
Server Programming Guide

BigWorld Technology 2.1. Released 2012.

Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com


iii

Table of Contents
I. Server Scripting Guide ..................................................................................................................  9

1. Overview .............................................................................................................................  17
2. Directory Structure for Entity Scripting ................................................................................  19

2.1. The entities.xml File ..................................................................................................  19
2.2. The Entity Definition File .........................................................................................  20
2.3. The Entity Script Files ...............................................................................................  21

3. Directory Structure for Service Scripting ..............................................................................  25
3.1. The services.xml File .................................................................................................  25
3.2. The Service Definition File .......................................................................................  25
3.3. The Service Script Files .............................................................................................  26

4. Directory Structure for User Data Object Scripting ...............................................................  27
4.1. The user_data_objects.xml File ..................................................................................  27
4.2. The User Data Object Definition File ........................................................................  27
4.3. The User Data Object Script Files ..............................................................................  28

5. Properties ............................................................................................................................  29
5.1. Property Types ..........................................................................................................  30

5.1.1. Primitive Types ...............................................................................................  30
5.1.2. Composite Types ............................................................................................  32
5.1.3. Custom User Types .........................................................................................  35
5.1.4. Alias of Data Types ........................................................................................  35

5.2. Server to Client bandwidth usage of Property updates ...............................................  37
5.3. Default Values ..........................................................................................................  37
5.4. Data Distribution ......................................................................................................  40

5.4.1. Valid Data Distribution Combinations ............................................................  41
5.4.2. Using Distribution Flags .................................................................................  42
5.4.3. Data Propagation ............................................................................................  43

5.5. Implementing Custom Property Data Types ...............................................................  45
5.5.1. Wrapping a FIXED_DICT Data Type ...............................................................  45

5.6. Volatile Properties .....................................................................................................  50
5.7. LOD (Level of Detail) on Properties ..........................................................................  52

5.7.1. LOD and Hysteresis ........................................................................................ 53
5.8. Bandwidth Optimisation: Send Latest Only ...............................................................  55
5.9. Bandwidth Optimisation: Is Reliable .........................................................................  55
5.10. Detailed Position .....................................................................................................  55
5.11. Appeal Radius .........................................................................................................  56
5.12. Temporary Properties ...............................................................................................  56
5.13. Persistent .................................................................................................................  57
5.14. User Data Object Linking With UDO_REF Properties .................................................  57

6. Methods ..............................................................................................................................  59
6.1. Basic Method Specification .......................................................................................  60
6.2. Two-way calls ...........................................................................................................  60

6.2.1. Twisted Deferred Objects ...............................................................................  61
6.2.2. Error objects ...................................................................................................  63

6.3. Service Methods ........................................................................................................  64
6.4. Intra-Entity Communication ......................................................................................  65
6.5. Bandwidth Optimisation: Send Latest Only ...............................................................  66
6.6. Bandwidth Optimisation: Is Reliable .........................................................................  66
6.7. Sending Auxiliary Data to the Client Via Proxy .........................................................  66
6.8. Exposed Methods ‐ Client-to-Server Communication .................................................. 67

6.8.1. Security Considerations of Exposed Methods ..................................................  68
6.9. Server to Client bandwidth usage of Method calls .....................................................  69
6.10. Client callbacks on property changes .......................................................................  69

6.10.1. Implicit set_<property_name> Methods ....................................................  69
6.10.2. Implicit setNested_<property_name> Methods ........................................  69



Server Programming Guide

iv Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

6.10.3. Implicit setSlice_<property_name> Methods ..........................................  70
6.11. LOD on Methods ..................................................................................................... 70
6.12. Inter-Entity Communication ....................................................................................  71

6.12.1. Entity IDs .....................................................................................................  71
6.12.2. Retrieving Services ........................................................................................ 72

6.13. Mailboxes ................................................................................................................  73
6.13.1. Special Mailboxes .........................................................................................  74

6.14. Method Execution Context .......................................................................................  77
7. Inheritance in BigWorld .......................................................................................................  81

7.1. Python Class Inheritance ...........................................................................................  81
7.2. Entity Interfaces ........................................................................................................  83
7.3. Entity Parents ............................................................................................................  85
7.4. Client Entity Reuse ...................................................................................................  86
7.5. User Data Object Interfaces and Parents ....................................................................  86

8. Entity Instantiation and Destruction ....................................................................................  89
8.1. Entity Instantiation on the BaseApp ..........................................................................  89

8.1.1. ServiceApps ....................................................................................................  90
8.2. Cell Entity Creation From BaseApp ...........................................................................  90

8.2.1. Creation Near an Existing Cell Entity ..............................................................  91
8.2.2. Creation in a Numbered Space ........................................................................  92
8.2.3. Creation in a New Space .................................................................................  92
8.2.4. Creation in Default Space ...............................................................................  93

8.3. Entity Destruction .....................................................................................................  93
8.4. Entity Instantiation From The CellApp ......................................................................  93

8.4.1. Instantiation With No Base Counterpart ..........................................................  93
8.4.2. Instantiation With Base Counterpart ...............................................................  94

8.5. Loading Entities From Chunk Files ...........................................................................  94
9. The Database Layer .............................................................................................................  97

9.1. Persistent Properties ..................................................................................................  97
9.1.1. Non-Persistent Properties ................................................................................  98
9.1.2. Built-In Properties ..........................................................................................  98
9.1.3. Database Indexing ..........................................................................................  98
9.1.4. The Identifier Tag ...........................................................................................  99

9.2. Reading and Writing Entities ...................................................................................  100
9.3. Mapping BigWorld Properties Into SQL ...................................................................  102

9.3.1. Entity Tables .................................................................................................  102
9.3.2. The databaseID property ............................................................................  102
9.3.3. Simple Data Types ........................................................................................  102
9.3.4. VECTOR Data Types .....................................................................................  103
9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Types ...................  103
9.3.6. PATROL_PATH and UDO_REF Data Types .................................................... 104
9.3.7. ARRAYs and TUPLEs ....................................................................................  104
9.3.8. FIXED_DICTs ................................................................................................ 106
9.3.9. USER_TYPEs .................................................................................................  106

9.4. Execute Arbitrary Commands on Database ...............................................................  112
9.4.1. Execute Commands on SQL Database ............................................................  112
9.4.2. Execute Commands on XML Database ...........................................................  113

9.5. Secondary Databases ...............................................................................................  114
9.5.1. Data Consolidation .......................................................................................  114
9.5.2. Database Snapshot ........................................................................................  115

10. Character Sets and Encodings ...........................................................................................  117
10.1. Python and Entity Properties ..................................................................................  118

10.1.1. STRING ........................................................................................................ 118
10.1.2. UNICODE_STRING ........................................................................................  118

10.2. DBMgr and Encodings ...........................................................................................  119
10.2.1. UNICODE_STRING storage ........................................................................  119



Server Programming Guide

v

10.2.2. Sorting search results ..................................................................................  120
11. Profiling ...........................................................................................................................  121

11.1. Profiling Entities ....................................................................................................  121
11.1.1. Persistent Properties ....................................................................................  122
11.1.2. Property Data Types ....................................................................................  122
11.1.3. Property Data Propagation ...........................................................................  122

