Downl f Port Used> true </shoul dShut Downl f Port Used>

</l ogi nApp>

48

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Server Configuration with bw. xm

* maxLoginDelay (Float)

If the response from the LoginApp to the client is lost, the successful login needs to be resent to the client.
This setting is the number of seconds that a successful login attempt is kept.

° privat eKey (String)

This is the filename to read the LoginApp's RSA private key from. This is the key that is used to decrypt
the client's login credentials.

Please see Encrypting Client-Server Traffic for more information about the encryption support in BigWorld.
e rateLi m t Durati on (Integer)

Specifies the rate-limiting time period in seconds. As many logins as is specified in option | ogi nRat e-
Li m t are allowed during every one of these periods.

For example, if option | ogi nRat eLi ni t is set to 100, and option r at eLi rmi t Dur at i on is set to 10, then
100 logins will be allowed every 10 seconds. If the login rate limit quota is exceeded during this period, no
further logins are allowed until the start of the next 10 second period.

Setting this value to 0 disables login rate limiting.
See also option | ogi nRateLi mi t.
° regi ster Ext ernal I nt er f ace (Boolean)

If set to true, the LoginApp's external interface will be registered with bwmachined. This may be useful
during development to allow clients to discover running server. This should be set to false in a production
environment.

¢ shoul dShut Downl f Por t Used (Boolean)
Flag indicating whether the LoginApp should shut down if the specified port to listen to is not available.

If set to true, the LoginApp will shut down if the specified ports to listen to is not available. If set to false,
the LoginApp will find another port to listen to.

See also option port.

e shut DownSyst enOnExi t (Boolean)
Flag indicating whether the server should be also shut down when LoginApp is shut down.
If set to t r ue, then a controlled shutdown is performed on the server.

* ver boseExt ernal I nt er f ace (Boolean)

Flag indicating whether to generate verbose log output related to external network traffic.

2.16. Reviver Configuration Options

The Reviver configuration options are specified in file <r es>/ ser ver/ bw. xm under the reviver section,
and are described below:

e i nternal Lat encyMax
For details, see “General Configuration Options” on page 10 .

* internal Lat encyM n

bIgW@RLD" =

#dest=

Server Configuration with bw. xmi

For details, see “General Configuration Options” on page 10 .
e internal LossRatio
For details, see “General Configuration Options” on page 10 .
e pi ngPeri od (Float)
Number of seconds between pings sent to monitored processes for execution check purposes.

Reviver's monitor processes periodically by pinging them to check that they are still running and func-
tioning normally.

See also option subj ect Ti meout .
* reattachPeri od (Float)
Number of seconds between each time that Reviver checks processes to determine if it can monitor them.

If another Reviver stops monitoring a process, this option allows this Reviver to start monitoring that
process.

See also option subj ect Ti meout .
* shut DownOnRevi ve (Boolean)
Flag indicating whether the Reviver itself should be shut down after reviving a monitored process.

This is usually set to t r ue, since once a Reviver has started a process, that machine should probably be
considered busy.

See also option subj ect Ti meout .
e subj ect Ti meout (Float)

Number of seconds that a monitored process will wait for a response from its current Reviver before ac-
cepting to be monitored by another one.

If a monitored process does not receive a response from its current Reviver, then it is assumed that the
Reviver has been stopped after reviving another one of its monitored processes (this behaviour is set by
option shut DownOnRevi ve).

See also options pi ngPeri od, r eat t achPer i od and shut DownOnRevi ve.
e ti meout (Float)

Number of seconds that can be missed by a monitored process before Reviver assumes it is dead.

2.16.1. Reviver's BaseAppMgr Configuration Options

The BaseAppMgr configuration options are specified in file <r es>/ ser ver/ bw. xml under section <r e-

vi ver >/ <baseAppMyr >. These are the same as general Reviver options, but specific to BaseAppMgr. If the
setting is not specified, then the general one is used. For details on these options, see “Reviver Configuration
Options” on page 49 .

The options are listed below:
e pi ngPeri od (Float)

e subj ect Ti meout (Float)

50 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Configuration with bw. xm

* ti meout | nPi ngs (Integer)

2.16.2. Reviver's CellAppMgr Configuration Options

The CellAppMgr configuration options are specified in file <r es>/ server/ bw. xm under section <r e-
vi ver >/ <cel | AppMyr >. These are the same as general Reviver options, but specific to CellAppMgr. If the
setting is not specified, then the general one is used. For details on these options, see “Reviver Configuration
Options” on page 49 .

The options are listed below:

e pi ngPeri od (Float)

e subj ect Ti meout (Float)

° ti meout | nPi ngs (Integer)

2.16.3. Reviver's DBMgr Configuration Options

The DBMgr configuration options are specified in file <r es>/ ser ver/ bw. xm under section <r evi v-
er >/ <dbMyr >. These are the same as general Reviver options, but specific to DBMgr. If the setting is not spec-

ified, then the general one is used. For details on these options, see “Reviver Configuration Options” on page
49.

The options are listed below:
e pi ngPeri od (Float)
e subj ect Ti meout (Float)

° timeout | nPi ngs (Integer)

2.16.4. Reviver's LoginApp Configuration Options

The LoginApp configuration options are specified in file <r es>/ ser ver/ bw. xm under section <r evi v-
er >/ <l ogi nApp>. These are the same as general Reviver options, but specific to LoginApp. If the setting
is not specified, then the general one is used. For details on these options, see “Reviver Configuration Op-
tions” on page 49 .

The options are listed below:

e pi ngPeri od (Float)

e subj ect Ti meout (Float)

° ti meout | nPi ngs (Integer)

bIgW@RLED" -

Chapter 3. Cluster Administration Tools

A variety of tools are provided to assist in managing a BigWorld server. Broadly, these fall into three cate-
gories:

* WebConsole

¢ Cluster Control (See “ClusterControl” on page 54 .)

Watchers (See “Watchers” on page 54 .)

Log Viewer (See “LogViewer” on page 54 .)

Space Viewer (See “Space Viewer” on page 54 .)

Stat Grapher (See “StatGrapher” on page 54 .)
* Python Console (See “Python Console” on page 54 .)
* Commands (See “Commands” on page 54 .)

* Logging facilities
* Message Logger (See “Message Logger” on page 57 .)
* Stat Logger (See “StatLogger” on page 61 .)

* Server command-line utilities (e.g.,, control _cluster.py) (See “Server Command-Line Utili-
ties” on page 69 .)

The server tools are implemented almost entirely in Python, and can be easily extended, if additional func-
tionality is desired.

Most of the server tools' functionality is available from WebConsole, an easy to use web interface which
simplifies server administration for remote users and non-programmers (e.g., artists, game designers, etc.)
that may need to run and administer servers.

Almost all server tool functionality is also available via command-line utilities, which is useful when only
system console access is available (e.g., when remotely administering a server cluster via ssh).

Where possible, documentation for the server tools is maintained as online help. For WebConsole, this means
the Help link displayed in the navigation menu for each module. For command-line utilities, help is available
via the --help switch.

This chapter provides an overview of the suite of tools available. For detailed documentation, however,
please refer to the online help.

3.1. WebConsole

Located under bi gwor | d/ t ool s/ server/web_consol e, WebConsole provides a simple web interface
to manage and monitor a BigWorld server. For details on how to install and run WebConsole, see the docu-
ment Server Installation Guide.

3.1.1. Modules

WebConsole is functionally divided into units referred to as Modules. Each module in WebConsole has a
separate top level menu item in the main navigation menu on the left hand side of the page.

Complete documentation for each WebConsole module is provided as online help, accessible as a link on
the left hand side of the WebConsole page.

bIgW@RLD" =

#dest=

Cluster Administration Tools

WebConsole is composed of the modules described below.

3.1.1.1. ClusterControl
* Allows users to start, stop, and restart the game server.
* Browse the active machines and users on the local network.

* View and modify saved cluster configurations.

3.1.1.2. Watchers

* Allows users to view and modify Watcher values of active server processes.

* Generate pre-configured and user generated tabular reports of watcher values across sets of server pro-
cesses in a cluster.

* Define custom sets of watcher values for live monitoring.

3.1.1.3. LogViewer
* Allows users to view, filter, and search server message logs.
* Provides a real time / live view of server output.

* Summaries of per-user log usage.

3.1.1.4. Space Viewer

This tool is a HTML5 Canvas-based replacement for the existing "Space Viewer" tool
detailed later in this Chapter (see “Space Viewer” on page 71).

* Provides a summary overview of spaces and space information for a running server.

* Provides a detailed, real-time visualisation of the cells, partitions and entities of a space in world coordi-
nates.

* Allows visualisation of additional space-related information including: cellapp IP address, cell/partition
load balancing, partition aggression, loaded chunks, and entity bound levels.

For further information, refer to the documentation linked from within the Space Viewer online tool running
in Web Console.

3.1.1.5. StatGrapher

* Provides live and historic graphic views of server statistics.
3.1.1.6. Python Console

* Allows users to connect to the Python server of any Python enabled process (i.e., CellApp, BaseApp, Bots).
3.1.1.7. Commands

* Provides access to a set of pre-defined functionality on server processes that can be run from WebConsole
as required.

3.1.2. Installation and Configuration

For detailed instructions on installing and configuring WebConsole please refer to the Server Installation
Guide.

#dest=
#dest=

Cluster Administration Tools

3.1.3. User Administration

The first time WebConsole is started you will need to add at least one user in order to operate a BigWorld
server. To achieve this, from the front page of WebConsole, login with a username / password of admni n.
If you have never loaded the WebConsole homepage before, it should be visible at the url ht t p: / / host -
name: 8080, where host nane is the network name of the machine you install WebConsole on.

Once logged in you should be presented with a webpage similar to the following.

User Listing

Add Mew User admin

Flush User Mappings

Username 5Server User Action

3.1.3.1. Adding A New User

To add a new user, click on the "Add New User" menu item on the left hand side of the page. You will then
be presented with a form to input as follows:

Add A New User

Username [

Password [

Confirm Password [

l
l
l
Server User [|

The table below summarises the input fields providing sample input:

Field Description

Username The username that for the new user.
Password The password with which the new user will log in.
Confirm Password The password from the previous field, retyped to ensure no mistake

was made on entry.

Server User The Linux user this account will be associated with. This will be the
Linux user that the BigWorld server processes will be run as.

If you are uncertain of this field, please talk to your system administra-
tor to find out what your Linux user account is.

The following image shows a new user account Al i ceB being created and associated with the Linux user
account al i ce:

bIgW@RLED" _

Cluster Administration Tools

Add A New User

Username ’AIiceB

Password [(eeeeeeenenes

Confirm Password ’-------------

|
|
l
Server User alice]

Once all the user information has been entered, simply click the Add User button and you will be returned
to the main user listing, which will include the new user:

User Listing

Add New User AliceB alice
Flush User Mappings admin

Username 5S5erver User Action

3.1.3.2. Flush User Mappings

The Flush User Mappings menu option provides the ability for WebConsole to force all BWMachined in-
stances in the network to forget their current cached user list. This feature is useful and sometimes necessary
when adding users to a network information system such as LDAP which are sometimes used as account
management systems.

If you are having problems detecting a newly added user in your network, or are seeing an old user appear
in your cluster display, flushing the user mapping will quite often help resolve the issue.

3.1.4. Production Mode vs Development Mode

WebConsole can be started using two methods, as a system wide service or from the command line.

Generally, only developers working on modifying the web page templates or underlying code will run We-
bConsole from the command line. In order to achieve this, make sure that the current directory is bi g-
wor | d/ t ool s/ server/web_consol e, then issue the command:

$./start-web_consol e. py
There are some minor operational differences when running WebConsole in command line mode vs as a

system service:

* When run as a system daemon, WebConsole uses the configuration file pr od. cf g, which defines a pro-
duction environment mode.

* When run from the command line, WebConsole uses a development environment configuration file called
dev. cfg.

Running in development mode leaves the web server in a state where an automatic restart is triggered if
there are any changes to the template files or Python code it is using.

56 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

The production configuration file does not exist by default in bi gwor | d/ t ool s/ server/web_consol e,
as it is partially generated during the installation process while using the i nstal | _t ool s. py script. The
original production configuration file that the installation script uses is bi gwor | d/ t ool s/ server/i n-
stal |l /web_consol e. cfg.

Both configuration files need to specify the database to use. Before running WebConsole, make sure that the
appropriate configuration file has a line that looks like this:

sql obj ect. dburi ="notrans_nmnysql : // user name: passwor d@ ocal host : 3306/
bw web_consol e"

Specifying the database

To modify the bi gwor | d/ t ool s/ server/install/web_consol e. cf g file to a working configuration
file, replace the line:

##H#BW SQLURI ###

with an sqgl obj ect . dburi line as indicated above.

For information regarding TurboGears configuration files and content, we recommend the TurboGears doc-
umentation website http://docs.turbogears.org/1.0/Configuration.

If you have never run WebConsole before and choose to run it from the command line (as opposed to in-
stalling the system service), it is necessary to create a database for WebConsole within MySQL. To do this,
connect to your MySQL database using the username and password that you have defined in dev. cf g, then
issue the following command:

CREATE DATABASE bw web_consol e;

3.1.5. Customising

As WebConsole is a convenient interface to your cluster environment, it may be useful to add new content
to WebConsole that is unique to your companies requirements. To achieve this please refer to the Server
Programming Guide chapter Web Console.

3.2. Message Logger

Message Logger is a process used for logging output from BigWorld processes within a network. This is
primarily intended as a mechanism for logging output from server processes, however in a development
environment it can be useful for game clients and other tools to send log messages as well. The source code
for Message Logger can be located in bi gwor | d/ src/ server/t ool s/ nessage_| ogger, while its exe-
cutable is found in bi gwor | d/ t ool s/ server/ bi n. Message Logger is a stand alone Linux process that
can be run on any machine in a BigWorld cluster that is running BWMachined.

A suite of Python tools and libraries is also provided for accessing and manipulating logs that have been
generated by Message Logger. These tools can be found in bi gwor | d/ t ool s/ server/ nessage_| ogger.

Detailed documentation for the supported command line arguments is available as online help using the - -
hel p option.

When a server process, such as a CellApp, is started it performs a search of the network cluster it is operating
within for all active Message Logger processes. Any output that is generated as a result of script pr i nt state-
ments or C++ calls to the message handlers (I NFO_MSG ERROR_MBG etc....) are sent to all known Message
Logger instances. Message Logger processes that are started after a server process will notify all running
server components of their existence and commence logging of all subsequent messages.

bigw@RLD" S

http://docs.turbogears.org/1.0/Configuration
#dest=
#dest=
#dest=

ster Administration Tools

The BigWorld Client can also be configured to send messages to Message Logger. By default this is enabled
in the Hybrid build and disabled in the Release build. The Consumer build logging options are controlled
by a set of #def i nesinsrc/|i b/ cstdnf/config. hpp.

The following values should be defined in the Consumer build to enable the Client to send log messages to
Message Logger instances:

#define FORCE_ENABLE_MSG LOGG NG 1
#def i ne FORCE_ENABLE_DPRI NTF 1
#def i ne FORCE_ENABLE_WATCHERS 1

Messages from the client are by default sent as the r oot user (i.e., with a linux UID of 0). In order to associate
logs generated from a Client with a specific user within a network, a Windows environment variable Ul Dcan
be set. This variable should have a value corresponding with the user's Linux account user id. For example
a developer Alice with a Linux account name of al i ceb could discover her user id on Linux by logging in
to her Linux account and typing the following command:

$id
ui d=3592(al i ceb) gi d=501(Unbr el | aCor p)

Alice can then set a Windows environment variable of U Dwith the value 3592. Any logs generated by Alice
running the BigWorld Client will now be associated with her.

3.2.1. Configuration

Except where overridden by the corresponding command line option, Message Logger reads its configura-
tion from the file bi gwor | d/ t ool s/ server/ nessage_| ogger/ message_| ogger. conf.

The configuration file is in standard Windows INI file format, and supports the following options:

Option Name Description

logdir The location of the top level directory to which Message Logger will write its logs.
This option can be either a relative or an absolute path. If a relative path is specified,
then it is calculated relative to the location of the configuration file.

segment_size Size (in bytes) at which the logger will automatically roll the current log segment for
a particular user.

default_archive File used by nl t ar . py when the - - def aul t _ar chi ve option is used. This file is
also inserted into Message Logger's logrotate script during installation.

groups A comma separated list of machine group names. When specified MessagelLogger
will only accept log messages originating from machines that have a matching group
name listed in the [G oups] section of / et ¢/ bwnachi ned. conf . For more details
see “Production Scalability” on page 61 .

3.2.2. File Format

Message Logger generates log files in a binary format in order to make the best use of disk space as possible.
In order to access the binary logs, two Python modules are provided:

Python Module Description

bwl og. so Location: bi gwor | d/ t ool s/ server/ bi n/ Hybri d64
A binary Python extension compiled from Message Logger source code.
nmessage_| og. py Location: bi gwor | d/ t ool s/ server/ nessage_| ogger

Python classes that simplify and extend the functionality exposed from bwl og. so.

Cluster Administration Tools

For examples on how to use these modules, browse the source code of the command-line message logger
utilities described in “Command Line Utilities” on page 59 .

Message Logger generates logs in a two level directory structure. The top level directory contains files that
are common to all users, and contains one sub directory per user. The files in the top level directory are:

Filename Description

conponent _nanes List of all distinct component names (i.e., CellApp, BaseApp, etc...) that have sent mes-
sages to this logger. This is used to resolve numeric component type IDs to names, when
displaying log output.

host nanmes Mapping from IP addresses to hostnames. This is used for resolving hostnames when dis-
playing log output.

strings List of all unique format strings that have been sent by logging components, along with
parser data for interpreting arguments to each. This is used to reconstruct the log messages
from format string IDs and binary argument blobs.

versi on Log format version. This is used to prevent accidentally mixing two log formats.

pid Process id of the active Message Logger process writing logs to this directory. This is used
by both the tools and Message Logger to identify the process (if any) currently generating
logs.

Each user's sub directory has a file containing its UID, as well as the following files:

Filename Description

conponent s A record of each individual process instance registered with this logger.

entries. <tinmestanp>, A collection of log messages.
args. <ti mest anp>
The fixed length portion of each log message (time, component ID, etc...) is stored in the
entries. <ti mest anp> file, while the variable-length portion of the entry (i.e., arguments
to printf) is stored in the corresponding ar gs. <t i mest anp> file.

The variable length section data corresponds to an entry in the format string file st ri ngs.

3.2.3. Command Line Utilities

The bi gwor | d/ t ool s/ server/ message_| ogger directory contains a variety of command line utilities
providing the functionality of standard UNIX shell utilities for BigWorld message logs. Using these utilities
you can operate on the binary logs using standard UNIX shell utilities and pipelines in the same way you
can with ordinary text files.

The following tools are provided:

Utility Description

micat.py Provides both cat and tail -f style of text log outputting.

mlls.py Displays information about log segments, such as start and end times, entry
counts, and sizes; for individual users or all of them.

mitar.py Provides an easy way to select log segments from a user's log and archive
them, as well as all the required shared files for viewing on another machine.

mlirm.py Provides an easy way to clean up unwanted log segments.