11.2. Python Game Script ...............................................................................................  122
11.2.1. Understanding the output ............................................................................  123
11.2.2. Increasing Memory Usage / Entity Count .....................................................  124

11.3. Profiling Server Processes (C++ Code) ....................................................................  124
11.3.1. Common Code Block Profiles ......................................................................  125
11.3.2. BaseApp Code Block Profiles ....................................................................... 125
11.3.3. CellApp Code Block Profiles .......................................................................  126

11.4. Client Communication ...........................................................................................  126
11.4.1. Private Client Events ...................................................................................  128
11.4.2. Public Client Events ....................................................................................  128
11.4.3. Total Public Client Events ............................................................................ 128

11.5. Server Communication ...........................................................................................  128
11.5.1. BaseApp Interface Summary ........................................................................  130
11.5.2. CellApp Interface Summary ........................................................................  131

12. Proxies and Players ..........................................................................................................  133
12.1. Proxies ...................................................................................................................  133
12.2. Witnesses ...............................................................................................................  134
12.3. Entity Control ........................................................................................................  134
12.4. Physics Correction .................................................................................................  135

12.4.1. Avoiding Y-axis rubber-banding. .................................................................  136
13. Entities and the Universe .................................................................................................  137

13.1. Multiple Spaces .....................................................................................................  137
13.1.1. Spaces Pool .................................................................................................  139

13.2. Navigation System .................................................................................................  139
13.2.1. Key Features ................................................................................................ 139
13.2.2. Navpoly Data Format ..................................................................................  139
13.2.3. Script Interface ............................................................................................  140
13.2.4. Navigate ......................................................................................................  141
13.2.5. Graph Searches ...........................................................................................  141
13.2.6. Auto-Generation of Navpoly Regions ..........................................................  141

13.3. Time ......................................................................................................................  143
13.3.1. Real Time ....................................................................................................  143
13.3.2. Server Time .................................................................................................  143
13.3.3. Game Time .................................................................................................. 144

13.4. Initialisation: Personality script, eload, and runscript ..............................................  144
13.5. Global Data ...........................................................................................................  147

13.5.1. globalData, baseAppData and cellAppData ...........................................  147
13.6. Space Data .............................................................................................................  148
13.7. Global Bases ..........................................................................................................  149

14. XML Data File Access ....................................................................................................... 151
14.1. ResMgr.DataSection ...........................................................................................  151
14.2. Accessing Data ....................................................................................................... 151

14.2.1. Opening a Section Within an XML File ........................................................  152
14.3. Data Types .............................................................................................................  152
14.4. Writing Data ..........................................................................................................  152
14.5. Performance Issues ................................................................................................  154
14.6. API Reference ........................................................................................................  154

15. External Services ..............................................................................................................  155
15.1. Non-blocking Methods ..........................................................................................  155
15.2. Background Threads ..............................................................................................  155



Server Programming Guide

vi Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

15.2.1. Caveats ........................................................................................................  157
16. Fault Tolerance .................................................................................................................  159

16.1. CellApp Fault Tolerance .........................................................................................  159
16.1.1. Overview ..................................................................................................... 159
16.1.2. Restoration process ......................................................................................  159
16.1.3. Example ......................................................................................................  160

16.2. BaseApp Fault Tolerance ........................................................................................  161
17. Disaster Recovery .............................................................................................................  163
18. Controlled Startup and Shutdown ....................................................................................  165

18.1. Controlled Shutdown .............................................................................................  165
18.2. Controlled Startup .................................................................................................  166

19. Transactions and Handling Fault Tolerance and Disaster Recovery ....................................  167
19.1. Transaction logic ....................................................................................................  167
19.2. Fault Tolerance Behaviour ......................................................................................  170

19.2.1. CellApp Fault Tolerance ..............................................................................  170
19.2.2. BaseApp Fault Tolerance .............................................................................  170

19.3. Disaster Recovery Behaviour ..................................................................................  170
20. Implementing Common Systems ......................................................................................  171

20.1. General Scalability ................................................................................................. 171
20.2. Internal inter-component communication ...............................................................  171
20.3. Player AoI Updates ................................................................................................  171
20.4. BigWorld Database Scalability ...............................................................................  172
20.5. Player Look-up ......................................................................................................  173

20.5.1. Requirements ..............................................................................................  173
20.5.2. Design .........................................................................................................  173

20.6. Friends lists ...........................................................................................................  174
20.6.1. Requirements ..............................................................................................  174
20.6.2. Design .........................................................................................................  174

20.7. Chat .......................................................................................................................  176
20.7.1. P2P ..............................................................................................................  176
20.7.2. AoI-based broadcast chat .............................................................................  176
20.7.3. Non-AoI-based broadcast chat .....................................................................  177

20.8. Mail .......................................................................................................................  177
20.8.1. Requirements ..............................................................................................  177
20.8.2. Design .........................................................................................................  177

20.9. Inventory System ...................................................................................................  177
20.9.1. Requirements ..............................................................................................  177
20.9.2. Design .........................................................................................................  178

20.10. AoI-based Trading ................................................................................................  178
20.10.1. Requirements ............................................................................................. 178
20.10.2. Design .......................................................................................................  178

21. User Authentication and Billing System Integration ..........................................................  181
21.1. Authentication by DBMgr ......................................................................................  181

21.1.1. Default Authentication via MySQL ..............................................................  181
21.1.2. Default Authentication via XML ..................................................................  182
21.1.3. Custom Authentication and Billing System Integration ................................  183
21.1.4. Accepting All Users .....................................................................................  184

21.2. Authentication via a Base entity .............................................................................  184
22. Security ............................................................................................................................  187

22.1. Client/Server Communications ...............................................................................  187
22.2. Server-Side Network ..............................................................................................  188
22.3. Client Side ............................................................................................................. 188
22.4. Client Cheating ......................................................................................................  189

22.4.1. General Rules for Managing Entity Data ......................................................  189
22.4.2. Writing Secure Game Script .........................................................................  189
22.4.3. Balancing Security vs. Latency .....................................................................  190



Server Programming Guide

vii

22.4.4. Balancing Security vs. Server CPU Cost .......................................................  190
23. Debugging .......................................................................................................................  191

23.1. General Debugging ................................................................................................  191
23.1.1. Information and Error Messages ..................................................................  191
23.1.2. Testing Scripts Using the Python Server .......................................................  191

23.2. Performance Profiling ............................................................................................  192
23.3. Common Mistakes .................................................................................................  193

23.3.1. Definition Files Inconsistent Between the Server and Client .........................  193
23.3.2. Implementation (.py) Does Not Match Definition (.def) ............................  193
23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Defi-
nition File ..............................................................................................................  194
23.3.4. Trying to Update the Properties of a Ghost Entity .........................................  194
23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base
part ........................................................................................................................  194

23.4. Fixed Cell Boundaries ............................................................................................  194
23.5. Message Reliability And Ordering .........................................................................  195

24. Shared Development Environments ..................................................................................  197
24.1. Windows and Linux cross platform development ....................................................  197

24.1.1. Sharing resources from Windows ................................................................. 198
24.1.2. Accessing Windows share from Linux ..........................................................  198

24.2. Using BigWorld with a Version Control System ......................................................  201
24.2.1. Customers using the Commercial Edition .....................................................  201
24.2.2. Customers using the Indie Edition ...............................................................  201
24.2.3. Files to exclude from version control ............................................................ 201

24.3. DBMgr database conflicts ......................................................................................  203
II. Server C++ Programming Guide ................................................................................................  205

25. Overview .........................................................................................................................  209
25.1. Compilation ...........................................................................................................  209

25.1.1. Output Directories .......................................................................................  209
26. Extending BigWorld Server ...............................................................................................  211
27. Entity Extras and Controllers ............................................................................................  213

27.1. Implementing Entity Extras ....................................................................................  213
27.2. Implementing Controllers ......................................................................................  216

27.2.1. Configuring Portal's Permissivity .................................................................  219
27.3. Integrating Entity Extras and Controllers ................................................................  220

27.3.1. Restricting the Number of Controllers Per Entity .......................................... 221
28. Updatable Objects ............................................................................................................  223
29. Encrypting Client-Server Traffic .......................................................................................  225

29.1. Generating your own RSA keypair ......................................................................... 225
29.2. Working with multiple keys ................................................................................... 225
29.3. Customising the symmetric encryption algorithm ...................................................  225
29.4. How PacketFilters work .........................................................................................  226

29.4.1. High-level requirements ..............................................................................  226
29.4.2. Filtering mechanics and requirements ..........................................................  226
29.4.3. Extra space for filtering ...............................................................................  227

30. Mercury Packet Structure .................................................................................................  229
30.1. Header ...................................................................................................................  230
30.2. Messages ...............................................................................................................  230

30.2.1. Fixed-Length Messages ................................................................................  231
30.2.2. Variable-Length Messages ............................................................................ 231

30.3. Footers ...................................................................................................................  231
30.3.1. Fragment Numbers ......................................................................................  231
30.3.2. Sequence Number .......................................................................................  231
30.3.3. ACKs ..........................................................................................................  232
30.3.4. Indexed Channel ID ....................................................................................  232
30.3.5. First Request Offset and replyID ...............................................................  232



Server Programming Guide

viii Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

31. The Watcher Interface .......................................................................................................  233
31.1. Callable Function Watchers ....................................................................................  233

31.1.1. Forwarding Watchers ...................................................................................  234
31.1.2. Implementing Function Watchers .................................................................  234

32. Debug Message Macros ....................................................................................................  237
32.1. Centralised Logging ...............................................................................................  238
32.2. Filtering by Priority ...............................................................................................  238
32.3. Message Priority ....................................................................................................  238

33. Non-Blocking Socket I/O Using Mercury ..........................................................................  241
33.1. Getting Callbacks From Mercury::EventDispatcher .................................................  241

34. MySQL Database Schema ................................................................................................. 243
34.1. Entity Tables ..........................................................................................................  243
34.2. Non-Entity Tables ..................................................................................................  243

III. Extending WebConsole ............................................................................................................  245
35. Web Console ....................................................................................................................  249

35.1. Adding a Page to a Module ....................................................................................  249
35.1.1. Create a Template KID File .......................................................................... 250
35.1.2. Edit controllers.py ................................................................................  250

35.2. Adding a Module ..................................................................................................  251
35.3. Add an Action Item to ClusterControl ....................................................................  252

35.3.1. Adding a Menu Item for an Existing Component Type .................................  252
35.3.2. Adding a Menu Item for a New Component Type ........................................  253



Part I. Server Scripting Guide



11

Table of Contents
1. Overview .....................................................................................................................................  17
2. Directory Structure for Entity Scripting ........................................................................................  19

2.1. The entities.xml File ..........................................................................................................  19
2.2. The Entity Definition File .................................................................................................  20
2.3. The Entity Script Files .......................................................................................................  21

3. Directory Structure for Service Scripting ......................................................................................  25
3.1. The services.xml File .........................................................................................................  25
3.2. The Service Definition File ...............................................................................................  25
3.3. The Service Script Files .....................................................................................................  26

4. Directory Structure for User Data Object Scripting .......................................................................  27
4.1. The user_data_objects.xml File ..........................................................................................  27
4.2. The User Data Object Definition File ................................................................................  27
4.3. The User Data Object Script Files ......................................................................................  28

5. Properties ....................................................................................................................................  29
5.1. Property Types ..................................................................................................................  30

5.1.1. Primitive Types ....................................................................................................... 30
5.1.2. Composite Types ....................................................................................................  32
5.1.3. Custom User Types .................................................................................................  35
5.1.4. Alias of Data Types ................................................................................................  35

5.2. Server to Client bandwidth usage of Property updates .......................................................  37
5.3. Default Values ..................................................................................................................  37
5.4. Data Distribution ..............................................................................................................  40

5.4.1. Valid Data Distribution Combinations ....................................................................  41
5.4.2. Using Distribution Flags .........................................................................................  42
5.4.3. Data Propagation ....................................................................................................  43

5.5. Implementing Custom Property Data Types .......................................................................  45
5.5.1. Wrapping a FIXED_DICT Data Type .......................................................................  45

5.6. Volatile Properties .............................................................................................................  50
5.7. LOD (Level of Detail) on Properties ..................................................................................  52

5.7.1. LOD and Hysteresis ................................................................................................ 53
5.8. Bandwidth Optimisation: Send Latest Only .......................................................................  55
5.9. Bandwidth Optimisation: Is Reliable .................................................................................  55
5.10. Detailed Position .............................................................................................................  55
5.11. Appeal Radius .................................................................................................................  56
5.12. Temporary Properties ....................................................................................................... 56
5.13. Persistent .........................................................................................................................  57
5.14. User Data Object Linking With UDO_REF Properties ......................................................... 57

6. Methods ......................................................................................................................................  59
6.1. Basic Method Specification ...............................................................................................  60
6.2. Two-way calls ...................................................................................................................  60

6.2.1. Twisted Deferred Objects .......................................................................................  61
6.2.2. Error objects ...........................................................................................................  63

6.3. Service Methods ................................................................................................................  64
6.4. Intra-Entity Communication ..............................................................................................  65
6.5. Bandwidth Optimisation: Send Latest Only .......................................................................  66
6.6. Bandwidth Optimisation: Is Reliable .................................................................................  66
6.7. Sending Auxiliary Data to the Client Via Proxy .................................................................  66
6.8. Exposed Methods ‐ Client-to-Server Communication .........................................................  67

6.8.1. Security Considerations of Exposed Methods ..........................................................  68
6.9. Server to Client bandwidth usage of Method calls .............................................................  69
6.10. Client callbacks on property changes ...............................................................................  69

6.10.1. Implicit set_<property_name> Methods ............................................................  69
6.10.2. Implicit setNested_<property_name> Methods ................................................  69
6.10.3. Implicit setSlice_<property_name> Methods ..................................................  70



Server Scripting Guide

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

6.11. LOD on Methods ............................................................................................................  70
6.12. Inter-Entity Communication ............................................................................................  71

6.12.1. Entity IDs .............................................................................................................  71
6.12.2. Retrieving Services ................................................................................................ 72

6.13. Mailboxes ........................................................................................................................  73
6.13.1. Special Mailboxes .................................................................................................  74

6.14. Method Execution Context ...............................................................................................  77
7. Inheritance in BigWorld ...............................................................................................................  81