The detailed documentation for each utility is maintained as online help, which can be accessed via the - -
hel p option.

bigw@RLD"

Cluster Administration Tools

The following list provides some common examples of tasks you might wish to achieve using the Message
Logger tools:

emcat.py -f
Watches live server logs.
e mcat.py --around="Mn 22 Jan 2007 19: 00: 00" -u devuser
Views output surrounding a log entry of interest for user devuser.
emtar.py -zcf bwsupport.tar.gz --active-segnent
Collects logs to email to support.
emtar.py -u <uid> -zcf bwsupport.tar.gz --active-segnent
Collects logs for the Unix user whose uid is ui d to email to support.
enmls.py -u ganeuser
Displays all log segments for user gameuser, to determine the segment with entries of interest.
emrmpy --days=30
Removes logs over a month old.
emtar.py -xf |astweek.tar.gz -o sanpl el ogs

Extracts the archive | ast week. t ar. gz to the directory sanpl el ogs.

Since the archives are compressed tar files, you can use tar to achieve the same results
if you find that easier, as illustrated below:

$ nkdir sanpl el ogs
$ tar -zxf lastweek.tar.gz -C sanpl el ogs

enmtar.py -xd

Extracts the latest archive back to the default logdir.

3.2.4. Automatic Log Archiving

The Linux | ogrotate scripts areused torotate (stop writing an old log file and start writing to a new
file), archive (backup the old log file), and delete (log files deemed to be past an expiry time) log files on a
daily basis, which can assist in conserving disk space. A logrotate configuration file, / et ¢/ | ogr ot at e. d/
bw_nessage_| ogger, is set up as part of the Server Tools installation. For more information about | ogr o-
t at e, please see the | ogr ot at e manpage:

$ man 8 logrotate

There are two issues to consider when customising the | ogr ot at e:

* Log rotation can put a load on the logging machine.

Cluster Administration Tools

e If rotation is configured to occur more frequently, for example the rotation is changed to occur on hourly
basis, then in this case the r ot at e option should be updated to 168 (i.e. 7 x 24) to ensure that the log files
cover the same period of time.

3.2.5. Production Scalability

In order to assist Message Logger coping with heavy network and disk load in production environments,
Message Logger supports logging subsets of machines within a server cluster. This is achieved by assigning
a Message Logger process a list of machine groups that it should accept logs from, as well as assigning every
machine in the cluster to a machine group. Both Message Logger and cluster machines may be assigned to
multiple machine groups. In order to enable this feature both MessageLogger and BWMachined will need
to be configured correctly throughout your cluster environment.

To limit a Message Logger process to only accept logs from a set of machine groups requires adding
a comma separated list of group names to a groups entry in the file bi gworl d/t ool s/ serv-
er/ message_| ogger/ message_| ogger . conf . For example, to assign a MessageLogger process to only
accept logs from the machine groups QA_Cl ust er 1 and QA_Cl ust er 2 the following entry would be placed
in message_| ogger. conf:

[message_| ogger]

groups = QA Clusterl, QA Cluster2

MessageLogger needs to be restarted in order to detect these changes, however once restarted an entry should
appear in the MessageLogger log file/ var /| og/ bi gwor | d/ message_| ogger . | og similar to the follow-
ing:

2008-11-12 11:37:20: INFO Logger::init: MessagelLogger nachi ne groups
specified. Only accepting logs from QA Clusterl, QA Cluster2

For details on configuring BWMachined see “Configuration” on page 135 .

Currently in order to view the logs generated when using the machine group log sep-
aration will require either separate installations of WebConsole, or manual searching
of the files with the ml cat . py tool on the host where MessageLogger is running. This
limitation will be addressed in a future release of BigWorld.

3.3. StatLogger

Written in Python, StatLogger is a daemon process that runs in the background, polling all servers on the
network at regular intervals (by default, every 2 seconds). Any computer running BWMachined will be au-
tomatically discovered, along with any BigWorld components running on that machine. StatLogger collects
and logs information for every server component discovered, regardless of which user is running them.

Statistics for machines and processes are collected in 2 ways:
* Communication with BWMachined daemons running on each computer.
* Requests made directly to the processes via the Watcher mechanism.

Once collected, StatLogger logs this data to a MySQL database. For details on the structure of the database,
see “Database Structure” on page 68 .

bigw@RLD"

Cluster Administration Tools

The main objective of StatLogger is to collect and store data in a format that can be used by StatGrapherl,
which is the visualisation counterpart to StatLogger, and presents the data in a graphical format.

3.3.1. Requirements

The list below describes the requirement for running StatLogger:
* CPU

On an Athlon 2700+, monitoring 230 processes (which includes 200 Cell Apps) with StatLogger consumes
roughly a constant 15% of available CPU time. The MySQL daemon also experienced a constant load
increase of 5.5% due to the large amount of database queries being generated.

e Disk

Due to the amount of data being collected, StatLogger can potentially consume a lot of disk space. The
rate at which disk space is consumed depends on the amount of machines and server process for which
statistics are collected. 4GB is recommended for a large amount of processes (around 250) and machines
over a month. The disk space consumption rate of a single log gets smaller the longer a log is run, since
StatLogger stores older data in lower detail than newer data.

e Network

StatLogger's network requirements depend on the number of server machines and components present.
It can potentially require a large amount of network throughput. For example, 230 processes and 9 server
machines require 100Kb/s of downstream traffic, and 20kb/s of upstream traffic, while 6 processes (i.e., for
a minimal server) and 9 server machines require 4kb/s of downstream and 2kb/s of upstream traffic.

* RAM

Memory requirements are low, as statistics are immediately logged to the database, rather than being kept
in memory. Tests indicate an average usage of memory between 7MB to 10MB, regardless of the amount
of processes running.

* Software
MySQL 4.1+ and Python 2.4 with MySQLdb.

StatLogger must be run on the same local network as the BigWorld server processes that it is intended to
monitor due to the manner in which machine and server component discovery occurs.

StatLogger requires a valid MySQL user with access to create databases. Normally the creation and config-
uration of this MySQL user is handled during the tools installation processz, but an existing database user
can be can used instead, by manually editing the configuration file. For details, see “Configuration” on page
63.

3.3.2. Output

StatLogger outputs various status messages describing which machines and processes it discovers or loses
(i.e., from the process or machine shutting down) from the network, each prefixed with a timestamp.

When running StatLogger manually from the command line the default is to display this information to the
terminal on which it is run unless the - 0 option is specified.

When installed as a daemon, these messages output to the log file /var/| og/big-
wor | d/ st at _| ogger .| og by default. This log file is specified by the LOG Fl LE variable in / et c/
init.d bw stat | ogger.

"For details, see “StatGrapher” on page 54 .
For details, see the Server Installation Guide.

62 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=

Cluster Administration Tools

3.3.3. Data Collection and Aggregation

As Stat Logger is responsible for collecting a constant stream of data from an arbitrarily large BigWorld server
cluster for historical tracking it is necessary to prevent the database size from growing out of proportion.
In order to achieve this Stat Logger implements a mechanism of aggregating and merging data from high
resolution time periods into lower resolution time scales the older the data becomes. This approach allows
high resolution data to be maintained for recent events when diagnostics are most likely to occur but allows a
broad view of server performance over a long scale to be maintained. More information on customising how
StatLogger aggregates data can be found below in “Aggregation Window Configuration” on page 63 .

3.3.4. Configuration

Located in StatLogger's directory, the preference file pr ef er ences. xml is used to configure the script. The
preference file can be used to configure:

* Database connection details.
* Watcher values to collect from processes.
* Aggregation preferences.

Apart from the database user configuration, in most cases the provided standard settings should be sufficient
for development and production environments.

The preferences.xml file configures database setup options, as well as what data StatLogger should collect
from the server components and machines.

3.3.4.1. Database Connection Details
The <opt i ons> section of the preferences file contains the following tags:

Option Name Description

dbHost Hostname or IP address of the MySQL database server that will contain the log databases.

dbUser Database user with which StatLogger (and StatGrapher) will access the database. For de-
tails on StatGrapher, see “StatGrapher” on page 54 .

dbPass Database user's password.

dbPort Port on which the MySQL server is listening for connections.

dbPrefix Prefix of database names which StatLogger can accesses.

sampleTickinterval Interval in seconds at which StatLogger will poll the components and store statistics (deci-

mals are supported). Generally this value does not need to be changed, however if it does,
then it should not be any smaller than 2 seconds (the default recommended value).

3.3.4.2. Aggregation Window Configuration

The <col | ect/ aggr egat i on/ wi ndow> section configures the aggregation windows that will be stored
in the database.

As outlined in “Data Collection and Aggregation”on page 63, StatLogger has been designed to stores
multiple versions of data at varying levels of detail with the idea is that long term data does not need to be
stored at the same level of detail as the more recent data.

StatLogger requires at least one aggregation window setting in this section with a sanpl ePer i odTi cks
value of 1.

Multiple aggregation window setting takes the form of:

<pref erences>

bigw@RLD"

Cluster Administration Tools

<col | ect >
<aggregati on>
*<wi ndow>
<sanpl es> <num sanples_in_this_win> </sanpl es>
<sanpl ePeri odTi cks> <num of _ticks_per_sec> </ sanpl ePeri odTi cks>
</ wi ndow>

Multiple aggregation window settings (Grammar)
There are some constraints that must be adhered to when creating this list of aggregation window settings:
* There must always be an aggregation window with samplePeriodTicks value of 1.

¢ Aggregation window settings must be ordered in ascending order by their samplePeriodTicks value, with
the smallest values first.

¢ Each successive aggregation window should cover a larger range of ticks than the previous one. The tick
range is calculated by multiplying samples value by the samplePeriodTicks value (i.e., number of samples
x ticks consolidated into one sample).

* Each successive samplePeriodTicks value must be a multiple of the samplePeriodTicks value from the
previous window.

These aggregation windows are used directly by StatGrapher, so it is advised not to have large discrepan-
cies between the sanpl ePeri odTi ck values of successive aggregation windows. Furthermore, the final
aggregation window setting should not have a large samples value, as this may place a heavy load on both
StatLogger and StatGrapher.

An example aggregation section is shown below, with a samples value of 365:

<preferences>
<col | ect >
<aggregati on>

<I-- Every sanple (2secs) in nost recent 24hrs. 43200 sanples -->
<wi ndow>

<sanpl es> 43200 </ sanpl es>

<sanpl ePeri odTi cks> 1 </ sanpl ePeri odTi cks>
</ wi ndow>

<I-- Every 10th sanple (20secs) in nost recent 48hrs. 8760sanples -->

<wi ndow>

<sanpl es> 8760 </sanpl es>

<sanpl ePeri odTi cks> 10 </ sanpl ePeri odTi cks>
</ wi ndow>

<I-- Every 150th sanple (5mns) in nost recent 30 days. 8760 sanples -->

<wi ndow>

<sanpl es> 8760 </sanpl es>

<sanpl ePeri odTi cks> 150 </ sanpl ePeri odTi cks>
</ wi ndow>

<l-- Every 1800th sanple (60m ns) in nost recent 365 days. 8760 sanples

-->
<wi ndow>
<sanpl es> 8760 </sanpl es>
<sanpl ePeri odTi cks> 1800 </sanpl ePeri odTi cks>
</ wi ndow>

64

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

<!-- Every 43200th sanple (1lday) in nost recent 365 days. 365 sanples --

>
<wi ndow>
<sanpl es> 365 </ sanpl es>
<sanpl ePeri odTi cks> 43200 </sanpl ePeri odTi cks>
</ wi ndow>

</ aggr egati on>

Multiple aggregation window settings (Example)

3.3.4.3. Machine Statistic Configuration

The <col | ect/machi neStati sticLi st> section is similar to the statisticList’ and al | Pro-
cessStati sticLi st *sections, except in that watcher values are not supported since machines do not have
a Watcher interface. The <val ueAt > settings only support strings representing members of the Machi ne
class defined in bi gwor | d/ t ool s/ ser ver/ pycommon/ machi ne. py.

3.3.4.4. Generic Process Statistic Configuration

The <col | ect/al | ProcessSt ati sti cLi st > section is similar to the st at i sti cLi st ” section, except
that its statistics are regarded as common to all processes being monitored i.e., those specified in the <pr o-
cessLi st >° section.

It is recommended that any watcher values used in this section are supported by all processes being moni-
tored, although StatLogger will store empty values for processes that do not support a watcher value.

3.3.4.5. Process Configuration

The <col | ect/ processLi st/ process> section configures the statistics that will be collected for each
process. There must be one process section for each server component to be monitored.

The process section contains the following tags:

Tag Name Description
name Display name for the process type.
matchtext Name of the component type's executable. Value must be in lowercase, like

the executable names.

statisticList List of statistics to be collected for this process by StatLogger”.

“For details see “Process Statistic Configuration” on page 66 .

An example process section is shown below:

<pref erences>
<col | ect >
<processlLi st>
<process>
<nane> Cel | App </ nanme>

<mat cht ext > cel | app </ nane>
<statisticList>

SFor details see “Process Statistic Configuration” on page 66 .
For details see “Generic Process Statistic Configuration” on page 65 .
For details see “Process Statistic Configuration” on page 66 .
For details see “Process Configuration” on page 65 .

bigw@RLD" -

Cluster Administration Tools

</statisticList>
</ process>

Example process configuration

3.3.4.6. Process Statistic Configuration

The <col | ect/ processLi st/ process/statisticList/statistic> section specifies the statistics
that must be collected for each process.

The statistic section contains the following tags:

Tag Name Description

name Display name for the statistic type.

valueAt Where to retrieve the values from. There are two distinct sources of information, depending on the first
character of this tag's value, see the section “valueAt Properties” on page 67 for details.

maxAt This value is not explicitly used in StatLogger, however it is used by StatGrapher to determine the scale
of the graph.

type Current unused.

consolidate Consolidation function to use when moving data up an aggregation window.

Possible values are: MAX, M N, and AVG.

Example: We consolidate four data samples at 4 seconds per sample into the next aggregation window,
which stores data at 16 seconds per sample. The data represents CPU load consumed by a process. The
consol i dat e value is specified as AVG, so StatLogger averages the four data samples, then store this
value as a single value in the higher aggregation window.

display Contains properties that influence the StatGrapher display of this statistics.

An example statisticList section is shown below:

<pref erences>
<col | ect >
<processlLi st>
<process>
<nane> Cel | App </ nane>
<mat cht ext > cel | app </ nane>

<statisticList>
<statistic>

<name> Cell Load </ nane>
<val ueAt > /1 oad </ val ueAt >
<maxAt > 1.0 </ maxAt >
<l ogi cal Max> None </l ogi cal Max>
<type> FLOAT </type>
<consol i dat e> AVG </ consol i dat e>
<di spl ay>
<col our > #FF6600 </ col our >
<show> true </ show>

<descri ption>
The load of this Cell App.
</ descri ption>
</ di spl ay>
</statistic>
<statistic>
<name> Num Entities Ever </ nane>

66 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

<val ueAt > /stats/total EntitiesEver </val ueAt>
<maxAt > 10000. 0 </ maxAt >
<type> FLOAT </type>
<consol i dat e> MAX </ consol i dat e>
<di spl ay>
<col our > #663366 </ col our >
<show> fal se </ show>

<descri ption>
The nunber of entities created on the Cell App since server
startup.
</ descri ption>
</ di spl ay>
</statistic>

Process statistic configuration — Example

3.3.4.6.1. valueAt Properties

The behaviour of the val ueAt tag changes based on the first character of the string. If first character is a
slash '/ 'val ueAt will be interpreted as a watcher path. The best way to list the watchers that can be graphed
is via the WebConsole's ClusterControl module’.

Any single scalar value present in ClusterControl can be added to StatGrapher, including any customer
watcher values added within your own game code.

If the first character is not a slash, the val ueAt string is treated as referring to a member a Pr ocess class
instance as found in bi gwor | d/ t ool s/ server/ pyconmon/ pr ocess. py. Strictly speaking, val ueAt is
eval 'ed against the Pr ocess object which enables slightly more flexibility than just being able to reference
class members.

Examples:
valueAt Interpretation
/ st at s/ num nAol Watcher path of <pr ocess type>:/ st at s/ num nAol
nmem Evaluated to Pr ocess. nem which retrieves the value of memory usage of a
process.

Caution is required with this type of value as it is possible to use a function call that
changes the state of the process (e.g., causing a process to shutdown). It is highly un-
likely that this will occur by accident, unless the exact function call is entered in the
val ueAt setting.

3.3.4.7. Further Notes on Configuration

The configuration file directly affects the database structure used for storing the statistics. If the collect section
of the configuration file is changed, then StatLogger will detect the change when it is next run, and will
subsequently create a new statistics database from scratch, in order to accommodate the new structure.

3.3.5. Database

StatLogger uses two active databases during its operation, however over an installation's life multiple
databases may be created as StatLogger options are modified.

"For details see “ClusterControl” on page 54 .

bigw@RLD"

Cluster Administration Tools

The two active databases required by StatLogger are:
1. Statistics database associated with a unique preference configuration.
2. Meta database for tracking all statistic databases known by StatLogger.

By default, the meta database is named bw_stat _| og_i nfo and contains a single table called
bw stat | og_dat abases.Thebw st at _| og_dat abases table stores the names of all the known statis-
tics databases. The meta database is always created if it does not exist in the MySQL server.

The statistics databases by default are named bw_st at _| og_dat a<n>, where <n> is the incremental
database number. Users can choose to create statistics databases with specific names using the - n option
when running StatLogger.

New statistics databases are created in the following situations:
* There are no statistics databases in the MySQL server.

* The preferences file was structurally changed, which causes a new statistic database to be created. For
details on the pr ef er ences. xn file, see “Configuration” on page 63 .

* StatLogger was started with the - n <dat abase_name> command-line option, and there was no statistic
database with that name in the MySQL server.

There is typically no need to create new statistics databases unless isolated sets of statistics are needed. This
may occur when performing tests with the BigWorld server. Once StatLogger has been configured to suit
your environment only one statistics database should be needed.

3.3.5.1. Database Structure

Below is an overview of the tables in a statistics database. This is intended as a quick reference for locating
data within the database. For a comprehensive understanding of how the data is used the source code is
considered to be the best reference.

Table Name Description

pref_processes

pref _statistics
seen_machi nes
seen_processes
seen_users

stat _<proc>_lvl _<lvl>

stat _nmachi nes_| evel _<l vl >

st d_aggr egat i on_wi ndows

std_info

std_session_tinmes
std_tick_tines

std_touch_tinme

Process preferences as specified in the configuration file's <col | ect / pr ocessLi st >
section. For details, see “Process Configuration” on page 65 .

Statistic preferences specified in configuration file.

Machines observed while StatLogger was running.

Processes observed while StatLogger was running.

Users observed while StatLogger was running.

Statistics collected for processes of type <pr oc>, with <| vl > index of aggregation.

Statistics collected for machines with <I vl > index of aggregation. The higher the aggre-
gation level, the lower the resolution of the data being stored in that table.

Adggregation level details specified in configuration file's collect/aggregation section.

sanpl eTi ckl nt er val specified in the configuration file's <opt i ons> section. For de-
tails, see “Database Connection Details” on page 63 .

Database structure version (Used internally by StatLogger).
Start and end times of when StatLogger was run.

Timestamps of the start of each interval.

The last time the database was written to, in database local time.

This value is only used by StatGrapher regardless of whether StatLogger is currently
logging to this database or not.

Cluster Administration Tools

3.4. Server Command-Line Utilities

3.4.1. Control Cluster

Location: bi gwor | d/ t ool s/ server/control _cl uster. py

Control Cluster is a command line tool for managing a BigWorld cluster from a text only interface.

For detailed information on all the available commands, please refer to the Control Cluster help by using

the - - hel p option.

$./control _cluster.py --help

For detailed help information on a specific command simply provide the command name after the - - hel p

option. For example:

$./control _cluster.py --help getmany
get many <processes> [wat cher - pat h]

Queries the specified watcher path on all processes of the specified type
currently active in the cluster. The path can contain '*' w | dcards.

Control Cluster provides functionality through a number of commands that can be used to interact within a
BigWorld server environment. The commands can be discussed in terms of four functional areas.

Server Commands

Process Commands

Profiling Commands

Commands that operate on an entire server configuration to either modify or re-
port its current state. This includes starting and stopping a server, saving the cur-
rent server layout for reuse and displaying the current server configuration on
the command line.

As server commands require interacting with a specific server instance, there is an
implied user for performing these commands. Unless otherwise specified the user
is taken as the username of the person running the Control Cluster command. The
user to perform a command as can be changed if required by using the option - -
user . For example:

$./control _cluster.py --user bob start

These commands operation on specific server process instances. They are used for
starting and stopping server processes when there is already an active server, as
well as interacting with an active server process, for example retrieving watcher
values.

As with the server commands, the process commands have an implied user as
they operate on server processes that have an associated user ID at runtime. The
user you run a command as can be modified at any stage by using the - - user
option.

Profiling commands are used for diagnosing problems on server processes. While
technically operating in the same way that process commands do, they are sep-
arated into a unique category to highlight their availability and encourage their
usage.

Profiling commands can be used for extracting all manner of performance infor-
mation from server processes including C++ performance, Python game script
performance, client traffic performance and intra-process network statistics.

bIgW@RLD" &

Cluster Administration Tools

Cluster Commands The cluster commands are different to the server and process commands in that
there is no implied user for them. These commands operate on the entire cluster
as represented by every machine in the network that has a BWMachined instance
running and is reachable through broadcasting. Operations such as querying all
machines in the cluster for their current load and checking the validity of the BW-
Machined ring are included in these commands.

3.4.1.1. Machine Selection

Many commands require a machine or machines to be provided to perform a command on. As commands
quite often need to be performed across large sets of machines at the same time, Control Cluster provide
a number of different shorthand notations which can be used anywhere a <machi ne> or <machi nes> is
requested.

For example the st art command requires a machine set to operate on as seen by the hel p output.

$./control _cluster.py help start
start <machi nes>

Start the server on the specified set of nmachines. To start the server on
all machines, you nust explicitly pass "all' for nachine sel ection.

The following list outlines the different machine selection approaches that can be used.
e All machines
All machines in the network can be referred to using the syntax al | .
* Hostname
An exact hostname such as bw01, dnz- gqa- 10.
e IP Address
An exact IPv4 address such as 192. 168. 1. 34.
* Hostname Wildcard

A hostname containing a wildcard such as dne- ga- *. Be aware that depending on the unix shell you use
(e.g., bash or zsh) you may have to quote the wildcard *.

* BWMachined Version

BWMachined has a protocol version associated with each instance. If you are running multiple versions of
BWMachined within your network (a practice discouraged by BigWorld), you can specify all hosts using
a particular BWMachined version using the following syntax: ver si on: 42 where 42 in this case refers
to protocol version 42.

°* BWMachined Groups

Using the [G- oups] tag in / et ¢/ bwrachi ned. conf to specify different groups of machines within
your server cluster, it is then possible to refer to these groups using the syntax gr oup: gr oupnane.

This information is also available from the command line help by using the hel p command rmachi ne- se-
I ection.

$./control _cluster.py hel p nachi ne-sel ection

70

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

3.4.1.2. Process Selection

Similar to machine selection, many commands can operate on numerous processes at the same time. For
example the get many command can select watcher values from many processes to provide a tabular report.
In most cases whenever <pr ocesses> is seen in the hel p output of a command, you can use one of the
following approaches for supplying sets of processes.

The following list outlines the different process naming schemes that can be used with commands.
e All processes

All processes in a server cluster can be referred to using the statement al | . This is especially useful in
relation to watcher commands.

* Process name

An exact process name such as cel | app01 or cel | appnyr .
* All processes of a type

A set of all process types such as cel | apps or baseapps.
* Single process of a type

A process type name such as cel | app or baseapp. This can be useful when a command can be run on
any process of the provided type but there may be many processes running within the server cluster.

When using this method of process selection, if there are multiple processes of the specified type running,
a random process of the provided type will be selected.

* Non-zero numbering

An exact process name that would otherwise have zero's padding the process id, such as cel | app1l or
baseapp9.

The advantage of this approach is that it allows the user to take advantage of shell expansion approaches
that are already available in different shells such as bash and zsh. For example in both bash and zsh using
the syntax cel | app{ 1. . 3} would expand tocel | appl cel | app2 cel | app3, while baseapp{1, 7}
would expand to baseappl baseapp7.

This information is also available from the command line help by using the hel p command pr ocess- se-
I ection.

$./control _cluster.py help process-sel ection

3.4.2. MessagelLogger Related Utilities

For details on the tools available for interacting with server message logs, see “Command Line Utili-
ties” on page 59 .

3.5. Space Viewer

This tool has been replaced with a web-based equivalent version, see “Space View-
er” on page 54 . This version is now deprecated.

bigw@RLD"

Cluster Administration Tools

| Space 1. Cell Apps 1 of 1L
File Miew Colour Entity Size Ut Warp Help
EEEENEEFEERNEEAEEEEENANEEEEEENENENEREEEANERNEE)
[spaces/mahlands I
A |
I |
1 oy 1
) ~[T
!— 'I"' }":' 1
i |
: o~ o |
¥ |
I T |
1 |
' 81 “ﬁ“'ﬁ .
|
i o | 1
I (9] i 1
|

ICK 1S Ce:

b
=l

Toggled displ:|Current Pos: | Entitie=z: 343 |16:53:59 05-03

Location: bi gwor | d/ t ool s/ server/ space_vi ewer

Space Viewer is a program that is used for displaying a dynamic graphic representation of spaces. This
includes the distribution of cells in a space, as well as the entities within each of the cells.

Space Viewer uses a client / server architecture, and is therefore composed of two distinct parts which may
be used simultaneously or separately. The server component (SVLogger) either communicates with an active
BigWorld server to collect and log information about a space, or is used to read a previously collected log.
The client component (SpaceViewer) connects to the server process and uses a GUI to display the space
information provided to it.

For comprehensive documentation on Space Viewer's options and contextual help, please refer to the - -
hel p output along with the application help available from the Help menu.

Since the two halves of Space Viewer communicate via TCP, they can be run on different machines, although
the client is most responsive when both components are run on the same machine.

The most common use of Space Viewer is to monitor the state of a live BigWorld server, and as such, both the
client and server components are run in tandem. This can be achieved by simply running the SpaceViewer
script (space_vi ewer . py) when logged in to a GUI session on either Windows or Linux.

Other scenarios such as during scalability testing require running the server component as a separate process.
This allows collecting space data over long periods of time without requiring an attached GUI session. In
order to achieve this simply run the SVLogger script (Svl ogger . py) from a Linux command line console.
The SpaceViewer GUI can be attached to the server process at any stage by using the - - connect option of

72 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

SpaceViewer. For more information on remote monitoring using Space Viewer, see “Running Space Viewer
Remotely” on page 75 .

The following image illustrates a number of users with active servers within the same network cluster. The
dom ni cwuser has been expanded to show all spaces that are active within that server.

- Space Viewer

Eile

= Users (3)
= dominicw
Space:

Space:

Space:

[S B

Space:
[+ paulm

F thomasc

Space Viewer window

3.5.1. Selecting Spaces to View

When running SpaceViewer if you do not see your username listed in the main Space Viewer window, select
the File —» Refresh menu item. This is sometimes required as the list is not automatically updated.

Clicking the arrow icon to the left of user name expands the list to display all spaces available for that server
instance.

In the example above, the domi ni cwserver has 4 spaces. To view the top down map of a space, double click
its entry on the list. This will start an SVLogger process which will log data from the selected space as well
as a new client window that attaches itself to the logger. Closing the client window will cause the logger
to terminate.

3.5.2. Viewing Spaces

Multiple spaces can be viewed simultaneously, each in their own window. To view a space, double-click its
entry on the space list displayed in Space Viewer.

The image below shows a space being managed by five cells. Cell 2 is currently selected as can be seen by
the thick blue border and coloured circles representing all the entities within the cell. Entities that are being
ghosted on cell 2 are displayed as greyed out circles.

Upon first loading the space window no cell is selected for viewing. The cell boundaries and the cell infor-
mation (cell number, IP address, load) will always be shown, however to see the entities within a particular
cell, as with cell 2 in the screenshot below, it must be selected with a single click.

bIgW@RLED" -

Cluster Administration Tools

| Space 1. Cell Apps 5 of &6
File Miew Colour Entity Size Ut Warp Help
1 spaces/highlands
. 1 D
10.40.1.102 10.40.1.102
0.842 0.832
— i .': i
: 8 9 loao.1.101
I o@ 0.840
I
| .
I 2 4
'l 110.40.1.101 10.40.1.101
: 0.821 0.863
: tick distance: Tkm
Eog_gl_ed_ d_is;1|_Pn_s=_2a35_.5_, Entities: 78 |18:09 :22 08-0.

Space window

In order to facilitate identification of entities, tooltip information is available for all non-ghosted entities. This
information will appear if the cursor hovers over an entity marker for a sufficiently long time.

|Avatar £14 (1.4,-1.8)|

| Entity type name |

Entity tooltip

The entity type name is retrieved from file <r es>/ scri pt s/ entities. xni .

3.5.3. Customising Entity and Display Colours

Space Viewer allows you to customise the colours to be used when drawing the elements in the Space win-
dow. Any customisation is not saved and thus will not be in effect the next time the application is started. If
you desire to permanently change the colours, this can be achieved by customising the Space Viewer source
code.

74 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Cluster Administration Tools

Entities in the current cell are displayed with a coloured circle. The colour can be customised in the file bi g-
wor | d/ t ool s/ server/space_vi ewer/ styl e. py. The simplest way to modify the colours is to update
the dictionary colours which contain RGB colour definitions for each entity type.

The code fragment below illustrates the definition of permanent entity colours:

specify colour for specific entity types.
ENTI TY_COLOURS = {

"Avatar” @ ((111, 114, 247), 2.0), @
"Quard" : ((244, 111, 247), 1.0), @
"Creature": ((124, 247, 111), 1.0), &
"Merchant": ((114, 241, 244), 1.0) O

Example local file st yl e. py

An alternate approach would be to replace the entire function get Col our ForEntity(entityl D, en-
tityTypel D), using your own algorithm to colour the entities.

All other colours are defined by the dictionary col our Opt i ons. This dictionary can be modified to any of
the colours defined by the colours array.

3.5.4. Running Space Viewer Remotely

As described at the start of this section, Space Viewer's two components can be run separately if required.
This would usually take the form of running SVLogger over an extended period of time, connecting clients
to it to monitor live state as necessary, then eventually shutting down the logger. Later, SVLogger can be
connected to its previously recorded log (instead of a live server) and client windows can be attached to it
to replay the log data.

3.5.4.1. SVLogger
Location: bi gwor | d/ t ool s/ server/space_vi ewer/ svl ogger. py

The SVLogger script provides log writing and reading functionality for Space Viewer. In writing mode it is
responsible for gathering the space data from a running BigWorld server which is achieved by polling the
CellAppMgr approximately every second. In reading mode a previously recorded log is opened for replay
using any client connections.

When run without any options SVLogger will default to placing logs into / t np/ svl og- user nane. This
location can be changed for keeping a more permanent archive of logs by using the - 0 option. For example:

$./svlogger -o /hone/alicelspace_l ogs

For a comprehensive list of options available for SVLogger please refer to the command line help available
from the - - hel p option.

3.5.4.2. Connecting a Space Viewer Window to SVLogger

Once you have started SVLogger manually, you will need to manually connect Space Viewer client windows
to the logger if you wish to view its space data. This is easily done by running Space Viewer with the - -
connect <i p: port > option. For example:

$./space_viewer --connect 192.168.1.24:20110

bIgW@RLED" -

Cluster Administration Tools

The address passed to this option should be the address that SVLogger is listening for connections on, which
should be displayed in the initial output from after SVLogger starts.

76 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 4. Fault Tolerance

The Fault Tolerance system in BigWorld Technology is designed to transparently cope with the loss of a
machine due to physical, electrical, or logical fault.

The game systems in general should not be affected, and the game experience will continue normally for
most clients, with possibly a brief interruption for clients closest to the faulty machine.

The loss of any single machine (running a single process) is always handled. The loss of multiple machines in
a short time frame may not always be adequately handled. In such extreme cases — for example, a complete
power outage affecting all machines — the Disaster Recovery system will be invoked. For more details, see
“Disaster Recovery” on page 81 .

Note that, in spite of handling failures, the Fault Tolerance system should not be relied upon to cover up a
software bug that causes a component to crash. All such bugs should be found and fixed in the source code.
If the bug is believed to be in BigWorld Technology code (and not in a customer's extension), then contact
BigWorld Support with details of the problem. For more details, see First Aid After a Crash on page 121 .

4.1. CellApp Fault Tolerance

CellApp fault tolerance works by backing up the cell entities to their base entities.

As long as a backup period is specified for the cell entities, the fault tolerance for the CellApp processes is
automatic. An operator should ensure that there is enough spare capacity in available CellApps to take up
the load of a lost process.

For details on how to specify the CellApp backup period, see “CellApp Configuration Options” on page 32 .

Cell entities without a base entity are not backed up, and therefore will not be restored
if their process is lost.

Since cell entities back up to base entities, running CellApp and BaseApp processes on
the same machine should be avoided. If the entire machine is lost, this level of fault
tolerance will not work.

For more details on the implementation of CellApp fault tolerance on code level, see the document Server
Programming Guide's chapter Fault Tolerance.

4.2. BaseApp Fault Tolerance

The BaseApp supports a BaseApp level fault-tolerance by backing each base entity to another BaseApp via
a hashing scheme.

For more details, see the document Server Overview's section Server Components— “BaseApp”—“BaseApp”.
For details on the implementation of BaseApp fault tolerance on code level, see the document Server Pro-
gramming Guide's chapter Fault Tolerance.

Each BaseApp is assigned a set of other BaseApps and a hash function from an entity's ID to one of these
backups. Over a period of time, all entities are backed up. This is then repeated. If a BaseApp dies, then the
entities are restored on to the appropriate backup.

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Fault Tolerance

There is a possibility of base entities that were previously on the same BaseApp ending up on different
BaseApps (which places limits on scripting).

In addition, any attached clients will be disconnected on an unexpected BaseApp failure, requiring a re-login.
However, if BaseApps are retired, attached clients will be migrated to another running BaseApp.

‘ Bazefpp |[Bazelfpp | BazeApp \ ‘ Haselpp | Basefpp ‘ Bazelpp \
[1] [11

Baszefpp

B Own base entity
Backed up base antity
Each Basefpp backs up its One of the Basefpps Entities of the dead Baselpp
aentities on other Basefpps. becomes unawailable. are ressumectad by the

Bazefpps that backed them up.

Distributed BaseApp Backup — Dead BaseApp's entities can be restored to Backup BaseApp

4.3. ServiceApp Fault Tolerance

Each Service will typically be split among multiple ServiceApps. Since Services are stateless, no data loss
will occur from a ServiceApp failure. For this reason it is not necessary for Services to be backed up.

When a BaseApp script makes use of a Service, it gets a mailbox from the Bi gWor | d. ser vi ces map. This
returns a random mailbox of one of the Service's fragments. Losing a single fragment will only cause the
remaining fragments to be chosen more frequently.

In some cases, a script may hold on to a Service Fragment's mailbox. If the ServiceApp to which this mailbox
refers happens to crash, it is automatically redirected to an alternate ServiceApp fragment mailbox. The
BWpPer sonal i ty. onSer vi ceAppDeat h callback is also called.

A Service's users will be evenly distributed among the ServiceApps currently offering it.

4.4. Fault Tolerance with Reviver

Fault tolerance for BaseAppMgr, CellAppMgr, DBMgr, and LoginApp is provided by the Reviver, by starting
a new instance of the process to replace the unavailable one.

Although it is possible for one Reviver to watch all processes, it is recommended to run a multiple Reviver
instances on different machines as Revivers normally stop after reviving a process.

For more details on Reviver, see the Server Overview's chapters Design Introduction and Server Components.

4.4.1. Specifying Components to Support

When the Reviver starts, it queries the local BWMachined process, and will only support the components
that have an entry in a special category called Conponent s in the machine's configuration file / et ¢/
bwrachi ned. conf .

An example/ et ¢/ bwrachi ned. conf specifying that the Reviver should support all singleton server com-
ponents would contain a section as below:

[Conponent s]
baseApp
baseAppMyr

78 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

Fault Tolerance

cel | App
cel | AppMyr
dbMyr

| ogi nApp

If the [Conponent s] category does not contain any entries, then Reviver will support
all singleton server components.

BaseApp and CellApp will not be restarted by Reviver — the [Conponent s] entries
are used by WebConsole and cont r ol _cl ust er. py to determine which processes
should be started by BWMachined on that host.

Be aware that the configuration file is only read when BWMachined starts. As such if you many any changes
to the configuration file, you will need to restart BWMachined before the changes are recognised. To restart
BWMachined run the following command as the root user:

letc/init.t/bwrachi ned2 restart

4.4.2. Recommended Reviver Layout

As a Reviver process is responsible for restarting a dead server process as a once off task before shutting
down, a mis-configured Reviver layout may result in a situation where your cluster can suffer a process
outage that is not handled by the available Revivers.

As a worst case scenario consider a server cluster that hosts the BaseAppMgr and Cell AppMgr processes
on a machine with the hostname gamewor | d and a single Reviver process on a backup machine with the
hostname garer evi ver . If the machine garer evi ver has been configured to revive both the BaseAppMgr
and Cell AppMgr processes and ganmewor | d suffers a power failure, only one process will be revived on
ganer evi ver.

For this reason BigWorld recommends that you run enough Reviver instances so that each process is respon-
sible for one singleton process. Using this approach should result in fault tolerance layout that avoids gaps
in your cluster revival plan.