7.1. Python Class Inheritance ...................................................................................................  81
7.2. Entity Interfaces ................................................................................................................  83
7.3. Entity Parents ....................................................................................................................  85
7.4. Client Entity Reuse ...........................................................................................................  86
7.5. User Data Object Interfaces and Parents ............................................................................  86

8. Entity Instantiation and Destruction ............................................................................................  89
8.1. Entity Instantiation on the BaseApp ..................................................................................  89

8.1.1. ServiceApps ............................................................................................................  90
8.2. Cell Entity Creation From BaseApp ...................................................................................  90

8.2.1. Creation Near an Existing Cell Entity ......................................................................  91
8.2.2. Creation in a Numbered Space ................................................................................ 92
8.2.3. Creation in a New Space ......................................................................................... 92
8.2.4. Creation in Default Space .......................................................................................  93

8.3. Entity Destruction .............................................................................................................  93
8.4. Entity Instantiation From The CellApp ..............................................................................  93

8.4.1. Instantiation With No Base Counterpart ..................................................................  93
8.4.2. Instantiation With Base Counterpart .......................................................................  94

8.5. Loading Entities From Chunk Files ...................................................................................  94
9. The Database Layer .....................................................................................................................  97

9.1. Persistent Properties ..........................................................................................................  97
9.1.1. Non-Persistent Properties ........................................................................................  98
9.1.2. Built-In Properties ..................................................................................................  98
9.1.3. Database Indexing ..................................................................................................  98
9.1.4. The Identifier Tag ...................................................................................................  99

9.2. Reading and Writing Entities ...........................................................................................  100
9.3. Mapping BigWorld Properties Into SQL ...........................................................................  102

9.3.1. Entity Tables .........................................................................................................  102
9.3.2. The databaseID property ....................................................................................  102
9.3.3. Simple Data Types ................................................................................................  102
9.3.4. VECTOR Data Types ............................................................................................. 103
9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Types ...........................  103
9.3.6. PATROL_PATH and UDO_REF Data Types ...........................................................  104
9.3.7. ARRAYs and TUPLEs ............................................................................................  104
9.3.8. FIXED_DICTs ........................................................................................................ 106
9.3.9. USER_TYPEs ......................................................................................................... 106

9.4. Execute Arbitrary Commands on Database .......................................................................  112
9.4.1. Execute Commands on SQL Database ....................................................................  112
9.4.2. Execute Commands on XML Database ...................................................................  113

9.5. Secondary Databases .......................................................................................................  114
9.5.1. Data Consolidation ...............................................................................................  114
9.5.2. Database Snapshot ................................................................................................  115

10. Character Sets and Encodings ...................................................................................................  117
10.1. Python and Entity Properties .......................................................................................... 118

10.1.1. STRING ...............................................................................................................  118
10.1.2. UNICODE_STRING ................................................................................................  118

10.2. DBMgr and Encodings ...................................................................................................  119
10.2.1. UNICODE_STRING storage ................................................................................  119
10.2.2. Sorting search results ..........................................................................................  120



Server Scripting Guide

13

11. Profiling ...................................................................................................................................  121
11.1. Profiling Entities ............................................................................................................  121

11.1.1. Persistent Properties ............................................................................................  122
11.1.2. Property Data Types ............................................................................................  122
11.1.3. Property Data Propagation ...................................................................................  122

11.2. Python Game Script .......................................................................................................  122
11.2.1. Understanding the output ....................................................................................  123
11.2.2. Increasing Memory Usage / Entity Count .............................................................  124

11.3. Profiling Server Processes (C++ Code) ............................................................................  124
11.3.1. Common Code Block Profiles ..............................................................................  125
11.3.2. BaseApp Code Block Profiles ..............................................................................  125
11.3.3. CellApp Code Block Profiles ...............................................................................  126

11.4. Client Communication ...................................................................................................  126
11.4.1. Private Client Events ...........................................................................................  128
11.4.2. Public Client Events ............................................................................................  128
11.4.3. Total Public Client Events ...................................................................................  128

11.5. Server Communication ...................................................................................................  128
11.5.1. BaseApp Interface Summary ................................................................................  130
11.5.2. CellApp Interface Summary ................................................................................  131

12. Proxies and Players ..................................................................................................................  133
12.1. Proxies ...........................................................................................................................  133
12.2. Witnesses .......................................................................................................................  134
12.3. Entity Control ................................................................................................................  134
12.4. Physics Correction .........................................................................................................  135

12.4.1. Avoiding Y-axis rubber-banding. .........................................................................  136
13. Entities and the Universe .........................................................................................................  137

13.1. Multiple Spaces .............................................................................................................  137
13.1.1. Spaces Pool .........................................................................................................  139

13.2. Navigation System .........................................................................................................  139
13.2.1. Key Features ........................................................................................................ 139
13.2.2. Navpoly Data Format ..........................................................................................  139
13.2.3. Script Interface ....................................................................................................  140
13.2.4. Navigate ..............................................................................................................  141
13.2.5. Graph Searches ...................................................................................................  141
13.2.6. Auto-Generation of Navpoly Regions ..................................................................  141

13.3. Time ..............................................................................................................................  143
13.3.1. Real Time ............................................................................................................  143
13.3.2. Server Time .........................................................................................................  143
13.3.3. Game Time .........................................................................................................  144

13.4. Initialisation: Personality script, eload, and runscript ......................................................  144
13.5. Global Data ...................................................................................................................  147

13.5.1. globalData, baseAppData and cellAppData ................................................... 147
13.6. Space Data .....................................................................................................................  148
13.7. Global Bases ..................................................................................................................  149

14. XML Data File Access ............................................................................................................... 151
14.1. ResMgr.DataSection ...................................................................................................  151
14.2. Accessing Data ............................................................................................................... 151

14.2.1. Opening a Section Within an XML File ................................................................  152
14.3. Data Types .....................................................................................................................  152
14.4. Writing Data ..................................................................................................................  152
14.5. Performance Issues ........................................................................................................  154
14.6. API Reference ................................................................................................................  154

15. External Services ......................................................................................................................  155
15.1. Non-blocking Methods ..................................................................................................  155
15.2. Background Threads ......................................................................................................  155

15.2.1. Caveats ................................................................................................................  157



Server Scripting Guide

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

16. Fault Tolerance .........................................................................................................................  159
16.1. CellApp Fault Tolerance ................................................................................................. 159

16.1.1. Overview ............................................................................................................. 159
16.1.2. Restoration process ..............................................................................................  159
16.1.3. Example ..............................................................................................................  160

16.2. BaseApp Fault Tolerance ................................................................................................  161
17. Disaster Recovery .....................................................................................................................  163
18. Controlled Startup and Shutdown ............................................................................................  165

18.1. Controlled Shutdown .....................................................................................................  165
18.2. Controlled Startup .........................................................................................................  166

19. Transactions and Handling Fault Tolerance and Disaster Recovery ............................................  167
19.1. Transaction logic ............................................................................................................  167
19.2. Fault Tolerance Behaviour ..............................................................................................  170

19.2.1. CellApp Fault Tolerance ......................................................................................  170
19.2.2. BaseApp Fault Tolerance .....................................................................................  170

19.3. Disaster Recovery Behaviour ..........................................................................................  170
20. Implementing Common Systems ..............................................................................................  171