4.4.3. Command-Line Options

The supported components can also be specified via command-line (even though we recommend that you
use / et ¢/ bwrachi ned. conf for that), as below:

reviver [--add|--del {baseAppMr|cell AppMyr| dbMr || ogi nApp}]

If reviver is invoked with no options, then it will try to monitor all singleton processes specified in category
Conponent s of / et ¢/ bwrachi ned. conf.
The options for invoking reviver are described in the list below:

e --add { baseAppMyr | cell AppMyr | dbMyr | | ogi nApp }

Starts the Reviver, trying to monitor only the components specified in this option. That means that the
components list in / et ¢/ bwmachi ned. conf will be ignored.

e --del { baseAppMyr | cell AppMyr | dbMyr | | ogi nApp }

bigw@RLD"

Fault Tolerance

Starts the Reviver, trying to monitor all components specified in the list in / et ¢/ bwmachi ned. conf,
except the ones specified in this option.

* To start Reviver trying to monitor all processes specified in Components in /etc/bwmachined.conf:
reviver

¢ To start Reviver trying to monitor only DBMgr and LoginApp:
reviver --add dbMgr --add | ogi nApp

¢ To start Reviver trying to monitor all processes specified in Components in/ et ¢/ bwachi ned. conf,
except DBMgr and LoginApp:

reviver -del dbMgr -del | ogi nApp

80 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 5. Backups and Disaster Recovery

BigWorld Technology's fault tolerance ensures that the server continues to operate if a single process is lost.
The server also provides a second level of fault tolerance known as disaster recovery that comes into play
when multiple server components fail at once and the server needs to be shut down.

For additional protection against exploits or bugs the database should be backed up regularly. The snapshot
tool facilitates making backups of the database.

5.1. Disaster Recovery

The server's state can be written periodically to the database. In case the entire server fails, then it can be
restarted using this information. To enable the periodic archiving of entities, game time and/or persistence of
space data, an archive period needs to be set via the configuration option <ar chi vePer i od> for BaseApp
and Cell AppMgr processes. For more details, see “BaseApp Configuration Options” on page 21, and “Cel-
1AppMgr Configuration Options” on page 40 .

Disaster recovery only works when the underlying database being used is MySQL, the XML database should
not be used in mission critical environments. See MySQL Support on page 111 for more information on
how to enable MySQL database support in BigWorld.

Starting the server using recovery information from the database is the same as starting it from a controlled
shutdown. For more details on controlled shutdowns see Controlled Startup and Shutdown on page 91 .

For details on the scripting API related to disaster recovery, see the document Server Programming Guide's
chapter Disaster Recovery.

5.2. Database Snapshot Tool

When using “Secondary Databases”, it is necessary to snapshot all data sources at the same time to attempt
to provide a cohesive data set that can be restored from. For background information on the need for the
snapshot tool see Server Programming Guide's chapter “Database Snapshot”.

The snapshot tool is a Python script that facilitates making a backup copy of the database that com-
bines information from the primary database and secondary databases. The script itself is located in bi g-
wor | d/ t ool s/ server/ snapshot /.

When running the snapshot tool a separate machine should be used to invoke the script to avoid interfering
with the normal operation of the server. The snapshot tool can use a significant amount of CPU and disk
resources and does so erratically. Henceforth the machine running the snapshot tool will be referred to as
the snapshot machine.

5.2.1. Operational Behaviour

The snapshot tool performs the following sequence of operations:
1. TransferDB (bi gwor | d/ bi n/ Hybri d64/ commands/ t r ansf er _db) is executed on each BaseApp.

TransferDB performs a snapshot of the secondary database and sends the newly created snapshot back
to the snapshot machine using Rsync.

2. TransferDB is executed on the primary database's MySQL server.

TransferDB performs an LVM snapshot of the primary database and sends the newly created snapshot
back to the snapshot machine using Rsync.

3. A MySQL server is started on the snapshot machine and specifies its data directory to be the copy of the
primary database.

bigw@RLD" &

#dest=
#dest=
#dest=
#dest=
#dest=

Backups and Disaster Recovery

4. Data consolidation is performed on the snapshot copies of the primary and secondary databases.
5. An archive is created of the consolidated snapshot.

The snapshot tool logs all messages to MessageLogger.

A snapshot should be considered invalid if an error occurs during any phase of the
snapshot procedure.

5.2.2. Usage

The snapshot tool requires a single command-line argument specifying the directory the snapshot will be
written to, and may also be provided options if required. Options available to the snapshot tool are described
in the - - hel p as listed below:
Usage: snapshot.py [[options]] SNAPSHOT DI R
Opti ons:
-h, --help show this hel p nessage and exit
-b BWIMT_KBPS, --bwimt-kbps=BW.IM T_KBPS
file transfer bandwidth linmt in kbps, default is
unlimted
-n, --no-consolidate skip consolidation, default is false
The list below provides some common examples of using the snapshot tool:
* snapshot.py /home/bwtools/snapshots
Takes a snapshot. The snapshot is archived to/ hone/ bwt ool s/ snapshot s.
* snapshot.py /home/bwtools/snapshots --bwlimit-kbps=5000

Takes a snapshot. The snapshot is archived to/ hone/ bwt ool s/ snapshot s. Each secondary and primary
database is transferred with a 5000 kbps bandwidth limit.

¢ snapshot.py /home/bwtools/snapshots --no-consolidate
Takes a snapshot. The unconsolidated snapshot is archived to/ honme/ bwt ool s/ snapshot s.
* snapshot.py /home/bwtools/snapshots -n -b5000

Takes a snapshot. The unconsolidated snapshot is archived to/ horme/ bwt ool s/ snapshot s. Each sec-
ondary and primary database is transferred with a 5000 kbps bandwidth limit.

5.2.3. Requirements

For the snapshot tool to work, the following conditions must be met:
* Secondary databases must be enabled.

To enable secondary databases set the baseApp/ secondar yDB/ enabl e property to t r ue. See “Sec-
ondary Database Configuration Options” on page 25 for details.

* The primary database is stored on an LVM volume and there is sufficient unpartitioned space on the pri-
mary database machine to perform an LVM snapshot. Note that, for the purposes of database snapshot-
ting, no other cluster machine is required to have spare unpartitioned space on a LVM partition. See also
“Partitioning” on page 84 .

Backups and Disaster Recovery

* BWMachined must be running on the primary database machine.
For background information see Server Overview's chapter Server Components—>“BWMachined”.
* All the entity scripts and entity definition files must be present and locatable on the snapshot machine.

In order for the resource tree to be found the BWMachined configuration file (. bwrachi ned. conf) must
be configured correctly for the user running the snapshot tool.

* The snapshot section in / et ¢/ bi gwor | d. conf must be configured correctly on the primary database
machine.

See “Configuration” on page 85 .
* The directory the LVM volume is to be mounted to exists and has no other devices mounted to it.

¢ The user performing the snapshot must be able to connect to the snapshot machine using ssh from the
primary database machine and BaseApp machines without a password.

For a user whose $HOME directory is shared between machines (e.g, using NFS) this can be done using
the following commands:

$ ssh-keygen -t dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

* The LVM userland program suite must be installed and accessible by the snapshot user on the primary
database machine.

The LVM userland applications can be installed under CentOS using the command:

yuminstall |vnR

By default the tools are installed into / usr/ sbi n, so it might be necessary to modify the snapshot user's
environment settings to at this directory to the $PATH.

You can do this by adding to the PATH environment variable in the $(HOME) / . bash_pr of i | e file, by
adding a line such as this:

export PATH=$PATH. / usr/sbin

You will need to logout and log back in for this change to take effect.

¢ The following standard system applications must also be accessible by the snapshot user. mount, umount
and chmod.

* MySQL server must be installed on the snapshot machine. Specifically mysqld_multi must be accessible.

To install the MySQL server binaries, run the following command as root:
yuminstall nysql-server

* Rsync must be installed and be on the path of all machines being used, i.e, the snapshot machine, the
primary database machine as well as all the BaseApp machines.

To install Rsync run the following command as root:

bIgW@RLD" =

#dest=
#dest=
#dest=

Backups and Disaster Recovery

yuminstall rsync

* The SnapshotHelper utility must be built and installed.

If the BigWorld server was installed using an RPM package, the SnapshotHelper should already be in-
stalled under the bi n/ Hybr i d64/ commands/ _hel per s directory of your RPM installation.

If your server installation is not from an RPM you may need to recompile the SnapshotHelper. To build the
SnapshotHelper binary, MySQL development files must be installed. See “Compiling DBMgr with MySQL
Support” on page 111 for details on how to install MySQL development files.

After installing MySQL development files, issue the make command from within the bi gwor | d/ src/
server/tool s/ snapshot _hel per/ directory.

$ cd bigworld/src/server/tool s/snapshot _hel per
$ make

The SnapshotHelper binary must have its setuid attribute set so user ID is root upon execution on the
primary database machine.

To make the SnapshotHelper binary setuid root run the following commands as the root user:

chown root:root $M-_ROOT/ bi gwor | d/ t ool s/ server/bin/ Hybrid[64]/
snapshot _hel per
chnod 4511 $M-_ROOT/ bi gwor | d/ t ool s/ server/ bi n/ Hybri d[64] / snapshot _hel per

For security purposes all privileged commands (lvcreate, lvremove, mount, unmount
and chmod) are invoked via snapshot_helper which reads command arguments from
the trusted file / et ¢/ bi gwor | d. conf .

5.2.4. Partitioning

The snapshot tool requires that you have unallocated space on the LVM logical disk that your MySQL
database resides on. As a rule-of-thumb, we recommend that the size of the unallocated space be 15-20% of
the overall volume's size. Having too little space will cause the snapshot tool to fail.

Unallocated space can be added when partitioning the disks of a machine hosting MySQL. The steps below
illustrate how to add a region of unallocated space for snapshotting, in addition to a swap partition and a
file system partition.

In the disk partitioning step, choose Cr eat € cust om | ayout .
Select the LVM gr oup Vol G oup00 that is created by default, and click on the Edi t button.

Select each of the LogVol 00 and LogVol 01, and delete them. You may wish to take note of the size of the
swap partition (LogVol 01), and reuse this size when recreating the swap partition.

Add anew logical volume by clicking on the Add button. The mount point should be/ , and we recommend
you leave the default filesystem as ext 3. The size should be 80-85% of the overall size of the volume group,
less the space allocated for swap. In the example illustrated in the image below, we have allocated split
a 12160MB drive into 1984MB to be unallocated, 1024MB for swap, and 9152MB for the / mount which
will hold the file system.

Backups and Disaster Recovery

Edit LVM Volume Group: VolGroup00

Volume Group Name: VolGroup00

Bhysical Extent:

Physical Volumes to Use:

Used Space: 10176.00 MB (83.7 %)
Free Space: 1984.00 MB (16.3 %)
New Total Space: 12160.00 MB LM
Logical Volumes —
Devic B
Logical Volume Name Mount Point Size (MB)
= LVM Volume LogVol01 1024 m— 3
M CIECL | LogVol0D 9152 = __
LogVolO
LogVvolD
Hard Drives l X Cancel] [@QK l .~8

[] Hide RAID de

lDﬂeleaEeNotEE [4@ Back l [& Next]

LVM partitioning setup

5.2.4.1. Post Installation LVM Configuration

If you need to modify your LVM partition structure after the primary operation system installation, you may
wish to use the LVM system configuration tools. These can be installed using the following command as
the root user:

yuminstall systemconfig-lvm

5.2.5. Configuration

The snapshot tool behaviour can be be configured using the file / et ¢/ bi gwor | d. conf .

Options for the snapshot tool must be placed within a [snapshot] section. Below is a list of valid keywords
that can be used in the configuration file:

e datadir
The primary database's data directory. By default for CentOS distributions thisis/ var/ | i b/ nysql .
This should be the same value as found in the MySQL configuration file / et ¢/ my. cnf .

$ cat /etc/ny.cnf

[nysql d]
dat adi r=/var/1li b/ nysql

bIgW@RLD" =

ps and Disaster Recovery

e | vgroup

The name of the LVM volume group in which the primary database belongs to.

The LVM snapshot that is created will belong to this LVM group.

e |lvorigin

The name of the origin LVM volume snapshotted. The MySQL data directory should be on this volume.
e | vsnapshot

The name of the LVM snapshot volume that will be created and deleted by the snapshot tool.

For example, if | vgr oup is Vol G- oup00 and | vsnapshot is Exanpl eSnapshot Vol ure, anew volume
device will be created called / dev/ Vol Gr oup00/ Exanpl eSnapshot Vol une.

The snapshot name is also used to mount the snapshot volume device onto the active filesystem. Using
the previous example the following mount command will be issued:

nmount /dev/ Vol Group00/ Exanpl eSnapshot Vol une / mt/ Exanpl eSnapshot Vol unme

The mount point/ rmt / | vsnapshot is assumed to already exist on the system prior
to snapshots being created.

* | vsi zegb

The size of the LVM snapshot volume in gigabytes. The snapshot does not need the same amount of storage
the origin has as only the modified files are copied, in a typical scenario, 15-20% might be enough. If the
LVM snapshot volume becomes full it will be dropped, so it is important to allocate enough space.

Below is an example / et ¢/ bi gwor | d. conf configuration file:

[snapshot]

datadir = /var/lib/nysql
| vgroup = Vol G oup00

I vorigin = LogVol 00

| vsnapshot = bwsnapshot
| vsizegh = 2

Note: The snapshot tool also reads <r es>/ ser ver/ bw. xnl for the dbMgr / host, dbMyr / user nane, db-
Myr / passwor d and dbMgr / dat abaseNane.

5.2.6. Restoring From a Snapshot

The snapshot tool will take a copy of a MySQL data directory consolidated with a copy of the secondary
databases. To restore from a snapshotted MySQL data directory, perform the following steps on the machine
hosting MySQL.:

Backups and Disaster Recovery

1. Stop the BigWorld server if it is running.

2. Stop the MySQL server if it is running, you can do this by running as root:

letc/init.d/ nysqld stop

3. Move the existing / var/ i b/ nmysqgl to a temporary location. You may choose to remove it after the
restoration process is complete. For example:

mv /var/lib/nysql /tnp/nysql-backup

4. Copy the snapshot directory's nysql directory to/ var/1i b/ mysqgl (you will generally need to be root
to do this) Note that snapshots are identified by date and time of the snapshot, and that the colons used
in the time need to be escaped by a backslash. For example:

cp -r snapshots/ 20100924 152642/ nysql /var/lib

5. Change the ownership and permissions:

chown -R nysql:nysqgl /var/lib/nysql
find /var/lib/nmysqgl -type d | xargs chnod 700
find /var/lib/nmysqgl -type f | xargs chnod 660

6. Restore the SELinux contexts for these files:

[/ sbin/restorecon -r /var/lib/nysql
7. Start the MySQL server, verify it is running.

/etc/init.d/ nysqld start

8. Start the BigWorld server.

5.3. Data Consolidation Tool

The data consolidation tool is used to incorporate data from secondary databases into the primary database.
The application binary is located in bi gwor | d/ bi n/ Hybr i d[64] / conmands/ consol i dat e_dbs. This
tool is only provided in source code form and must be built before use. See “Enabling Secondary Databas-
es” on page 112 for details on how to build the data consolidation tool.

Once this tool has been compiled, providing DBMgr is using MySQL the data consolidation tool will be au-
tomatically run during system shutdown or during system startup if the server was not shutdown correctly.
There should be no need to manually run this tool except for consolidating backups created by the snapshot
tool. For details on the snapshot tool see “Database Snapshot Tool” on page 81. The data consolidation
tool sends log messages to MessageLogger which can be viewed using the LogViewer tool in WebConsole.

This tool accepts two command line arguments:
* Primary Database

The parameters required to connect to the primary database.

bIgW@RLED" =

ackups and Disaster Recovery

This argument should be specified in the form host ; user nane; passwor d; dat abase_nane.

When specifying this argument on the command line, it is necessary to quote the
entire argument in order to prevent the shell from treating it as multiple commands.

For example:

./ consol i dat e_dbs
"qa_host _03; bi gwor | d_user; bi gworl d_passwor d; f ant asydeno"

* Secondary Databases
A file containing a newline separated list of fully qualified paths to secondary database files.

When run without command line arguments, it will use DBMgr's configuration options located in <r es>/
server/bw. xm to connect to the primary database. It will use the data in the bi gwor | dSecondar y-
Dat abase table to retrieve the secondary databases.

The data consolidation tool uses the transfer db utility located in located in bi gwor| d/ bi n/ Hy-
bri d[64] / conmand to transfer the secondary database files from the BaseApp machines to the machine
where the data consolidation tool is running. The transfer_db utility will be launched (via bwmachined) on
each machine that contains a secondary database file. The transfer_db utility then opens a TCP connection
to the data consolidation tool through which it will send the secondary database file.

The data consolidation tool will store the secondary databases locally in the directory specified by the <db-
Mor >/ <consol i dat i on>/ <di r ect or y> configuration option. It will incorporate the data from the sec-
ondary databases into the primary database once all the secondary database files have been transferred to
its local machine. If the data consolidation process is successful, both the local and remote copies of the sec-
ondary databases will be deleted, and the bi gwor | dSecondar yDat abase table will be cleared. If the data
consolidation process is unsuccessful, only the local copy of secondary database files are deleted.

The data consolidation tool logs to Message Logger under the Consol i dat eDBs process. Under most cir-
cumstances, the data consolidation tool will log errors from transfer_db as well. However, under some cir-
cumstances, transfer_db errors will appear under the Tool s process. The bwmachined logs, in/ var /| og/
nmessages on each machine where secondary databases are located, can help to diagnose problems, espe-
cially those related to the failure to run transfer_db.

5.3.1. Skipping Data Consolidation

If, for some reason, there is a problem with the data consolidation tool and the server refuses to start, the
bi gwor | dSecondar yDat abase table can be manually cleared to skip the data consolidation process. Al-
ternatively, consolidate_dbs can be run with the command-line parameter - - cl ear to achieve the same
result.

While skipping the data consolidation process may allow the server to start again, the data in the secondary
databases that were not consolidated is essentially lost. Though the secondary database files still exists, it
is not recommended to try to consolidate the data after the server has been restarted since the data in the
primary database may be more recent than the data in the left over secondary databases.

5.3.2. Ignoring SQLite Errors

When consolidate_dbs encounters an error in reading a secondary database file, it will abort the entire data
consolidation process. Such errors should be investigated and corrected. If a secondary database file is gen-

Backups and Disaster Recovery

uinely corrupted and cannot be repaired, then it may be preferable for consolidate_dbs to read as much data
as possible from the corrupted secondary database and then proceed to consolidate the rest of the secondary
databases. When the - - i gnor e-sql i t e- er r or s command-line option is specified, consolidate_dbs will
proceed to consolidating the next secondary database when it encounters an error instead of aborting the
consolidation process.

bIgW@RLD" @

Chapter 6. Controlled Startup and Shutdown

For maintenance and upgrade reasons, the server or some part of it may be required to shutdown. There
are two typical scenarios:

1. Server-wide shutdown, where the entire server needs to be restarted.

2. Individual application retirement that does not cause the server to stop running.

6.1. Server-wide Shutdown

There are times when the entire server might need to be shut down, and restarted later in a similar state.

To tell the server to shut down in a controlled way, a message must be sent to all LoginApps. This may
be in the form of a Watcher message or a USRI signal. The easiest way to do this is to use the script
control _cluster. py with the option stop or via WebConsole. For more details, see “Control Clus-
ter” on page 69 .

Controlled startup and shutdown only work when the underlying database is MySQL, the XML database
does not support this feature.