20.1. General Scalability ........................................................................................................  171
20.2. Internal inter-component communication .......................................................................  171
20.3. Player AoI Updates ........................................................................................................  171
20.4. BigWorld Database Scalability .......................................................................................  172
20.5. Player Look-up ..............................................................................................................  173

20.5.1. Requirements ......................................................................................................  173
20.5.2. Design ................................................................................................................. 173

20.6. Friends lists ...................................................................................................................  174
20.6.1. Requirements ......................................................................................................  174
20.6.2. Design ................................................................................................................. 174

20.7. Chat ...............................................................................................................................  176
20.7.1. P2P ......................................................................................................................  176
20.7.2. AoI-based broadcast chat .....................................................................................  176
20.7.3. Non-AoI-based broadcast chat .............................................................................  177

20.8. Mail ...............................................................................................................................  177
20.8.1. Requirements ......................................................................................................  177
20.8.2. Design ................................................................................................................. 177

20.9. Inventory System ...........................................................................................................  177
20.9.1. Requirements ......................................................................................................  177
20.9.2. Design ................................................................................................................. 178

20.10. AoI-based Trading ........................................................................................................  178
20.10.1. Requirements ....................................................................................................  178
20.10.2. Design ...............................................................................................................  178

21. User Authentication and Billing System Integration ..................................................................  181
21.1. Authentication by DBMgr ..............................................................................................  181

21.1.1. Default Authentication via MySQL ...................................................................... 181
21.1.2. Default Authentication via XML ..........................................................................  182
21.1.3. Custom Authentication and Billing System Integration ........................................  183
21.1.4. Accepting All Users .............................................................................................  184

21.2. Authentication via a Base entity .....................................................................................  184
22. Security ....................................................................................................................................  187

22.1. Client/Server Communications .......................................................................................  187
22.2. Server-Side Network ......................................................................................................  188
22.3. Client Side ..................................................................................................................... 188
22.4. Client Cheating ..............................................................................................................  189

22.4.1. General Rules for Managing Entity Data .............................................................. 189
22.4.2. Writing Secure Game Script ................................................................................. 189
22.4.3. Balancing Security vs. Latency .............................................................................  190
22.4.4. Balancing Security vs. Server CPU Cost ...............................................................  190



Server Scripting Guide

15

23. Debugging ...............................................................................................................................  191
23.1. General Debugging ........................................................................................................ 191

23.1.1. Information and Error Messages ..........................................................................  191
23.1.2. Testing Scripts Using the Python Server ............................................................... 191

23.2. Performance Profiling ....................................................................................................  192
23.3. Common Mistakes .........................................................................................................  193

23.3.1. Definition Files Inconsistent Between the Server and Client .................................  193
23.3.2. Implementation (.py) Does Not Match Definition (.def) ....................................  193
23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Definition
File ................................................................................................................................  194
23.3.4. Trying to Update the Properties of a Ghost Entity ................................................  194
23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base part ...  194

23.4. Fixed Cell Boundaries ....................................................................................................  194
23.5. Message Reliability And Ordering .................................................................................  195

24. Shared Development Environments ..........................................................................................  197
24.1. Windows and Linux cross platform development ...........................................................  197

24.1.1. Sharing resources from Windows ........................................................................  198
24.1.2. Accessing Windows share from Linux ..................................................................  198

24.2. Using BigWorld with a Version Control System ..............................................................  201
24.2.1. Customers using the Commercial Edition ............................................................. 201
24.2.2. Customers using the Indie Edition .......................................................................  201
24.2.3. Files to exclude from version control ...................................................................  201

24.3. DBMgr database conflicts ..............................................................................................  203



17

Chapter 1. Overview
This part of the document contains technical information for creating entities and user data objects for the
BigWorld Server. It is part of a larger set of documentation describing the whole BigWorld system.

The intended audience is technical-typically MMOG developers and designers.

For API-level information, please refer to the API reference documentation.

Note

Garbage collection is disabled in BigWorld's Python integration, because garbage col-
lection is an expensive operation that can occur at any time, blocking the main thread
in the server applications.

Note

For details on BigWorld terminology, see the document Glossary of Terms.

#dest=


19

Chapter 2. Directory Structure for Entity Scripting
Entities are the objects that make up the game world. Using entities, you can create players, NPCs, loot, chat
rooms, and many other interactive elements in your games.

Each entity type is implemented as a collection of Python scripts, and an XML-based definition file that ties
the scripts together. These scripts are located in the resource tree under the folder scripts (i.e., <res>/
scripts , where <res> is the virtual tree defined ~/.bwmachined.conf).

The list below summarises the important files and directories for entities in <res>:

• <res>  ‐ Resource tree defined in ~/.bwmachined.conf .

• scripts ‐ Folder containing all entity files.

• db.xml ‐ Persistent state for the XML database system.

• entities.xml ‐ Lists all entities to load into the client or the server at start-up time.

• base ‐ Folder contains Python scripts for entities with a base component.

• cell ‐ Folder contains Python scripts for entities with a cell component.

• client ‐ Folder contains Python scripts for entities with a client component.

• common ‐ Folder listed in the Python search path for all components. Used for common game code.

• lib ‐ Folder listed in the Python search path for all components. Used for common game code.

• entity_defs ‐ Contains an XML .def file for each entity listed in file <res>/scripts/
entities.xml.

• alias.xml ‐ Data types aliases used in the project.

• <entity>.def ‐ Entity definition file. There is one such file for each entity defined in <res>/
scripts/entities.xml.

• interfaces ‐ Entity interface definition files

• server ‐ System-wide settings.

• Default values for the system.

2.1. The entities.xml File

The file <res>/scripts/entities.xml is used by the BigWorld engine to determine the types of entities
available for use.

Each tag in this file represents an entity type, and must have a corresponding definition file in the directory
<res>/scripts/entity_defs, and at least one Python script file in either the <res>/scripts/base
or <res>/scripts/cell directory. It may also have a script file in <res>/scripts/client.

The order in which the entity types are declared in this file corresponds to the final entity ID associated with
each entity type.

In its simplest form, the entities file has one tag listed for each entity to be loaded.

To define an entity called NewEntityType, simply add a line like the one below:



Directory Structure for Entity Scripting

20 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

<root>
  ...
  <NewEntityType/>
</root>

<res>/scripts/entities.xml ‐ Entity definition

2.2. The Entity Definition File
The entity definition file <res>/scripts/entity_defs/<entity>.def determines how your scripts
communicate in BigWorld. This allows the BigWorld system to abstract the tasks of sending and receiving
messages into simply calling different script methods on your entities. In a sense, the definition file provides
an interface to your entity, and the Python scripts provide the implementation.

The following diagram shows the conceptual parts of a BigWorld entity:

Conceptual parts of an entity

Each entity type has a corresponding definition file, named after the entity's type name followed by the
extension '.def'. For example, a Seat entity type would have a file called Seat.def.

It is useful then, to have a 'minimal' definition file to aid in quickly defining a new entity, as well as to assist
in explaining what the document's section is trying to accomplish.