The state of a previous server run will be automatically used on server startup when a controlled shutdown
has previously occurred. If however the server failed unexpectedly and was shutdown in an uncontrolled
manner then it is started using the disaster recovery information. Entities that are marked as being for au-
to-load will be re-loaded at server start up. The auto-load data can be cleared using the ClearAutoLoad tool
to reset the server persistent state to an initial empty state. For more information about the ClearAutoLoad
tool, refer to “The ClearAutoLoad tool” on page 113 .

The main information that is restored from the database is:

* Spaces and their data

* Game time

* Which auto-loaded entities should be in each space.

When using MySQL as the underlying database, this information is stored in the following tables:

Table name
Spaces and their data bi gwor | dSpaces, bi gwor | dSpaceDat a
Game time bi gwor | dGaneTi ne
Online entities bi gwor | dLogOns

For details on these tables, see the document Server Programming Guide's section MySQL Database Schema
- “Non-Entity Tables”

For details on related scripting, see the document Server Programming Guide's chapter Controlled Startup
and Shutdown.

6.2. Individual Application Retirement

Individual BaseApps and Cell Apps can be retired. This can be useful if maintenance is required on a single
machine where only BaseApps and CellApps are running.

bigw@RLD"

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=

Controlled Startup and Shutdown

6.2.1. BaseApp Retirement

When BaseApps retire, base entities and proxy entities are offloaded to other BaseApps, and connected
clients will be reconnected with another BaseApp transparently.

It may take some time for the base entities and proxy entities to be offloaded from the retiring BaseApp to
other BaseApps. The retiring BaseApp will shutdown once these entities have been successfully offloaded
and a new backup cycle has completed, ensuring no data loss.

If another BaseApp terminates unexpectedly while the retirement is in progress, any entities that were of-
floaded to the dead BaseApp will be re-offloaded on to another BaseApp.

For redundancy reasons, it is recommended that retirement only be done if there are at least two other
BaseApps running. This ensures that in the event of a unexpected BaseApp termination while retirement
occurs, every base entity in the system is adequately backed up.

6.2.2. CellApp Retirement

CellApps can also be retired. Each cell administered by the retiring CellApp will shrink in size gradually, each
cell disappearing once the area reaches zero. Once there are no more cells, the CellApp will shut itself down.

6.2.3. Retirement via WebConsole

A BaseApp or a CellApp can be individually retired by using the WebConsole in the ClusterControl module,
by selecting Retire App from the action menu for the particular CellApp or BaseApp to be retired. Refer to
the section on “WebConsole” on page 53 .

6.2.4. Retirement viacontrol _cl uster. py

A BaseApp or a CellApp can be individually retired by using the ControlCluster command line tool (see
“Server Command-Line Utilities” on page 69), using the retireproc command. For example:

$./control _cluster.py retireproc cellapp0l
$./control _cluster.py retireproc baseapp03

92 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 7. Stress Testing with Bots

The Bots application is a process that can command arbitrary numbers of simulated clients to log into the
server and perform activities. It is written in C++, but controlled through Python, like the BigWorld Client.

7.1. The Login Process

The bots are designed to log in a server just like a real client. By default, the Bots process locates a LoginApp
by broadcasting a message requesting all LoginApps to respond, and then using the first one to reply. This
is the simplest method to log in if there is only one instance of a BigWorld server running.

The script is located in folder bi gwor | d/ bi n/ $MF_CONFI G and has the following syntax:

bots [-serverNanme <srv> [-port <port>]]
[-username <user> [-password <pwd>] [-randonmNane]] [-scripts]

The options for invoking bots are described in the list below:
° -server Name <srv>
Server that the bot clients will login to (overrides the auto-locate method).
e -port <port>
Login port. Ignored if Bots is using auto-locate method.
° -user nanme <user>
Username that the bot clients will log in as.
e -password <pwd>
Password for bot clients' login.
e -randomNamne
Randomises the login name based on the specified <username>.
e -scripts
Enables Bots to run scripts. This has a considerable performance cost.

The auto-locate procedure can be overridden by specifying the option - ser ver Name <ser ver Name> on
the command line. If both methods fail, then the Bots process requests the server name on stdin (if attached
to a terminal). If all these methods fail, then the process starts, but cannot create new bots until the server is
set (via the Python method set Def aul t Ser ver).

If the option - scri pts is specified then Bots looks for the entity definition files under folder <r es>/
scripts/entity_defs, and for scripts under folder <r es>/ scri pt s/ bot .

Specific scripts can be created for Bots, but if a client script does not reference the client's C++ modules, then
it can be reused. Note that the bots process does not support the BigWorld Client APIs, since it is intended
to be lightweight.

In many operation scenarios the entity definition file for Bots could be either missing or different from the
definition files for the server. The Bots would use an incorrect message digest for login; and hence the login
will fail because LoginApp relies on the digest for verifying entity definition consistency. Previously, only

bIgW@RLD" @

Stress Testing with Bots

way around this problem is turn the digest checking on the server off in <r es>/ ser ver/ bw. xr 's dbMgr
options section'. This option can also be changed on the fly via a watcher, using WebConsole's ClusterControl
module; see “ClusterControl” on page 54). However, this is not a viable option, if you want to use Bots
on production servers. You can now set custom MD5 digest in the <r es>/ ser ver/ bw. xm 's bot s section
under option loginMD5Digest. This option can also be modified on the fly through WebConsole.

Bots can now realistically simulate general Internet networking environment by introduce artificial packet
loss, network delays, sudden disconnections and frequent relogins. All this simulation can be programmed
with Bots' personality script.

7.2. Python Interface

The Bots process was designed to be controlled programmatically via Python, but since Python can be used
interactively, it is also a quick way to get some bots into the system and control them.

You can telnet to port 6075 to talk to the bots process, as illustrated below:

$ telnet 10.40.7.12 6075

Wel cone to the Bot process

>>> Bi gWor | d. get Def aul t Server ()

10.40.7.1

>>> Bi g\Wor | d. set Def aul t Server (' server2')

>>> Bi gWorl d. set Defaul t Tag(' red")

>>> Bi gWor | d. addBot sSI owl y(500, 0.1)

>>> Bi g\Wor | d. set Def aul t Tag(' bl ue')

>>> Bi gWor | d. addBot sSI owl y(500, 0.1)

>>> Bj gWorl d. addBot sWthNane([('Bot_01', '01'), ('Bot_02', '02')])

Example of use of Python interface to Bots

7.2.1. Python Controller (bot _op. py)

BigWorld provides a Python program to simplify the management of large numbers of bots.

It automatically starts bot processes as needed, load balancing (based on CPU load) on all available machines
not running any other BigWorld components.

The script is located in folder bigworld/tools/server and has the following syntax:

pyt hon bot _op.py [add [<nunber_of bots>]]
[del [<number_of bots>]]
[movenent <controller_type> <controller_data> [<bot_tag>]]
[set (<watcher _nane> <val ue>) +]
[run [<command>]]
[addprocs [<num of procs>]]
-u [usernane or uid]

The options for invoking bot _op. py are described in the list below:
° add [<nunber _of _bot s>]

Adds the specified number of bots to the system. If <number_of_bots> is not specified, then one bots is
added.

Bots are added 16 at a time, up to a maximum of 256 per bots process.

"For details check al | owEnpt yDi gest option in “DBMgr Configuration Options” on page 43 .

94 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Stress Testing with Bots

The script waits 1 second after each add, to check it a bot was effectively added. When all bots processes
are full, it creates a new process on an available machine that is using less than 80% CPU (preferably one
that is already running some bots processes).

e addprocs [<num of procs>]

Spawns the given number of bots processes on each machine that is considered eligible for running them,
or 1 on each if no number is given.

e del [<nunber_of _bots>]

Deletes the specified number of bots from the system. If <number_of_bots> is not specified, then it defaults
to 1. The number of bots will be ceiling clamped to the actual number of bots on the server.

* novenent <controller _type> <controller_data> [<bot tag>]

Changes the bot's movement controller. If option <bot_tag> is specified, then only bots matching it will be
changed. Otherwise, all bots will be changed.

* set (<watcher_name> <val ue>) +

Sets the watcher to specified value on all bot applications.
° run [<command>]

Runs the specified Python command on all bots. If <command> is not specified, then it is read from stdin.
e -u [username| uid]

Manually specify the UID of the server that the script will take action on.

7.2.2. Methods and Attributes

The list below describes the bots' attributes and methods on ClientApp and BigWorld:
* ClientApp Attributes

° id(int) — BotID (read-only).

¢ spacelD(int) — ID of the space the bot is currently in. 0 means not in any space (read-only).

* loginName(string) — Bot's login name.

* loginPassword(string) — Bot's login password.

° tag (string) — Bot's user-specified tag. Allows the control of partial sets of bots.

* speed (f| oat) — Bot's speed.

* posi tion (Vect or 3) — Bot's position.

* yaw(f | oat) — Bot's yaw.

e pitch (fl oat) — Bot's pitch.

e roll (fl oat) — Bot's roll.

* isOnline(bool) — Indicates whether the bot is connected to a server (read-only).

¢ isDestroyed(bool) — Indicates whether the bot has been destroyed (read-only).

bIgW@RLED" .

Stress Testing with Bots

* entities(PyObject)
Dictionary-like attribute containing the list of entities that are in the simulated client's current AOL
* ClientApp Methods
* logOn()

Initiate log on process for the simulated client to connect to a BW server.

logOf£f()

Make a simulate client disconnect from server gracefully. If the simulated client is not online, it will do
nothing.

* dropConnection()

Make a simulate client drop the connection with the server. If the simulated client is not online, it will
do nothing.

¢ setConnectionLossRatio(float lossRatio)

Set up network packet loss ratio for simulating unstable network environment. Range between 0.0 and
1.0. 0.0 means no packet loss. 1.0 mean 100 percent packet loss.

* setConnectionLatency(float minLatency, float maxLatency)
Set up simulated network data latency (in milliseconds).
* moveTo(Math.Vector3 position)
Set next destination position for the player avatar of the simulated client.
* snapTo(Math.Vector3 position)
Set the player avatar position for the simulated client.
* stop()
Stop the player avatar of the simulated client moving.
¢ faceTowards(Math.Vector3 direction)
Set the direction of avatar of the simulated client.
* addTimer()
Add a timer for the bot client. This function returns an integer timer id; otherwise it returns -1.
° delTimer(int timerID)
deletes an active timer corresponding the timerID.
* onTick()
This optional function is invoked every game tick, should it be defined in the player Avatar script.
* BigWorld Attributes

* bots

96 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Stress Testing with Bots

Dictionary-like attribute containing the list of simulated clients. The key is the player's ID, and value is
an instance of ClientApp.

bots [<player _id>]. entities

Dictionary-like attribute containing the list of entities created under the simulated client specified by
<pl ayer _i d>. The key is the entity's ID, and the value is the reference to the entity.

In non-script bots, only the player entity is created and stored in this attribute.
bots [<player_id>].entities[<ent_id>].clientApp
Attribute referring to the ClientApp that owns the entity. An entity can access its owner ClientApp

via this attribute. Bi gWor | d. bot s[<pl ayer _i d>] . entities[<ent_id>].clientApp equals to
Bi gWor | d. bot s[<pl ayer _i d>].

* BigWorld Methods

setMovementController(string type, string data) — Context: ClientApp

Sets a new movement controller for the bot. On failure, the controller is left unchanged. Returns t r ue
on success, f al se on failure.

setLoginMD5Digest(string MD5Digest) — Context: BigWorld

Set the 32 character long MD5Digest (in hex readable form) for server login. If the input string length is
not exactly 32 character, the MD5 digest will be reset to empty.

addBots(int numBots) — Context: BigWorld

Immediately adds the specified number of simulated clients to the application. If too many bots are
added at once, then some of them may time out, depending on how long it takes to log in all of them.

addBotsSlowly(int numBots,float delayBetweenAdd,int groupSize=1) — Context: BigWorld

Adds bots to the system in groups of groupSize, and add a delay between each group. This method
returns immediately, adding the bots in the background, and is the best way to add bots to a system.

addBotsWithName(PyObject loginInfo)

Immediately add a set of bots with login name and login password specified from loginInfo. The struc-
ture of the loginInfo is a list of tuples which consist of two strings. The first string is the login name and
the second one is login password. In the event of incorrect loginInfo, a Python exception will be thrown.

delBots(int numBots) — Context: BigWorld

Deletes the specified number of simulated clients from the application. The method onClientAppDe-
stroy() of the personality module is called.

getDefaultServer() — Context: BigWorld

Returns the server name that the bots try to log in.
setDefaultServer(string serverName) — Context: BigWorld
Sets the server name that the bots try to log in.

onTick() — Context: BWPersonality

bIgW@RLD" -

Stress Testing with Bots

This optional function is invoked every game tick, should it be defined in the personality module in
<res>/server/bw.xml.

* onLoseConnection(int playerID) — Context: BWPersonality

If this callback function is defined in the personality module specified in file <res>/server/bw.xml, it
will be invoked when a simulated client loses its connection with a server abnormally. The personality
script can decide whether the client should be destroyed or remain dormant for later reactivation by
return True or False respectively. NOTE: if this callback is not defined, bots that lose connection will be
automatically destroyed.

* onClientAppDestroy(int playerID) — Context: BWPersonality

If defined in the personality module specified in file <res>/server/bw.xml, this callback method is called
for each destroyed bot client. The argument is the ID of the deleted player entity. A bot client may be
destroyed due to either loss of server connection or by BigWorld.delBots() method call. If a bot client is
destroyed by BigWorld.delBots() method call, it will be disconnected from the server gracefully. We rec-
ommend client should execute additional log off procedure in this onClientAppDestroy callback func-
tion. An example is as following;:

def ond i ent AppDestroyed(playerlD):
bot = Bi gWorl d. bot s[pl ayer| D]
if bot.isOnline:
bot.entities[playerlD.base.logOf()

The implementation above assumes that the player entity on the server has an exposed base method
logOff(), which will then destroy the player cell and base entities on the server. The script must to be
placed under the script folder <r es>/ scri pt s/ bot .

7.3. Controlling Movement

The default movement controller Patrol moves the bots along a graph read from a file.

The name of the file containing the movement graph is specified in file <res>/server/ bw.xml, on section
<bots>, by the configuration option controllerData.

<r oot >
<bot s>
<control | er Dat a> server/bots/test.bwp </controll erData>
<control | er Type> Pat r ol </control |l er Type>
<passwor d> passwd </ passwor d>
<user name> Bot </ user name>
<shoul dLog> true </ shoul dLog>
<server Nane> </ server Nanme>
<r andonNane> fal se </ randonmiNane>
<shoul dUseScri pts> fal se </ shoul dUseScri pt s>
<port> 0 </ port>
<publ i cKey> | ogi napp. pubkey </ publ i cKey>
</ bot s>
</root>

Example file <r es>/ ser ver/ bw. xm

The file name might have the suffix random, in which case the start position of the bot is chosen randomly
from the set of node positions in the graph.

98 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Stress Testing with Bots

The format specification for the movement graph file is illustrated below:

<controller>

<nodeDef aul t s>
?NodePr operties
</ nodeDef aul t s>

<nodes>
*<node>
<pos> integer integer integer </pos>
?<nanme> string_node_nane </ nane>
?NodePr operties
*<edges>
<edge> string_node_nanme </edge>
</ edges>
</ node>
</ nodes>

</controll er>

Grammar of movement graph files
The list below describes the tags in the movement graph file:
* edge (section nodes/ node/ edges)

Name of one of the nodes that this node borders. Must be the same value specified for a name section
in the file.

* edges (section nodes/ node)
Tag specifying all the nodes that this node borders.
* nane (section nodes/ node)

Name used to refer to the node. If this tag is not specified for a node, then you can refer to it by an integer
sequential number, with the first node having an index of zero.

* node (section nodes)
Tag for section specifying a specific node in the graph.
* nodeDef aul ts

Tag for section specifying default values for all nodes. These values can be overridden on a per-node basis
in section nodes/node.

* NodeProperti es (section NodeDef aul t s and nodes/ node)
For details, see “NodeProperties Section” on page 100 .

° nodes
Tag for section specifying all the nodes in the graph.

* pos (section nodes/ node)

XYZ position of the centre of the node. The node is the area around pos, extending for n metres around
it (n being the value of NodeProperties' tag radius).

bIgW@RLD" %

Stress Testing with Bots

7.3.1. NodeProperties Section

The format specification for the NodeProperties section is illustrated below:

?<m nSt ay> float </ m nStay>
?<maxSt ay> float </ maxStay>
?<radi us> float </radius>
?<m nSpeed> float </m nSpeed>
?<maxSpeed> float </ naxSpeed>
Grammar of NodeProperties section
The list below describes the tags in the NodePr opert i es section:
* maxSpeed
Maximum speed of the bot.
° maxSt ay
Maximum number of seconds that the bot should stay in the node.
* m nSpeed
Minimum speed of the bot.
°* m nSt ay
Minimum number of seconds that the bot should stay in the node.

e radi us

Number of metres around the node's pos location to be considered as the node. When a bot is travelling
between two nodes, it chooses a random point of arrival in the destination node. This way, the bots do not
follow the exact same line. The point is chosen to lie within the radius of the destination node.

An example movement graph file is displayed below:

<patrol G aph>
<nodeDef aul t s>
<m nSt ay> 5 </ mnStay>
<mexStay> 10 </naxStay>
<radi us> 20 </radius>
</ nodeDef aul t s>

<nodes>
<node>
<nane> Townl </ nane>
<m nSt ay> 7 </ m nSt ay>
<pos> 5000 0 0 </pos>
<edges><edge> Town2 </ edge></ edges>
</ node>
<node>
<nane> Town2 </ nane>
<pos> 5000 0 5000 </pos>
</ node>
</ nodes>

</ patrol G aph>

Example movement graph file

100 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Stress Testing with Bots

7.4. Extending Bots

7.4.1. Creating New Movement Controllers

The default movement controller is Patrol, but you might want to create one that better represents the ex-
pected traffic patterns and entity distributions of your game, or to stress test other aspects of the system.

To create a new movement Controller, derive its class from the MovementController class. Also derive a class
from the MovementFactory class. The factory is used to parse the Controller data argument, and instantiate
a new movement controller, while the movement controller moves the bot around.

The fragments below list the relevant methods in the base classes:

¢ Class MovementController

bool nextStep(float speed, float dTinme, Vector3& position, Direction3D&
direction)

* Class MovementFactory

Movenent Fact ory(const char* nane)

Movenent Control | er* create(
const std::string& data,
const Vector3& start Position)

7.5. Miscellaneous Bots Issues

7.5.1. Running out of File Descriptors

As the Bots process is designed to test a large number of client connections to a BigWorld server, it is possible
that in doing so the Bots process may exceed the maximum number of open file descriptors allowed by the
system configuration.

This issue will be identifiable by newly created bots not communicating with the LoginApp, as well as log
output from the Bots process similar to the following:

Bot s ERROR Endpoint::findDefaultlnterface: if_nanei ndex returned NULL (Too
many open files)

Bot s ERROR Networkl nterface::recreatelisteni ngSocket: Coul dn't determ ne
i p addr of default interface

If you encounter this issue, adjust the maxQpenFil eDescriptors on “General Configuration Op-
tions” on page 10 to increase the number of allowed open file descriptors.

bIgW@RLED"

Chapter 8. Security

Security has been of paramount importance in the design and implementation of all parts of BigWorld.