The following file is a minimal entity definition file:

<root>

  <Parent> optional parent entity </Parent> 1

  <Implements> 2

     <!-- interface references -->
   </Implements>

  <ClientName> optional client type </ClientName> 3

  
  <Volatile> 4

     <!-- volatile definitions -->
   </Volatile>
  
  <AppealRadius> optional appeal radius </AppealRadius> 5

  
  <DetailedPosition> 6

     <SendLatestOnly> whether to only send the most recent position </
SendLatestOnly>
   </DetailedPosition>



Directory Structure for Entity Scripting

21

   <Properties> 7

     <!-- properties -->
   </Properties>

  <ClientMethods> 8

     <!-- declaration --> 
   </ClientMethods>

  <CellMethods> 9

     <!-- declaration --> 
   </CellMethods>

  <BaseMethods> 10

     <!-- declaration --> 
   </BaseMethods>

  <LoDLevels> 11

    <!-- levels of detail -->
   </LODLevels>

  <NetworkCompression> 12

    <!-- internal and external network compression -->
   </NetworkCompression>
</root>

<res>/scripts/entity_defs/<entity>.def ‐ Minimal entity definition file

1 For details, see “Entity Parents” on page 85 .
2 For details, see “Entity Interfaces” on page 83 .
3 For details, see “Client Entity Reuse” on page 86 .
4 For details, see “Volatile Properties” on page 50 .
5 For details, see “Appeal Radius” on page 56 .
6 For details, see “Detailed Position” on page 55 .
7 For details, see Properties on page 29 .
8 For details, see Methods on page 59 .
9 For details, see Methods on page 59 .
10 For details, see Methods on page 59 .
11 For details, see “LOD (Level of Detail) on Properties” on page 52 .
12 For details, see Server Operations Guide's chapter “General Configuration Options” for the network-

Compression options.

By the end of this chapter, we should be able to replace all placeholders (denoted by italics) in the example
file above with actual code.

2.3. The Entity Script Files
BigWorld Technology divides processing of entities in a game world into three different execution contexts:

Entity type Script file location Description

Cell <res>/scripts/cell Takes care of the portions of an entity that
affect the space around it. Processing takes
place on the server cluster.

Base <res>/scripts/base Takes care of the portions of an entity that do
not affect the space around it (as well as pos-
sibly acting as a proxy for a player). Process-
ing takes place on the server cluster.

Client <res>/scripts/client Takes care of the portions of an entity that
require heavy awareness of the surrounding
environment.

#dest=
#dest=


Directory Structure for Entity Scripting

22 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Entity Types

It is possible for some entity instances to not have one of these three parts. Furthermore, some entity types
may not support ever having one of these parts. For each entity type, there is a script file for each of CellApp,
BaseApp, and Client, if that type supports that execution context.

These script files are named after the entity type, followed by the extension '.py'. This file must contain a
class with the name of the entity type.

For example, if you have an entity type Seat that can have cell, base and client execution contexts, there
would be three script files, each with the implementation of the class:

• <res>/scripts/cell/Seat.py

• <res>/scripts/base/Seat.py

• <res>/scripts/client/Seat.py

The entity's base class defined in the script file is determined by the execution context that the file represents,
as described below:

Script file execution context Entity's base class

Cell BigWorld.Entity

Base BigWorld.Base or BigWorld.Proxy

Client BigWorld.Entity

Entity's base class per execution context

For more details about the difference between the Base and Proxy classes, see Proxies and Players on page
133 .

The start of the script for a Seat entity could be implemented as below:

• Cell script file ‐ <res>/scripts/cell/Seat.py

import BigWorld

class Seat( BigWorld.Entity ):
  def __init__( self ):
    BigWorld.Entity.__init__( self )

• Base script file ‐ <res>/scripts/base/Seat.py

import BigWorld

class Seat( BigWorld.Base ):
  def __init__( self ):
    BigWorld.Base.__init__( self )

• Client script file ‐ <res>/scripts/client/Seat.py

import BigWorld

class Seat( BigWorld.Entity ):



Directory Structure for Entity Scripting

23

  def __init__( self ):
    BigWorld.Entity.__init__( self )



25

Chapter 3. Directory Structure for Service Scripting
Services are scripted objects that are similar to base-only entities. They are designed to integrate additional
functionality with the game server. This functionality typically involves external processes.

Each service type is implemented as a collection of Python scripts, and an XML-based definition file that ties
the scripts together. These scripts are located in the resource tree under the folder scripts (i.e., <res>/
scripts , where <res> is the virtual tree defined ~/.bwmachined.conf).

The list below summarises the important files and directories for services in <res>:

• <res>  ‐ Resource tree defined in ~/.bwmachined.conf .

• scripts ‐ Folder containing all service files.

• services.xml ‐ Lists all services to load into the server at start-up time.

• base ‐ Folder contains Python scripts for entities with a base component.

• common ‐ Folder listed in the Python search path for all components. Used for common game code.

• lib ‐ Folder listed in the Python search path for all components. Used for common game code.

• service ‐ Folder contains Python scripts for services to be run on ServiceApps.

• service_defs ‐ Contains an XML .def file for each service listed in file <res>/scripts/
services.xml.

• <service>.def ‐ Service definition file. There is one such file for each service defined in <res>/
scripts/services.xml.

3.1. The services.xml File

The file <res>/scripts/services.xml is used by the BigWorld engine to determine the types of services
available for use.

The file contains a list of Services as elements, as children of the root node:

<root>
    <Service1/>
    <Service2/>
</root>

3.2. The Service Definition File

The service definition file <res>/scripts/service_defs/<service>.def determines how your
scripts communicate in BigWorld. This allows the BigWorld system to abstract the tasks of sending and re-
ceiving messages into simply calling different script methods on your services. In a sense, the definition file
provides an interface to your service, and the Python scripts provide the implementation.

Each service type has a corresponding definition file, named after the service's type name followed by the
extension '.def'. For example, a NoteStore service type would have a file called NoteStore.def.

The following file is a 'minimal' service definition file, to aid in quickly defining a new service:

<root>



Directory Structure for Service Scripting

26 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

  <Methods> 1

     <!-- declaration --> 
   </Methods>
</root>

<res>/scripts/service_defs/<service>.def ‐ Minimal service definition file

1 For details, see Methods on page 59 .

3.3. The Service Script Files

BigWorld Technology handles the processing of all services in the Service execution context. Therefore, a
script file for each service type is provided for this context.

For example, a NoteStore service will have one script file with the implementation of the class, located at
<res>/scripts/service/NoteStore.py

The service's base class defined in the script file is BigWorld.Service, since the file represents the Service
execution context.

The start of the script for a NoteStore service could be implemented as below:

import BigWorld

class NoteStore( BigWorld.Service ):
  def __init__( self ):
    BigWorld.Service.__init__( self )

<res>/scripts/service/NoteStore.py ‐ Service script file



27

Chapter 4. Directory Structure for User Data Object
Scripting

User data objects are a way of embedding user defined data in Chunk files. Each user data object type is
implemented as a collection of Python scripts, and an XML-based definition file that ties the scripts together.
These scripts are located in the resource tree under the folder scripts (i.e., <res>/scripts, where <res>
is the virtual tree defined ~/.bwmachined.conf).

User data objects differ from entities in that they are immutable (i.e. their properties don't change), and that
they are not propagated to other cells or clients. This makes them a lot lighter than entities.