The basic philosophy is to always handle with care any client-initiated actions or messages. This should be
accomplished in a way that does not unduly limit potential game designs.

For more details, see the document Server Programming Guide, chapter Security.

8.1. Security of the Server

The internal network is assumed to be secure — BigWorld does not implement security measures to safe-
guard processes against an attacker gaining access to the cluster's internal LAN. Operators should ensure that
the usual protections for an internal network are in place. Remote access should be very strictly controlled.

The external points of contact are the area of most concern when running an exposed server. For BigWorld,
these are LoginApp and BaseApp, as illustrated below:

Client Client Client Client Client

_x___ﬁ.-__, L /

__al
%— Internet __5

i

Switch Fabric

Logindpp LaginApp BaseApp Baselfpp Baselfpp
[R R R
Switch Fabric
| I | I I
DEMgr Celldpp Celldpp CellAppMgr ServiceApp
| L2 * L & &
Switch Fabric Celldpp Basefpphor Servicedpp

ngal L' L'

BigWorld Server components

% Also runs the daemon process ByWwiMachined.

Due to the bandwidth needs of a massively multiplayer online game, LoginApp and BaseApp are intended to
be run on machines with external access. In some sense they are the firewall. For more details, see “Blocking
Ports and Related Security Considerations” on page 105 .

LoginApp receives only fixed-length queries, making it easy and transparent to secure. This process is ex-
pected to be tailored by customers to suit their game, but care should be taken when doing so.

BaseApp receives more complex data, including script method calls, and is the gateway to the rest of the
BigWorld Server. It has many checks in place to ensure the integrity of received data, and to discard (and warn
about) corrupted data and hacking attempts. The string CHEAT is used in the log messages when BigWorld

bIgW@RLED"

#dest=
#dest=

Security

receives potentially malicious data that does not conform to its protocols (the CellApp may also use this
indicator). Itis advised that MessageLogger logs be monitored for messages containing that string. For details
on MessageLogger, see “Message Logger” on page 57 .

The security of the game-level logic rests to a certain extent with the Python scripts that implement it. For
example, an entity should not be able to stab another entity that is 100 metres away. For more details on this
topic and on server features such as physics checking, see the Server Programming Guide's chapter Proxies
and Players, section “Physics Correction”.

8.2. Server Ports

The list below describes the ports used by BigWorld server:
e 20013 (Protocol: UDP, Access: External)

The default port used by LoginApp. This port can be overridden in <r es>/ ser ver/ bw. xnl file's| ogi -
nApp/ ext er nal Port s section, set the port configuration option. Multiple ports can be specified and
the first available one is used.

* 20018 and 20019 (Protocol: UDP, Access: Internal)
Used by BWMachined.

* 40001-49999 (Protocol: TCP, Access: Internal)
The Python server on BaseApp.

All BaseApps have a Python server that can be telnetted to. If no baseApp/ pyt honPor t is specified in
<res>/ server/ bw. xn , the port number is 40000, plus the BaseApp ID is used.

BaseApp ID numbers start at 1, so to talk to the third started BaseApp, telnet to 40003.
* 50001-59999 (Protocol: TCP, Access: Internal)
The Python server on CellApp.

All CellApps have a Python server that can be telnetted to. If no cel | App/ pyt honPort is specified in
<res>/ server/ bw. xm , the port number is 50000, plus the CellApp ID is used.

CellApp ID numbers start at 1, so to talk to the third started CellApp, telnet to 50003.
* 32768-61000 (Protocol: TCP, Access: Internal)

Used by CellAppMgr and CellApp for viewer applications such as Space Viewer. Automatically assigned
by the kernel (see UDP entry).

* 32768-61000 (Protocol: UDP, Access: Internal [External for BaseAppl)

Used by the server components: CellApp, CellAppMgr, BaseApp, BaseAppMgr, DBMgr, MessageLogger
and StatLogger. Only the BaseApp has an external port.

Automatically assigned by the kernel, in the range of the kernel setting / proc/sys/ net/i pv4/
i p_l ocal _port_range, which defaults to 32768-61000.

The BaseApp external port may be exempted from random assignment, by specifying it in the <r es>/
server/bw xnl file's baseApp section's ext er nal Port s/ port configuration options.

The port chosen can be displayed via the Watcher interface under:

* nub/ addr ess for internal interfaces.

104 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=
#dest=

Security

* nubExt er nal / addr ess for the external interfaces on BaseApp and LoginApp.

8.3. Blocking Ports and Related Security Considerations

Since TCP/IP is not used externally, you can block all TCP traffic. Leave all UDP/IP ports 32768 and above
open, as well as the login port (20013 by default). This range can be reduced if you specify possible ports in
baseApp/ ext er nal Port s/ port settings in bw. xm .

Use of a separate firewall machine is discouraged. The BaseApp machines are designed to be the firewalls
themselves, and perform a very similar proxying function for clients. Their amount of processing is small
enough so that they can handle a whole network adapter's worth of Internet traffic. Adding another machine
would only be a waste of hardware, maintenance time, and latency. BaseApps only listen on one UDP port —
and so the whole TCP stack can be disabled on the external interface. The use of standard firewall software
such as iptables may be an appropriate way to accomplish this.

See chapter Cluster Configuration in the Server Installation Guide for examples of using i pt abl es.

Network tools such as Isof and netstat should be consulted, to ensure that you are not running any daemons
listening on the external (or common) interface. Apart from BWMachined, you should not need to run any
daemons with BigWorld, but if you wish to, then you should ensure that their ports are blocked. BWMa-
chined should not listen on the external interface, only the internal interface.

Barring all TCP packets greatly improves the security of a BaseApp machine. TCP is a complicated protocol,
and requires many tables and buffers to implement or firewall. By this rationale, the security of a BaseApp
machine may be considered even better than that of an ordinary firewall, which must conditionally pass
TCP packets.

To reduce exposure to DDOS attacks, it is recommended that the BaseApp be left to choose, within the range
allocated by the operating system, a random port. This way;, if an attacker discovers the IP and port of one of
the BaseApp machines, then it does not mean he will automatically know those details for the other BaseApp
machines.

bIgW@RLED"

#dest=
#dest=

Chapter 9. BigWorld Server Across Multiple
Machines

To start a server cluster consisting of multiple machines, you can start each process in any of the following
ways:

¢ the command line
* thecontrol _cl uster. py script
e WebConsole's ClusterControl module

CellApps, BaseApps, and LoginApps can have multiple instances running, while the other processes can
have only one. The clients should connect to the IP address of a machine that is running a LoginApp.

9.1. How To Start

The following sub-sections describe how to start server components.

9.1.1. WebConsole

WebConsole can be used to easily start, stop and control server components.

For an outline of WebConsole, see “WebConsole” on page 53 . For operational behaviour, see the online
WebConsole documentation in the Cluster Control module.

9.1.2. Auto Configuration Viacontrol _cl uster. py

The script bi gwor | d/ t ool s/ server/control _cl uster. py is generally the easiest way to start a mul-
ti-machine BigWorld Server. For details, see “Control Cluster” on page 69 .

9.1.3. Manual Start

During development and testing, it is feasible to manually start processes individually.

9.2. How To Stop

The method used to stop the system depends on the method used to start it. For example, calling the script
control _cl uster. py with the option st op stops a system started with that script. Stopping LoginApp
triggers other processes to terminate, unless this feature is disabled in configuration file <r es>/ serv-
er/bw xm .

9.3. How To Monitor

Use WebConsole! and cont r ol _cluster. py2 for monitoring and recording real-time statistics. You can
also get profiling data from the watchers (via WebConsole's ClusterControl module). Use WebConsole's
LogViewer module to monitor the centralised log.

9.4. LoginApp and Scalability

Just as you can use multiple CellApps and BaseApps in a large cluster, you can also run multiple LoginApps
in a load sharing arrangement.

"For details, see “WebConsole” on page 53 .
For details, see “Control Cluster” on page 69 .

bIgW@RED"

BigWorld Server Across Multiple Machines

To do that, DNS has to set up so that it returns multiple DNS addresses for the login server's name. If you
are using BIND, then you can simply put multiple A addresses in the zone configuration file. This means
that when a client looks up the DNS address of the login server, it receives a login server randomly selected
from the available pool.

For example, if you are using BIND as your DNS server (most Linux distributions come with BIND as their
default DNS server), the zone file can have configuration similar to the ones in the table below:

Name TTL CLASS TYPE Resour ceRecor d
login 600 IN A 10.0.0.1

600 IN A 10.0.0.2

600 IN A 10.0.0.3

Example configuration on a BIND zone file

Because there are multiple A records with different IP addresses under one name, the IP address returned
to a client when it looks up the address for the login server will be picked up from the IP address list, in a
round robin manner.

108 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 10. Multiple BigWorld Servers in a Single
LAN

10.1. Keeping Processes Separate

All server components in a BigWorld server cluster run under the same UID. If you want to run multiple
server clusters on the same network, as can be required for different stages of testing, then make sure that
you use different UIDs.

You also need to make sure that the LoginApps are on different machines. This is because by default each
LoginApp opens the same specific port, and therefore only one could succeed in binding to it. Alternatively,
multiple LoginApps can be run on a single machine as long as they have different port settings in <res>/
server/bw.xml.

It is important the username and UID mapping is consistent across all machines on the
cluster. It is highly recommended to use centralised logins using LDAP or similar.

10.2. Centralised Cluster Monitoring

The best way to keep track of processes is via WebConsole's StatGrapher module.

The module, which can be run on any web browser, uses log files generated by StatLogger daemon to display
statistics, and has a variety of options to filter the output by user.

For more details, see “StatGrapher” on page 54 , and “StatLogger” on page 61 .

10.3. Auto-Detection of LoginApps

When running multiple servers, it is convenient for the client to auto-detect Login App processes (this is only
suitable for a development environment).

The LoginApps have this functionality built in, and do not require any configuration to perform it — they
register themselves with BWMachined, and the client broadcasts a 'find' message to retrieve their contact
details. A probe message is then sent to each server to determine who, where and what it is running. This
functionality is implemented on the client by class Ser ver Di scovery.

bigw@RLD"

Chapter 11. MySQL Support

Following is described the minimal set of steps required to enable MySQL support for a server cluster. They
assume that a MySQL database has been installed and configured as outlined in the Server Installation
Guide's chapter Simple Installation, section “Installing, Configuring and Starting MySQL”.

11.1. Compiling DBMgr with MySQL Support

The DBMgr binary provided with the default BigWorld package does not contain any database engines
built in. Database engines are provided via a plugin interface and are loaded from the bi gwor | d/ bi n/
Hybr i d64/ dbngr - ext ensi ons directory.

BigWorld provides implementations for two database engines, MySQL and XML. The implementation for
the engine plugins are separated into two components, the plugin wrapper source code that registers with
the DBMgr engine factory, and the back end library implementing the core functionality for that engine type.
The source code for the plugin wrappers can be found in bi gwor | d/ src/ server/ dbnmgr _ext ensi ons/
bwengi ne_<engi ne_t ype>. The source code for the back end libraries for each engine type can be found
inbi gwor | d/ src/li b/ dbngr_<engi ne_t ype>.

By default BigWorld ships with the XML database engine plugin compiled and ready for use. This allows
users to quickly start using BigWorld Technology without having to configure a production database to test
a simple package. See the | i censi ng_i nf or mati on. t xt document for MySQL licensing considerations.

To enable compilation of the MySQL DBMgr engine plugin, make sure that the MySQL development files
are installed on the build system. To do this, as root, run the following command:

yuminstall nysql-devel

Next, in order to compile the MySQL DBMgr engine plugin and other support tools for the MySQL imple-
mentation, change directory to the DBMgr source code:

$ cd bigworld/src/server/dbngr
Now type make.
$ make

This step will also potentially rebuild DBMgr, however as it will compile all the required tools at the same
time, it is much easier than individually entering every directory to recompile.

11.2. Update bw. xm To Use MySQL

Once DBMgr has been compiled to communicate with a MySQL server, the game resource configuration file
<res>/ server/ bw. xm needs to be updated with details on user name, passwor d and the host machine
the MySQL server is running on.

The example below illustrates FantasyDemo configuration (via f ant asydeno/ r es/ server/ bw. xm):

<dbMyr >
<type> nysql </type>
<host > ny_nysql _server _machi ne </ host>

bigw@RLD"

#dest=
#dest=
#dest=
#dest=

MySQL Support

<user name> bi gworl d </ usernane>

<passwor d> ny_pass </ password>

<dat abaseNanme> fant asydeno </ dat abaseNane>
</ dbMgr >

Example f ant asydeno/ r es/ server/ bw. xmi

For details on these fields and other relevant configuration options for your production environment, see
Server Configuration with bw. Xxm on page 9.

11.3. Synchronise Database With Entity Definitions

DBMgr requires the MySQL database table structure to be synchronised with the current entity definitions.
To initialise the MySQL database with the correct table structure run the sync_db tool:

$ $MF_ROOT/ bi gwor | d/ bi n/ Hybri d64/ commands/ sync_db

This tool will not run if there are unconsolidated secondary databases. For details on data consolidation, see
“Data Consolidation Tool” on page 87 .

A SyncDB binary is not shipped by default with BigWorld releases. In order to use
SyncDB you will need to compile the binary from bi gwor | d/ src/ server/t ool s/
sync_db, or have already built DBMgr with MySQL support enabled.

11.4. Enabling Secondary Databases

Secondary databases can only be enabled when MySQL support is enabled. Please see the document Server
Programming Guide's chapter “Secondary Databases” for details about secondary databases.

To enable secondary database support, you must:
* Enable MySQL support (see above).

* Build the data consolidation tool by issuing the make command from within the bi gwor | d/ src/ ser v-
er/tool s/ consol i dat e_dbs directory.

* Set the bw. xm option <baseApp>/ <secondar yDB>/ <enabl e>totrue.

11.5. Privileges

Below are the MySQL privileges required for each BigWorld component that communicates with a MySQL
database.

#dest=
#dest=
#dest=

MySQL Support

Component Required Privileges User
DBMgr SELECT, INSERT, UPDATE, DELETE dbMgr/username
(bw. xm')
sync_db UPDATE, ALTER, CREATE, DROP, INDEX dbMgr/username
(bw. xnl)
snapshot.py SELECT dbMgr/username
(bw. xn)
snapshot_helper RELOAD dbMgr/username
(bw. xnml)
StatLogger SELECT, INSERT, UPDATE, DELETE, CREATE preferences/options/dbUser

(bi gwor | d/ t ool s/ server/stat_| ogger/
pref erences. xm)

WebConsole SELECT, INSERT, UPDATE, DELETE, CREATE sqglobject.dburiame

(bi gwor | d/ t ool s/ server/web_consol e/ [dev|
prod] . cf g)

Use MySQL's GRANT command to set privileges for a user.

$ nmysqgl -u root
mysql > GRANT SELECT, | NSERT, UPDATE, DELETE ON fantasydeno.* TO
"bigworld @I ocal host' | DENTIFI ED BY ' bi gwor | d_passwd' ;

11.6. The ClearAutoLoad tool

Over the course of a server run, entities may be marked for auto-loading so that subsequent server startups
will automatically create these entities and the spaces that they inhabited, with the entity data and space data
that was present in those spaces at the time that the server was shut down. Additionally, the server game
time is persistent.

It is sometimes desirable to clear that data so that the server starts from a clean slate without auto-loading
any entity data, and reset the server game time to 0. There is a command tool called clear_auto_load which
can clear this data. It is located in bi gwor | d/ bi n/ Hybri d64/ commands/ cl ear _aut o_| oad. Running
it without command line arguments will clear the auto-load data in the database specified in the bw. xm
for the current user.

$ bi gwor | d/ bi n/ Hybri d64/ conmands/ cl ear _aut o_| oad

You cannot run this tool while there is an instance of DBMgr or other BigWorld tool accessing the database.

A ClearAutoLoad binary is not shipped by default with BigWorld releases. In order to
use ClearAutoLoad you will need to compile the binary from bi gwor | d/ src/ serv-
er/tool s/ cl ear _auto_| oad.

bigw@RLD"

Chapter 12. RPM

BigWorld provides a RPM implementation which allows the creation of binary RPM package for BWMa-
chined. The RPM implementation uses the RPM system available in Linux distributions such as CentOS,
RHEL and Fedora to generate RPM packages.

This chapter provides the following information:

* Directory structure and files related to BigWorld RPM implementation.
* How to generate BigWorld binary RPM packages.

¢ Customising RPM Packages.

¢ Setting up a yumrepository.

Install, upgrade and uninstall using y umcommand.

How to obtain version number of an installed package.

12.1. Directory Structures and Files

The RPM implementation is located in the bi gwor | d/ t ool s/ ser ver/r pmdirectory:
e The Makefi | e isused to generate RPM packages.

* The gener at e. py is used to facilitate the creation of RPM packages.

* The bi nary_r pns directory is where generated RPM packages are placed.

* The r pmdirectory also contains package specific directories. For example, the bwrachi ned directory con-
tains all the files specific to BWMachined.

12.2. How to Generate Binary RPM Packages

Binary RPM packages must be generated using a normal Unix user account. Binary RPM packages must not
be generated using the root user.

RPM generation should not be performed from a Windows mount. Only perform the

build from a native Linux filesystem or compatible Linux network file system such as
NES.

In order to allow RPM's to be built into a user writeable directory, it is necessary to modify the user's . r p-
mmecr os file. This file will contain the location of the directories in which the RPM files will be built. Firstly
we need to create the directory structure to use. For this example we will create a new directory in the user's
home directory called r pnbui | d. We also require an RPMS subdirectory where package files will be placed.

$ nkdir -p ~/rpnbuil d/ RPVS

Next we need to let the rpm build environment know how to use that directory. This simply involves creating
a new user specific rpm macro file as follows.

$ vim ~/.rpnmacros

bigw@RLD"

Copy and paste the following content into the . r pmracr os file.

% t opdi r /hone/ usernane/ rpnbuil d
% tnppath % topdir}/tnp

Write and close this file. To confirm the change you made has been successful, run the following command
to ensure the path looks correct.

$ rpm--eval %topdir

To generate RPM package for BWMachined, go to the bi gwor | d/ t ool s/ ser ver/r pmdirectory and run
the following command:

$ nake
The generated RPM package will be placed in the bi gwor | d/ t ool s/ server/rpni bi nary_r pns direc-
tory.

The generated RPM package will have the following file name:

bi gwor | d- bwnachi ned- <ver si on>- <r el ease>. <archi tecture>.rpm
* The <ver si on> field is the version number of the BigWorld release that the package was generated from.
This field is based on the version number in bi gwor | d/ r es/ ver si on. xm .

* The <r el ease> field identifies the specific build of this RPM package. By default, it is not used and is
mapped to pat ch number in bi gwor | d/ r es/ ver si on. xm .

* The <ar chi t ect ur e> field will be either i 386 for 32 bit systems, or x86_64 for 64 bit installations.

12.3. Customising RPM Packages

The most common customisation of a RPM package is the configuration file(s) installed by the package.
That is, one RPM package may include the default configuration file and another may include a customised
configuration file. These RPM packages can be distinguished by using the r el ease field in the filename of
these packages.

For example, the configuration file included in a BWMachined RPM package is located in r pm bwra-
chi ned/ bwrachi ned. conf.

To generate a BWMachined RPM package with the default configuration file and assign it the r el ease
number 0:

¢ Use the bwrachi ned. conf provided by default.

* Update the Rel ease tag in r pm bwmachi ned/ bwmachi ned_t enpl at e. spec to the following:

Rel ease: 0

* Generate the RPM package.

The file name of the RPM package generated will be, for example, big-
wor | d- bwnachi ned-1.9.1.0-0.i 386.rpm

116 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

To generate a BWMachined RPM package with customised configuration file and assign it the r el ease
number 1:

* Update the bwmachined.conf as required.
* Update the Rel ease tagto 1.
* Generate the RPM package.

The file name of the RPM package generated will be, for example, big-
wor | d- bwnachi ned-1.9.1.0-1.i 386.rpm

12.4. Setting up a Yum Repository

For a large environment where RPM Packages, e.g. the BWMachined RPM Package, need to be installed on
many machines, we recommend that a Yum repository to be set up to provide these RPM packages. This
allows an RPM package to be installed on any machine in the cluster by running the yum command without
the need to manually copy the RPM package to each machine in the cluster.

The Yum repository created will need to be made available through a web server such as the Apache HTTP
Ser ver . The setup required is outside the scope of this document. Please consult relevant web server doc-
umentation on how to achieve this.

Steps to set up a Yum repository:

* On the machine that will be hosting the Yum repository, create a directory for the BigWorld RPM packages.
The location of this directory will depend on the web server chosen and the web server configuration
which is outside the scope of this document.

* Copy the RPM packages to the directory created.

¢ Install the cr eat er epo package using the following command:
$ yuminstall createrepo

This is a utility that will generate a common metadata repository from a directory of RPM packages.

You will need to be the r oot user to install a package.

¢ Run the following command to create the necessary metadata for the yumrepository:
$ createrepo <path_to_dir>

where <pat h_t o_di r > is the path to the directory created.

For example, if the directory created is/ rmt / bi gwor | d_r epo, then the command to run is the following:
$ createrepo /mt/bigworld_repo

This creates a r epodat a directory in the / rmt / bi gwor | d_r epo directory.

* The / et c/ yum conf on a machine that will access the repository created will need to be updated to
include the following setting;:

bigw@RLD"

[<repo_nane>]

nanme=<r epo_nane>
baseur| =<url _to_repo>
enabl ed=1

where <repo_name> is replaced by the name given to the repository and <url_to_repo> is replaced by the
URL that refers to the repository.

By default, the / et ¢/ yum conf contains a [mai n] entry. The entry above should
be added after the [mai n] entry.

When the yumrepository is updated, for example, a new version of BWMachined RPM package is added,
then the r epodat a directory should be deleted and the cr eat er epo command should be run again to
generate up-to-date metadata.

If a new RPM package was added to the repository but is not displayed on a machine when running a query
command such as

$ yuminfo bi gworl d- bwrachi ned

run the following command to delete the metadata used by Yum to determine the remote availability of
packages:

$ yum cl ean net adata

When the yum command is run the next time, it will download the up-to-date metadata.

12.5. Install, Upgrade and Uninstall using Yum Command

This section describes how to install, upgrade and uninstall using the yum command. The BWMachined
package is used as an example.

12.5.1. Install and Upgrade using a RPM Package Directly

¢ To install a RPM Package directly without using yumrepository:
$ yum - - nogpgcheck install bigworl d-bwrachi ned-<versi on>-<rel ease>. i 386.rpm

where <ver si on> and <r el ease> are replaced by the actual version and release number.

This assumes that you are running the Yum command in a directory containing the specified . r pmfile.

The RPM packages created by BigWorld RPM implementation are not signed, since
these packages are from trusted source. Therefore, during installation and upgrade,
GPG check is disabled.

* To upgrade a package:

$ yum - - nogpgcheck upgrade bi gworl d- bwnachi ned- <ver si on>- <r el ease>. i 386. rpm

12.5.2. Install and Upgrade using Yum Repository

* To install a package from a Yum repository:
$ yum - -nogpgcheck install bigworld-bwrachi ned
* To upgrade a package:

$ yum - - nogpgcheck upgrade bi gworl d- bwrachi ned

12.5.3. Remove an Installed Package

To remove an installed package:
$ yum renove bi gworl d- bwrachi ned

12.6. How to Obtain Version Number of an Installed Package

To obtain the version number of an installed package such as the BWMachined package, run the following
command:

$ yum info bi gworl d- bwrachi ned

bIgW@RED"

Chapter 13. First Aid After a Crash

If a BigWorld server component fails there are some steps that you should follow to assist BigWorld in iden-
tifying and resolve the problem as quickly as possible. These steps are outlined briefly below.

* Change your coredump output directory, if necessary.
* Determine the first process(es) that crashed.

* Generate a stack trace of the process that crashed.

* Retrieve relevant log information.

* Back up the crash information.

* Notify BigWorld Support of the crash.

A crash may be either an intentional event such as an asser t, or unintentional event such as segmentation
fault. Whenever a crash occurs a core file should be written to the bi gwor | d/ bi n/ Hybri d64 directory
(or equivalent directory in your system). These files provide a complete dump of the memory in use by the
process at the time the failure occurred and allows deep investigation as to the state of the program which
is often necessary to determine the cause of a problem.

13.1. Change your coredump output directory, if necessary

By default, processes that crash will output a coredump into their current working directory, which is gen-
erally the directory where the binaries reside. This directory may need to be changed if the user running
the server does not have sufficient permissions to write to that directory. This may be the case if you have
installed using RPM packages.

The output path can be temporarily changed by writing the new output path and the core file pattern to /
proc/ sys/ kernel / cor e_pat t er n. Note that this will change the coredump output path for all processes
(not just BigWorld processes) dumping core on that machine.

For example, a command similar to the following can be used (executed as the root user):
$ echo "/your/path/herel/core. %. %. %" > /proc/sys/kernel/core_pattern

Note that the change is only temporary and will not persist across machine restarts.
If a more permanent setting is required, there is the CORE_PATH shell variable defined in the BWMachined
init script that can be set to a suitable output directory. For example, it can be set like this:

CORE_PATH=/ your / pat h/ here

The init script is located at / et c/i ni t. d/ bwmachi ned2. Note that after modifying CORE_PATH, the BW-
Machined service will need to be restarted for the changes to take effect.

13.2. Determine the first process(es) that crashed

When diagnosing a crash it is important to find the first process that crashed if there have been multiple
process failures. In most scenarios multiple crashes occur due to a single failure that then propagates through
the cluster, so it is important to identify where the failure started. There are two methods which can be used
to achieve this.

* BigWorld logs.

bigw@RLD"

First Aid After a Crash

* Chronologically listing core files.

13.2.1. BigWorld logs

Whenever a crash occurs the logs should always be investigated as a first step to check for any known prob-
lems or obvious errors that may have occurred. When an issue has been identified, searching around the
time period for CRI TI CAL and ERROR messages can help quickly identify the set of processes that failed.
Searching through the logs can be performed either via WebConsole and LogViewer, or via the command
line utility m cat . py. Using the command line utility provides more flexibility for saving logs to a file which
can then be collected and sent as part of a BigWorld support ticket.

13.2.2. Chronologically listing core files

If a process failure occurs due to a non-assertion failure case you may find no obvious CRI Tl CAL or ERROR
messages appear in the server logs. In this circumstance you will need to search all of the server binary
directories within your cluster to find the core files relating to a crash. This sort of operation will generally
require a custom script that is suited for your environment as a cluster with hundreds of machines can be
time consuming to examine.

The easiest way to perform this kind of search is to simply ssh to all the server machines in the cluster and
perform a directory listing. Below is the output of a simple chronologically sorted directory listing showing
a sequence of core files.

$ cd bi gworl d/ bi n/ Hybri d64

$1s -It
SPWe---- - 1 game Conpany 124305408 Jan 7 10:17 core.cell app. pc242.3030
-rwr--r-- 1 gane Conpany 275 Jan 7 10:16 assert.cell app. pc242.3030.10g
STW------ 1 ganme Conpany 67174400 Jan 7 10:16 core. baseapp. pc242. 3024
SPWe---- - 1 ganme Conpany 21635072 Jan 7 10:16 core.cellappngr.pc242.3018
-rwr--r-- 1 gane Conpany 167 Jan 7 10:15 assert. baseapp. pc242. 3024. 1 og
-rwr--r-- 1 gane Conpany 166 Jan 7 10:15
assert.cel | appngr. pc242. 3018. | og
SPWe---- - 1 game Conpany 125972480 Jan 6 09:48 core.cell app. pc242. 600
-rwr--r-- 1 gane Conpany 275 Jan 6 09:48 assert.cell app. pc242.600. I og
SPWe---- - 1 game Conpany 21753856 Jan 6 09:47 core.cellappngr.pc242.596
-rwr--r-- 1 gane Conpany 165 Jan 6 09:47
assert.cel | appnmgr. pc242.596. 1 og
STW------ 1 ganme Conpany 62255104 Jan 5 15:49 core. baseapp. pc242.601
-rwr--r-- 1 gane Conpany 275 Jan 5 15:49 assert.baseapp. pc242. 601. 1 og

From the above example you can see there are 3 separate core files that have been generated on Jan 7th. As
we are interested in the earliest crash we look at the two assertions from 10:15 which are for CellAppMgr
and BaseApp. We then use these assertion files to find the corresponding core files using the PIDs 3018 and
3024. Thus the core files we are interested in investigating are:

° core.baseapp.pc242.3024

e core.cellappmgr.pc242.3018

13.3. Generate a stack trace of the process that crashed

As you can see from the directory listing in the previous section, core files can be extremely large. One of the
most effective ways of notifying BigWorld of a crash is to generate a simple text stack trace of the crash. This
can be performed by using the GNU Debugger program gdb. For example using the BaseApp core file from
the previous section we generate a stack trace as follows:

Load the BaseApp binary and core file into GDB.

122 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

First Aid After a Crash

$ gdb baseapp core. baseapp. pc242. 3024
G\U gdb (GDB) 7.0
Copyright (C) 2009 Free Software Foundation, Inc.

Core was generated by “/hone/ gane/ gane_di r/ bi gwor | d/ bi n/ Hybri d64/ baseapp -
machi ned --res /hone/ gam
Programterm nated with signal 11, Segnentation fault.
#0 DebugMsgHel per::critical MessageHel per (this=<value optin zed out>
i sDevAssertion=<val ue optim zed out>, format=<value optim zed out>
argPtr=<val ue optimized out>) at debug. cpp: 321
321 *(int*)NULL = O
(gdb)

Use the bt (backtrace) command to generate a stack trace.

(gdb) bt

#0 DebugMsgHel per::critical MessageHel per (this=<value optim zed out>
i sDevAsserti on=<val ue optim zed out>, fornmat=<value optim zed out>
argPtr=<val ue optim zed out>) at debug.cpp: 321

#1 0x000000000087882d i n DebugMsgHel per::critical Message
(t hi s=0x2aaab4000020, fornmat =0x2aaab4000078 "\ 020\ 326_\ 265\ 252*") at
debug. cpp: 128

#2 0x00000000007ce56¢ in Mercury:: Channel :: checkOverfl owErrors
(thi s=0x1b2e3120) at channel . cpp: 460

#3 0x00000000007d16f1 in Mercury:: Channel :: addResendTi ner (this=0x1b2e3120
seq=<val ue optim zed out>, p=0x2aaab55fc240, roBeg=0x0, roEnd=<val ue
optim zed out>) at channel.cpp: 898

#4 0x00000000007f8808 in Mercury:: Networklnterface::send
(this=0x7fff6b280320, address=..., bundle=..., pChannel =0x1b2e3120) at
networ k_i nterface. cpp: 1095

#5 0x00000000007d060b in Mercury:: Channel ::send (this=0x1b2e3120
pBundl e=0x1b2e2f 50) at channel . cpp: 769

#6 0x00000000005373c0 in Mercury:: Channel Omer::send (this=0x7fff6b27b950
arg=<val ue optim zed out>) at channel _owner. hpp: 33

#7 BaseApp:: handl eTi meout (this=0x7fff6b27b950, arg=<val ue optim zed out>) at
baseapp. cpp: 4693

#8 0x00000000007da7cd in Ti meQueueT<unsi gned | ong>:: Node: :trigger Ti mer

(thi s=0x1b2a7400, now=254536585659057) at ti me_queue. i pp: 402

#9 Ti meQueueT<unsi gned | ong>:: process (thi s=0x1b2a7400, now=254536585659057)
at tine_queue.ipp: 184

#10 0x00000000007d9b16 in Mercury:: Event Di spat cher:: processTi ners
(this=0x7fff6b27c1c0) at event_di spatcher. cpp: 408

#11 0x00000000007d9c38 in Mercury:: Event Di spatcher:: processOnce
(this=0x7fff6b27c1c0, shoul dldl e=true) at event_di spatcher. cpp: 580

#12 0x00000000007d9c54 in Mercury:: Event Di spat cher:: processConti nuously

(t hi s=0x2aaab4000020) at event_di spat cher. cpp: 564

#13 0x00000000007d9c69 in Mercury:: Event Di spatcher:: processUnti | Break

(t hi s=0x2aaab4000020) at event_di spat cher. cpp: 598

#14 0x000000000054ddbe in BaseApp::run (this=0x7fff6b27b950, argc=<val ue
optim zed out>, argv=<value optim zed out>) at baseapp.cpp: 1125

#15 0x000000000051a0eb in doMai n (di spatcher=<val ue optim zed out >,
interface=<val ue optim zed out>, argc=4, argv=0x7fff6b280b58) at nami n.cpp: 47

#16 0x000000000051aa65 in bwvai n (argc=4, argv=0x7fff6b280b58) at main.cpp: 70

#17 0x000000000051b048 in main (argc=4, argv=0x7fff6b280b58) at mai n.cpp: 60

Quit gdb.

(gdb) quit

bIgW@RED"

First Aid After a Crash

The stack trace can then be copy and pasted into a separate text file and stored along with the other report
information for the crash.

It is also possible to perform this step in one quick operation by issuing a command similar to the following:

$ gdb -ex "bt' -ex 'q' baseapp core.baseapp.pc242. 3024 >
core. baseapp. pc242. 3024. backtrace

13.3.1. Troubleshooting

It is useful to identify when a bad / invalid stack trace has been generated. These can be caused by a number
of issues such:

* Process binary has been modified since the core file was generated.
¢ Core file or binary is corrupt.
* Architecture of the core file and process binary do not match.

Below is an example of an invalid stack trace that has been generated by GDB.

$ gdb baseapp core. baseapp

warni ng: exec file is newer than core file.

[New Thread 7384]

[New Thread 7368]

Programternminated with signal 11, Segnentation fault.

#0 0x00000000008753d1 i n Menmber Wat cher <doubl e, St at Wt hRat esOf Change<unsi gned
int>, double>: :getAsString (this=0x7fff13a189bf, base=0x1, path=<val ue

optimzed out>, result=..., desc=..., npde=@x2e99d)
at wat cher. hpp: 1846
1846 RETURN_TYPE val ue = (useObject.*get Method) ();
(gdb)

You can see here that the initial loading of the file is warning us that the BaseApp executable is newer than
the core file that is being examined. This can indicate that the binary has been recompiled and no longer
corresponds to the core file. If we continue to examine the core file we see the following output:

(gdb) bt
#0 0x00000000008753d1 i n Menmber WAt cher <doubl e, St at Wt hRat esOf Change<unsi gned
int> double>: :getAsString (this=0x7fff13a189bf, base=0x1, path=<val ue
optim zed out>, result=..., desc=..., npde=@x2e99d)
at wat cher. hpp: 1846

#1 0x616d732030373039 in ?? ()
#2 0x71655374754f6¢6¢ in 22 ()
#3 0x383039313d5f 7441 in 22 ()
#4 0x65646¢6f202¢3737 in 22 ()
#5 0x656b63616€557473 in 2? ()
#6 0x38313d5f 71655364 in 2? ()
#7 0x6e69772032383736 in 22 ()
#8 Ox5f657a6953776f64 in 22 ()
#9 0x6d202¢363930343d in ?? ()
#10 Ox6c667265764f7861 in 22 ()
#11 Ox74656b636150776f in 22 ()
#12 0x000a323931383d73 in ?? ()
#13 0x0000000000¢11440 in 2? ()
#14 0x000000000f a4dc00 in 2? ()
#15 0x000000000f a84050 in ?? ()

124 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

First Aid After a Crash

#16 0x000000000f a840ce in ?? ()
#17 0x000000000f a840d0 in ?? ()

What we are seeing here is GDB being unable to match the information in the core file with the executable
and then presenting us with '?? () ' to indicate something is wrong. If you see this kind of output while
generating a stack trace please identify the reason for this occurring and generate a new correct stack trace
before sending it to BigWorld Support.

13.4. Retrieve relevant log information

Most server clusters tend not to keep all server logs for a long period of time due to the data storage require-
ment. If server logs are being deleted on a semi-frequent basis it is important to make a backup of the relevant
log files so they can be referred to during crash analysis by either your own team or BigWorld support.

13.4.1. Generating a log summary from a core file

In order to produce a quick log summary of a crash based on a core file you can use the MessageLogger
tool mlcat.py. For example using the Base App core file from previous sections we can quickly generate a log
summary using the following command:

$ mcat.py --around core. baseapp. pc242. 3024 --context=50 >
core. baseapp. pc242. 3024. 1 og

This command has queried the server logs based on the timestamp of the core file and saved 50 lines of
context from before and after this time into the log file cor e. baseapp. pc242. 3024. | og.

As core files can be extremely large and take a long time to write to disk, the time stamp
of a core file may be significantly later than the server logs (sometimes in the order of
minutes later).

13.4.2. Archiving all logs

It is also recommended to archive the complete set of logs surrounding a crash. This can be easily performed
by using the mltar.py MessageLogger utility program as follows:

$ mtar.py -zcf 20100107_l ogs.tar.gz

<server/ message_| ogger >
Pl ease sel ect the segnents to archive (e.g. 0,1,5-10):

Tine Dur ati on Entries Si ze
0 2010-01-06-09:47:07 7h 83490 4. 5MB
1 2010-01-07-10:15:31 4h 97268 5. 5MB

Enter segnents to archive [all]:

In this scenario we have already identified that the crash has occurred at around Jan 7th at 10:16am so it
would be useful to archive both log segments.

We now have an archive of the relevant server logs in the file 20100107_I ogs. t ar . gz which can be used
by your internal team or by BigWorld support as required.

bigw@RLD"

First Aid After a Crash

13.5. Back up the crash information

Having successfully identified all the files that are relevant to a crash, backing up the files is the next step to
ensure that all data remains available should it be needed during the investigation process. It is recommended
to copy all files relating to a crash into a new directory on a non cluster machine that is well named to help
identify the data at a later point. For example using the core file and crash information from previous sections
anew directory might be created such as / honme/ game_adni n/ cr ashes/ 20100107_baseapp.