A key feature of user data objects is their linkability. Entities are able to link to user data objects, and user
data objects are able to link to other user data objects. This is achieved by including a UDO_REF property in
the definition file for the user data object or entity that wishes to link to another user data object.

The list below summarises the important files and directories for user data objects in <res>:

• <res> — Resource tree defined in ~/.bwmachined.conf.

• scripts — Folder containing all entity files.

• user_data_objects.xml — Lists all user data objects to load into the client or the server at start-
up time.

• base — Folder contains Python scripts for user data objects with a base component.

• cell — Folder contains Python scripts for user data objects with a cell component.

• client — Folder contains Python scripts for user data objects with a client component.

• common — Folder listed in the Python search path for all components. Used for common game code.

• lib — Folder listed in the Python search path for all components. Used for common game code.

• user_data_object_defs — Contains the user data object definition files.

• <user_data_object.def> — User data object definition file. There is one such file for each user
data object defined in <res>/scripts/user_data_objects.xml.

• interfaces — User data object interface definition files

4.1. The user_data_objects.xml File

The file <res>/scripts/user_data_objects.xml is used by the BigWorld engine to determine the
types of user data objects available for use.

The file structure matches that of the <res>/entities/entities.xml. For further details refer to “The
entities.xml File” on page 19

4.2. The User Data Object Definition File

The user data object definition file <res>/scripts/user_data_object_defs/
<user_data_object>.def determines the properties it will store and make accessible to BigWorld user
data objects. The user data object definition file also specifies if the user data object should be created in the
server or in the client.

The following file is a minimal entity definition file:



Directory Structure for User Data Object Scripting

28 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

<root>

  <Domain> the execution context for this user </Domain> 1

  <Parent> optional parent entity </Parent> 2

  <Implements> 3

     <!-- interface references -->
   </Implements>

   <Properties> 4

     <!-- properties -->
   </Properties>

</root>

<res>/scripts/user_data_object_defs/<user_data_object>.def — Minimal user data object definition file

1 The domain for a user data object can be either CLIENT, CELL or BASE.
2 For details, see “Entity Parents” on page 85 .
3 For details, see “Entity Interfaces” on page 83 .
4 For details, see Properties on page 29 .

4.3. The User Data Object Script Files

BigWorld Technology divides processing of user data objects in a game world into three different execution
contexts, depending on its Domain:

• User Data Object Domain: Cell — Script File Location: <res>/scripts/cell

User data objects to be used by entities in the cell.

• User Data Object Domain: Base — Script File Location: <res>/scripts/base

User data objects to be used by entities in the base.

• User Data Object Domain: Client — Script File Location: <res>/scripts/client

User data objects to be used by entities in the client.

Most implementations of user data objects will only live either in the cell or in the client. For an example
of a user data object that lives in the cell, see the PatrolNode user data object scripts and definition file in
the <res>/scripts folder. For an example of a client-only user data object, look in the same place for the
scripts and definition file of the CameraNode user data object.



29

Chapter 5. Properties
Properties describe what the state of an entity is. Like traditional object systems, a BigWorld property has
a type and a name. Unlike traditional object systems, a property also has distribution properties that affect
where and how frequently it is distributed around the system.

Properties are declared in the entity's definition file (named <res>/scripts/entity_defs/
<entity>.def), in a section named Properties.

The grammar for property definition is displayed below:

<root>
   ...
   <Properties>
      <propertyName>
         <!-- type of this property -->
         <Type> TYPE_NAME </Type> 1

         <!-- Method of distribution -->
         <Flags> DISTRIBUTION_FLAGS </Flags> 2

         <!-- Default value (optional) -->
         <Default> DEFAULT_VALUE </Default> 3

         <!-- Is the property editable? (true/false) (optional) -->
         <Editable> [true|false] </Editable>

         <!-- Level of detail for this property (optional) -->
         <DetailLevel> LOD </DetailLevel> 4

         <!-- Is the property persistent? -->
         <Persistent> [true|false] </Persistent> 5

         <!-- Is the property indexed? -->
         <Indexed>  [true|false] 6

             <!-- Is the property index unique? -->
             <Unique> [true|false] </Unique>
         </Indexed>

         <!-- Is at most one change sent to clients in a packet? -->
         <SendLatestOnly> [true|false] </SendLatestOnly> 7

         <!-- Is change sent reliably? -->
         <IsReliable> [true|false] </IsReliable> 8

      </propertyName>
   </Properties>
   ...
</root>

<res>/scripts/entity_defs/<entity>.def — Property definition syntax

1 For details, see “Property Types” on page 30 .
2 For details, see “Data Distribution” on page 40 .
3 For details, see “Default Values” on page 37 .
4 For details, see “LOD (Level of Detail) on Properties” on page 52 .
5 For details, see The Database Layer on page 97 .
6 For details, see “Database Indexing” on page 98 .
7 For details, see “Bandwidth Optimisation: Send Latest Only” on page 55 .



Properties

30 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

8 For details, see “Bandwidth Optimisation: Is Reliable” on page 55 .

5.1. Property Types

BigWorld needs to efficiently transmit data over a network between its various components. For this purpose,
BigWorld definition file describes the type of each property of an entity (despite the fact that BigWorld is
scripted using Python — an untyped language).

Because bandwidth conservation is important in implementing an MMOG, property types should be selected
such that they are the smallest type (in terms of number of bits) that can represent the data.

5.1.1. Primitive Types

The following list summarises the primitive types available for BigWorld properties:

• BLOB — Size (bytes): N+k

Binary data. Similar to a string, but can contain NULL characters.

Stored in base-64 encoding when in XML, e.g., in the XML database.

N is the number of bytes in the blob, and k=4.

• FLOAT32 — Size (bytes): 4

IEEE 32-bit floating-point number.

Note

The MySQL database may have less precision than this.

• FLOAT64 — Size (bytes): 8

IEEE 64-bit floating-point number.

Note

The MySQL database may have less precision than this.

• INT8 — Size (bytes): 1 — Range: From: -128 To: 127

Signed 8-bit integer.

• INT16 — Size (bytes): 2 — Range: From: -32,768 To: 32,767

Signed 16-bit integer.

• INT32 — Size (bytes): 4 — Range: From: -2,147,483,648 To: 2,147,483,647

Signed 32-bit integer.

• INT64 — Size (bytes): 8 — Range: From: -9,223,372,036,854,775,808 To: 9,223,372,036,854,775,807

Signed 64-bit integer.

• MAILBOX — Size (bytes): 12



Properties

31

A BigWorld mailbox.

Passing an entity to a MAILBOX argument automatically converts it to MAILBOX.

For details, see “Mailboxes” on page 73 .

• PYTHON — Size(bytes): Size of pickled string, as per STRING

Uses the Python pickler to pack any Python type into a string, and transmits the result.

This should not be used between client and server, as it is insecure and inefficient.

It is recommended to use a user data type for production code. For more details, see “Implementing Cus-
tom Property Data Types” on page 45 .

• STRING — Size (bytes): N+k

Character string (non-Unicode).

N is the number of characters in the string, and k=4.

• UINT8 — Size(bytes): 1 - Range: From: 0 To: 255

Unsigned 8-bit integer.

• UINT16 — Size(bytes): 2 — Range: From: 0 To: 65,535

Unsigned 16-bit integer.