You can now copy all the relevant files mentioned in the previous sections using scp or other network file
transfer mechanisms suited to your environment. Below is a complete list of files recommended to keep.

 Core files (e.g., cor e. baseapp. pc242. 3024)

* Binaries (e.g., baseapp)

* Stack trace summaries (e.g., cor e. baseapp. pc242. 3024. backt r ace)
* Log file summaries (e.g., cor e. baseapp. pc242. 3024. | og)

* Complete log files (e.g., 20100107_]| ogs. t ar. gz)

13.6. Notify BigWorld Support of the crash

You should now have a collected set of information regarding the crash which can be sent to BigWorld Sup-
port if you find you need assistance with the analysis and diagnosis of the crash.

When reporting a process crash to BigWorld Support please include as much information as possible. After
you have reviewed the core files and log output summary, if you believe the crash is related to any specific
section of Python game script or other custom game resources, providing these files with the initial bug
report can greatly speed up the time it will take BigWorld Support to identify an issue and assist in finding
a solution.

When creating a support ticket please include the following information:

* Exact BigWorld server version used (e.g., 1.9.4.3)

All relevant stack traces (see “Generate a stack trace of the process that crashed” on page 122)

All relevant logs (see “Retrieve relevant log information” on page 125)

Is the crash reproducible?
* How frequently does the crash occur?

By providing all the above information in the original support ticket it can be possible to save a number of
days by allowing the support team to start work on the issue as quickly as possible.

13.6.1. Uploading large files

If you need to upload large core files and logs to assist with the support process BigWorld provides an FTP
location for you to upload this data to.

ftp://ftp.bigworldtech.com Username: bwguest
Password: 3f 7eepE3

When using this FTP location please note that as it is in use by numerous customers, naming
your files as specifically as possible greatly assists BigWorld support. The FTP is only writable
by customers so feel free to use file names with customer and game information, for example
cust onmer _cel | app_report_20100128. zi p.

126 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

ftp://ftp.bigworldtech.com

First Aid After a Crash

13.6.2. Providing BigWorld access to your server cluster

In certain scenarios it can be necessary for BigWorld support to require access to your server cluster in order
to fully assist with an issue. While this is not a common occurrence it can save time if your staff is aware of
this possibility and has a plan in place should it be required.

bigw@r:

h ™
—) 127

Chapter 14. Common Log Messages

This section provides the description of common log messages.

14.1. Warnings

Cel | App WARNI NG Wat cher Doc: : i ni t Wat cher Doc: unabl e to | oad watcherdoc/
cell app. xm

This WARNI NG is due to an incomplete feature to add documentation to our watchers. We apologise if
it caused any confusion. You can silence this warning by creating cel | app. xm in bi gwor| d/ res/
wat cher doc. The file should contain an empty r oot section:

<r oot >
</ r oot >

Cel | App WARNI NG | nterfaceEl enent::expandLength: Received a nessage
| onger than normal |ength

We try to optimise network traffic by using the smallest integer size that can encode the expected length
of the message. For example, if we expect the message to be always less than 255 bytes, we will use just
one byte to encode the length. We use 2 bytes for messages that are expected to be less than 65535 bytes
long, etc. However, if the message exceeds the expected size, we will fallback to using 4 bytes to encode
the length. The above WARNI NGmeans that a message has exceeded the expected message length.

Cel | App WARNI NG Cel | App: : handl eGaneTi ckTi neSl i ce: Last gane tick took
0.21 seconds

This WARNI NGmeans that the game tick took longer than the normal 0.1 seconds. This can be due to many
reasons but usually it is due to a script function taking a long time. You should ensure that your script
code does not do anything that takes significant amount of time. You may have to break your processing
into several runs by using a timer.

Cel | App WARNI NG Cel | App: Scal i ng back!!

In response to a game tick exceeding 0.1 seconds, the Cell App will skip some of its usual processing to help
decrease the load, e.g. it will reduce the amount of updates sent to the client. This WARNI NGis to inform
you that clients may receive less updates e.g. entity movements may be jerky.

Cel | App WARNI NG cel | app. cpp: 1918: Profile CALL_TIMERS took 0.12 seconds

This means that the total time of all onTi mer () callbacks in that tick took 0.12 seconds. This is bad because
one tick should be less than 0.1 seconds.

Cel | App WARNI NG cel | app. cpp: 1572: Profile GAME_TICK took 0.12 seconds

This means the game tick took more than 0.1 seconds. This time includes the CALL_TI MERS time above
so almost all of the game tick was in onTi mer () callbacks.

bIgW@RLED"

Common Log Messages

Cel | App WARNI NG W tness::update: 474 has a deficit of 2370 bytes (10.68
packet s)

This is related to the <bi t sPer SecondTod i ent > configuration in bw. xr . If <bi t sPer SecondTo-
d i ent > is 20000, then it means that the maximum number of bytes we can send to the client every tick is
((20000/ Bi t sPer Second) / Updat eHert z) - UDPOverhead = ((20000/8)/10) - 28 = 222
byt es. The above WARNI NG means that we are sending 2370 bytes to the client in one tick. This is 10.68
times the allowed data rate.

This is usually caused by method calls to the entities located on the client i.e. entities in the Aol of the player
or the player itself. If many method calls are made, or if the method calls are passing large arguments,
then we will exceed the bandwidth allocation for the client. When bandwidth allocation is exceeded, the
position updates send to the client is reduced so entity movements will become jerky.

Cel | App WARNI NG control ler.cpp: 158: Profile SCRI PT_CALL took 0.63
seconds

Cel | App WARNI NG Control | er::standardCal | back: nethod = onTinmer; id =
17648; controllerI D = 270; userArg = 260

Cel | App WARNI NG tinmer_controller.cpp:156: Profile ON_TIMER took 0.62
seconds

The above 3 WARNI NGs are generated together. They mean a single onTi mer () callback took 0.62 seconds.
This is very bad since it means a single entity is using 6 times a normal game tick.

Cel | App WARNI NG Ti merController::New Rounding up initial offset to 1
fromO (initial Ofset 0.000000)

This means that you are adding a timer that is less than 0.1 seconds long. Our minimum timeout is 1 tick.

14.2. Errors

Cel | App ERROR Cel | App: Scal e back exhausted. spareTine 0.016686
tickPeriod 0.124365, real/entities 887/887, recvs 4504 trys 3958 good O
errs (546 sels), nub tiners 753 calls 752 rescheds

The means that the game tick has exceeded 0.1 seconds for many ticks. The CellApp has already reduced
updates to the clients to a minimum but still cannot keep the game tick shorter than 0.1 seconds.

Cel | App ERROR Chunk: :load: Failed to | oad chunk 001xfffx/
sep/ 0010f ffco: unknown error in item' nodel'

This means that there is an error loading a model in the chunk 0010fffco. Unfortunately, there is not enough
information to identify what is causing the error. You can try loading the space in World Editor and see if
the same error occurs. World Editor may be able to provide more information about the error.

Cel | App ERROR Recei ved nmessage id 41 for nonexistent entity 2844 from
192. 168. 50. 21: 49140

130 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Common Log Messages

Message 41 is the dest royEnt i t y message. This means that entity 2844 was already destroyed when
the Cell App received this message. Make sure that you have not called "sel f .dest r oy()" in the cell and
"sel f.destroyCel | Enti ty()"in the base at the same time.

This may also be an indication of a BigWorld Server bug. If you are not able to resolve the issue, please
send us more log output around the time of this error.

BaseApp ERROR BaseApp::setClient: Could not find base id 2881

BaseApp ERROR get ProxyForCall: No proxy set!

BaseApp ERROR get ProxyForCall: No proxy set!
The above messages means that the entity (2881) has been destroyed but is still receiving messages. This
may be due to another entity calling a method using a mailbox of the destroyed entity. You have to make

sure that when an entity is destroyed, all other entities holding a mailbox to the destroyed entity is in-
formed so that they can reset the mailbox.

This may also be an indication of a BigWorld Server bug. If you are unable to resolve the issue please send
us more logs around the time of this error.

BaseApp ERROR 0.0.0.0:0: Exception was thrown: REASON_GENERAL_NETWORK

This means that there was an error with the network. Either the machine has been disconnected from the
network, or there is some sort of hardware error.

BaseApp ERROR 10. 40. 3. 17: 56859: Exception was thrown:
REASON_NO_SUCH_PORT

This means that either the machine has been disconnected from the network, or the destination process
has crashed.

bIgW@RLED"

Chapter 15. Clock

The BigWorld server relies heavily on having an accurate clock for timers and load calculation. Unstable
clocks (clocks that may move backward) can cause undesired behaviour and even crashes. Therefore properly
configuring how BigWorld reads the time is essential for a stable, efficient server.

15.1. BigWorld Timing Methods

BigWorld provides three timing methods to select between. This can be configured by editing the file / et ¢/
bwrachi ned. conf . For example, to use the get t i me timing method, include a section like this:

[Ti m ngMet hod]
gettine
* r dt sc reads the time stamp counter register on the CPU.

It is known to become unstable in multi-core machines where a process moves between cores or if frequen-
cy scaling is used. In many single core systems it is completely stable and could be used without any issues.

e getti nme uses the kernel's clock driver to access the current time.

This method is far slower than r dt sc¢ but has the ability to draw on multiple time sources to ensure a good
compromise between speed, accuracy and stability is reachable. For additional system level configuration
see “Linux Clock Source” on page 133 .

* getti meof day is a deprecated timing method.

This method of timing is similar to get t i me but has a lower theoretical maximum resolution and may
be disrupted by NTP.

15.2. Linux Clock Source

Linux should automatically select an appropriate clock driver for its internal timekeeping, however at times
the system administrator may need to select a different driver. If get t i me is used as the timing method this
will have a direct impact on how BigWorld behaves.

A user may check which clocksource they are using with the following command run as root:
cat /sys/devices/systen cl ocksource/cl ocksourceO/ current _cl ocksource
You may check which options available with:
cat /sys/devices/system cl ocksource/ cl ocksource0O/ avai | abl e_cl ocksource

Both thetsc and j i ffi es options are known to be unstable. There have also been reports that acpi _pm
is unstable with some motherboard chipsets. We suggest that the hpet option is used if it is available, or
acpi _pmif it is not.

bIgW@RLED"

Chapter 16. Machine Groups and Categories

16.1. Introduction

Machine groups are a method in which machines in a server cluster can be allocated to one or more named
sets of machines. These groups can then utilised by MessageLogger, WebConsole or your own custom util-
ities. Note that the use of groups is optional.

16.2. Configuration

Machine groups are created by placing a category [G- oups] in the / et ¢/ bwmachi ned. conf file, with
entries containing the machine groups that the machine is assigned to. For example, two machines in the
BigWorld office are allocated separately to the client and server team for each teams testing purposes during
the week, but also belong to an office wide cluster group that can be used for larger scale weekend testing.

Machine A's / et ¢/ bwrachi ned. conf:

[G oups]
bw client
bw weekend tests

Machine B's / et ¢/ bwrachi ned. conf:

[G oups]
bw server
bw weekend tests

In WebConsole when starting a new server the option "On a group of machines" can then be chosen and
the server will start across all machines contained in the selected group. For information on how to use
Machine Groups with MessageLogger to assist scalability within a production environment please refer to
the “Production Scalability” on page 61 .

7 On a single machine:

~ From a saved layout:

@ 0On agroup of machines: [bw_server ¢l

Restrict components by tags: | [

Go!

Starting a server using a machine group

16.3. User Defined Categories

The global configuration file / et ¢/ bwrachi ned. conf can contain entries for user defined categories, and
a list of items pertaining to it. The syntax for these categories is as follows (* meaning 0 or more occurrences):

*[cat egory]
*item

bIgW@RLED"

Machine Groups and Categories

Server tools can query BWMachined to find the items associated with user categories. Categories may be
used by future tools or customer-created tools. The following sections outline some usages of categories
currently in use by BigWorld.

136 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

	Server Operations Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Server Configuration with bw.xml
	2.1. The entry parentFile
	2.2. User dependent configuration
	2.3. Command-Line Options
	2.4. General Configuration Options
	2.5. Billing System Configuration Options
	2.6. Network Configuration Options
	2.7. Network Address Translation Configuration Options
	2.8. Load Balancing Configuration Options
	2.8.1. Entities Cardinality Configuration Options

	2.9. BaseApp Configuration Options
	2.9.1. Secondary Database Configuration Options
	2.9.2. Packet Log Configuration Options
	2.9.3. ID Configuration Options
	2.9.4. Client Upstream Limits
	2.9.5. Auxiliary Data Bandwidth Controls

	2.10. BaseAppMgr Configuration Options
	2.11. Bots Configuration Options
	2.12. CellApp Configuration Options
	2.12.1. Noise Configuration Options
	2.12.2. ID Configuration Options
	2.12.3. CellApp Profiles Configuration Options

	2.13. CellAppMgr Configuration Options
	2.14. DBMgr Configuration Options
	2.14.1. Data Consolidation Options
	2.14.2. XML Database Options

	2.15. LoginApp Configuration Options
	2.16. Reviver Configuration Options
	2.16.1. Reviver's BaseAppMgr Configuration Options
	2.16.2. Reviver's CellAppMgr Configuration Options
	2.16.3. Reviver's DBMgr Configuration Options
	2.16.4. Reviver's LoginApp Configuration Options

	Chapter 3. Cluster Administration Tools
	3.1. WebConsole
	3.1.1. Modules
	3.1.1.1. ClusterControl
	3.1.1.2. Watchers
	3.1.1.3. LogViewer
	3.1.1.4. Space Viewer
	3.1.1.5. StatGrapher
	3.1.1.6. Python Console
	3.1.1.7. Commands

	3.1.2. Installation and Configuration
	3.1.3. User Administration
	3.1.3.1. Adding A New User
	3.1.3.2. Flush User Mappings

	3.1.4. Production Mode vs Development Mode
	3.1.5. Customising

	3.2. Message Logger
	3.2.1. Configuration
	3.2.2. File Format
	3.2.3. Command Line Utilities
	3.2.4. Automatic Log Archiving
	3.2.5. Production Scalability

	3.3. StatLogger
	3.3.1. Requirements
	3.3.2. Output
	3.3.3. Data Collection and Aggregation
	3.3.4. Configuration
	3.3.4.1. Database Connection Details
	3.3.4.2. Aggregation Window Configuration
	3.3.4.3. Machine Statistic Configuration
	3.3.4.4. Generic Process Statistic Configuration
	3.3.4.5. Process Configuration
	3.3.4.6. Process Statistic Configuration
	3.3.4.6.1. valueAt Properties

	3.3.4.7. Further Notes on Configuration

	3.3.5. Database
	3.3.5.1. Database Structure

	3.4. Server Command-Line Utilities
	3.4.1. Control Cluster
	3.4.1.1. Machine Selection
	3.4.1.2. Process Selection

	3.4.2. MessageLogger Related Utilities

	3.5. Space Viewer
	3.5.1. Selecting Spaces to View
	3.5.2. Viewing Spaces
	3.5.3. Customising Entity and Display Colours
	3.5.4. Running Space Viewer Remotely
	3.5.4.1. SVLogger
	3.5.4.2. Connecting a Space Viewer Window to SVLogger

	Chapter 4. Fault Tolerance
	4.1. CellApp Fault Tolerance
	4.2. BaseApp Fault Tolerance
	4.3. ServiceApp Fault Tolerance
	4.4. Fault Tolerance with Reviver
	4.4.1. Specifying Components to Support
	4.4.2. Recommended Reviver Layout
	4.4.3. Command-Line Options

	Chapter 5. Backups and Disaster Recovery
	5.1. Disaster Recovery
	5.2. Database Snapshot Tool
	5.2.1. Operational Behaviour
	5.2.2. Usage
	5.2.3. Requirements
	5.2.4. Partitioning
	5.2.4.1. Post Installation LVM Configuration

	5.2.5. Configuration
	5.2.6. Restoring From a Snapshot

	5.3. Data Consolidation Tool
	5.3.1. Skipping Data Consolidation
	5.3.2. Ignoring SQLite Errors

	Chapter 6. Controlled Startup and Shutdown
	6.1. Server-wide Shutdown
	6.2. Individual Application Retirement
	6.2.1. BaseApp Retirement
	6.2.2. CellApp Retirement
	6.2.3. Retirement via WebConsole
	6.2.4. Retirement via control_cluster.py

	Chapter 7. Stress Testing with Bots
	7.1. The Login Process
	7.2. Python Interface
	7.2.1. Python Controller (bot_op.py)
	7.2.2. Methods and Attributes

	7.3. Controlling Movement
	7.3.1. NodeProperties Section

	7.4. Extending Bots
	7.4.1. Creating New Movement Controllers

	7.5. Miscellaneous Bots Issues
	7.5.1. Running out of File Descriptors

	Chapter 8. Security
	8.1. Security of the Server
	8.2. Server Ports
	8.3. Blocking Ports and Related Security Considerations

	Chapter 9. BigWorld Server Across Multiple Machines
	9.1. How To Start
	9.1.1. WebConsole
	9.1.2. Auto Configuration Via control_cluster.py
	9.1.3. Manual Start

	9.2. How To Stop
	9.3. How To Monitor
	9.4. LoginApp and Scalability

	Chapter 10. Multiple BigWorld Servers in a Single LAN
	10.1. Keeping Processes Separate
	10.2. Centralised Cluster Monitoring
	10.3. Auto-Detection of LoginApps

	Chapter 11. MySQL Support
	11.1. Compiling DBMgr with MySQL Support
	11.2. Update bw.xml To Use MySQL
	11.3. Synchronise Database With Entity Definitions
	11.4. Enabling Secondary Databases
	11.5. Privileges
	11.6. The ClearAutoLoad tool

	Chapter 12. RPM
	12.1. Directory Structures and Files
	12.2. How to Generate Binary RPM Packages
	12.3. Customising RPM Packages
	12.4. Setting up a Yum Repository
	12.5. Install, Upgrade and Uninstall using Yum Command
	12.5.1. Install and Upgrade using a RPM Package Directly
	12.5.2. Install and Upgrade using Yum Repository
	12.5.3. Remove an Installed Package

	12.6. How to Obtain Version Number of an Installed Package

	Chapter 13. First Aid After a Crash
	13.1. Change your coredump output directory, if necessary
	13.2. Determine the first process(es) that crashed
	13.2.1. BigWorld logs
	13.2.2. Chronologically listing core files

	13.3. Generate a stack trace of the process that crashed
	13.3.1. Troubleshooting

	13.4. Retrieve relevant log information
	13.4.1. Generating a log summary from a core file
	13.4.2. Archiving all logs

	13.5. Back up the crash information
	13.6. Notify BigWorld Support of the crash
	13.6.1. Uploading large files
	13.6.2. Providing BigWorld access to your server cluster

	Chapter 14. Common Log Messages
	14.1. Warnings
	14.2. Errors

	Chapter 15. Clock
	15.1. BigWorld Timing Methods
	15.2. Linux Clock Source

	Chapter 16. Machine Groups and Categories
	16.1. Introduction
	16.2. Configuration
	16.3. User Defined Categories