• UINT32 — Size(bytes): 4 — Range: From: 0 To: 4,294,967,295

Unsigned 32-bit integer.

This type may use Python's long type instead of int, and so might be less efficient than INT32.

• UINT64 — Size(bytes): 8 — Range: From: 0 To: 18,446,744,073,709,551,615

Unsigned 64-bit integer.

• UNICODE_STRING — Size (bytes): Up to 4N+k

Character string (Unicode).

N is the number of characters in the string, and k=4. Streamed as UTF-8.

• VECTOR2 — Size(bytes): 8

Two-dimensional vector of 32-bit floats. Represented in Python as a tuple of two numbers (or
Math.Vector2).

• VECTOR3 — Size(bytes): 12

Three-dimensional vector of 32-bit floats. Represented in Python as a tuple of three numbers (or
Math.Vector3).

• VECTOR4 — Size(bytes): 16

Four-dimensional vector of 32-bit floats. Represented in Python as a tuple of four numbers (or
Math.Vector4).



Properties

32 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

5.1.2. Composite Types

The following sections describe the composite types available in BigWorld.

5.1.2.1. ARRAY and TUPLE Types

BigWorld also has ARRAY and TUPLE types, which can create an array of values of any of the BigWorld
primitive types.

Properties of ARRAY type have a byte size calculated by the formula below:

N * t + k

The components of the formula are described below:

• N — Number of elements in the array.

• t — Size of the type contained in the array.

• k — Constant.

The BigWorld TUPLE type is represented in script by the Python tuple type, while the BigWorld ARRAY
type is represented in script by Python list type.

Tuples are specified as follows:

<Type> TUPLE <of> [TYPE_NAME|TYPE_ALIAS] </of> [<size> n </size>] </Type>

<res>/scripts/entity_defs/<entity>.def — TUPLE declaration syntax

Arrays are specified as follows:

<Type> ARRAY <of> [TYPE_NAME|TYPE_ALIAS] </of> [<size> n </size>] </Type>

<res>/scripts/entity_defs/<entity>.def — ARRAY declaration syntax

In case the size of an ARRAY or TUPLE is specified, then it must have the declared n elements. Adding or
deleting elements to fixed-sized ARRAY or TUPLE is not allowed. If the default value is not specified, then a
fixed-sized ARRAY or TUPLE will contain n default values of the element type.

Arrays have a special method called equals_seq() that can be used for performing element-wise Boolean
equality testing against any arbitrary Python sequence (including Python lists and tuples). For example:

self.myList = [1,2,3]
self.myList.equals_seq( [1,2,3] )
# should return True
self.myList.equals_seq( (1,2,3) )
# should return True

Arrays efficiently propagate changes. This includes assigning to individual elements, appending, extending,
removing, popping and slice assignment.

For example, each of the following are propagated efficiently.



Properties

33

self.myList = [1, 2, 3, 4, 5]
self.myList[ 3 ] = 8
self.myList.append( 6 )
self.myList.extend( [7, 8] )
self.myList += [9, 10]
self.myList.pop()
self.myList.remove( 7 )
self.myList[ 2 : 5 ] = [11, 12]
del self.myList[ 2 ]
del self.myList[ 1 : 4 ]

Arrays can not only contain aliased data types, but may also be aliased themselves. For more details, see
“Alias of Data Types” on page 35 .

5.1.2.2. FIXED_DICT Data Type

The FIXED_DICT data type allows you to define dictionary-like attributes with a fixed set of string keys.
The keys and the types of the keyed values are predefined.

The declaration of a FIXED_DICT is illustrated below:

<Type> FIXED_DICT

  <Parent> ParentFixedDictTypeDeclaration </Parent>
   <Properties>

    <field>
      <Type> FieldTypeDeclaration </Type>
     </field>

   </Properties>

  <AllowNone> true|false </AllowNone> 1

</Type>

FIXED_DICT data type declaration

1 Default is false. If set to true, then None may be used as the value of the whole dictionary.

This data type may be declared anywhere a type declaration may appear, e.g., in <res>/scripts/
entity_defs/alias.xml 1, in <res>/scripts/entity_defs/<entity>.def, as method call argu-
ments, etc.

The code excerpt below shows the declaration of a FIXED_DICT attribute:

<root>
  <TradeLog> FIXED_DICT
    <Properties>
      <dbIDA>
        <Type>      INT64                 </Type>
      </dbIDA>
      <itemsTypesA>
        <Type>      ARRAY <of> ITEM </of> </Type>      
      </itemsTypesA>

1For details on this file's grammar, see the document File Grammar Guide's section alias.xml

#dest=
#dest=


Properties

34 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

      <goldPiecesA>
        <Type>      GOLDPIECES            </Type>
      </goldPiecesA>
    </Properties>
  </TradeLog>
</root>

fantasydemo/res/scripts/entity_defs/alias.xml

Instances of FIXED_DICT can be accessed and modified like a Python dictionary, with the following excep-
tions:

• Keys cannot be added or deleted

• The type of the value must match the declaration.

For example:

if entity.TradeLog[ "dbIDA" ] == 0:
  entity.TradeLog[ "dbIDA" ] = 100

Example of FIXED_DICT usage in script

Alternatively, it also supports the following:

if entity.TradeLog.dbIDA == 0:
  entity.TradeLog.dbIDA = 100

Example of FIXED_DICT usage as struct in script

Note

Using struct syntax can cause problems with name collisions with FIXED_DICT meth-
ods.

A FIXED_DICT instance can be set using a Python dictionary that has a superset of the keys required. Any
unnecessary keys in the dictionary are ignored.

For example:

entity.TradeLog = { "dbIDA" : 100, "itemsTypesA" : [ 1, 2, 3 ], 
     "goldPiecesA" : 1000, "redundantKey" : 12345 }

Example of FIXED_DICT instance being set using a Python dictionary

Changes to FIXED_DICT values are propagated efficiently wherever a change to the whole property would
be propagated, i.e., to ghosts and to clients — including ownClients.

The default value of a FIXED_DICT data type can be specified at the entity property level. For example:

<root>
  <Properties> FIXED_DICT



Properties

35

    <someProperty>
      <Type>  TradeLog    </Type>    <!-- From last example -->
      <Default>
        <dbIDA>  0  </dbIDA>
        <itemsTypesA>
          <item>  101  </item>
          <item>  102  </item>
        </itemsTypesA>
        <goldPiecesA>  100  </goldPiecesA>
      </Default>
    </someProperty>
  </Properties>
</root>

Example of specifying default value of a FIXED_DICT data type in an entity definition file

If the <Default> section is not specified, then the default value of a FIXED_DICT data type will depend on
the value of the <allowNone> tag, as described below:

Table . Default values for a FIXED_DICT without a <Default> section.

<AllowNone> FIXED_DICT default value

True Python None object.

False Python dictionary with keys as specified in the type definition.

Each keyed value will have a default value according to its type. For example, a
keyed value of INT type will have a default value of 0.

5.1.3. Custom User Types

There are two ways to incorporate user-defined Python classes into BigWorld entities: wrapping a
FIXED_DICT data type, or implementing a USER_TYPE.

The FIXED_DICT data type supports being wrapped by a user-defined Python type. When a FIXED_DICT
is wrapped, BigWorld will instantiate the user-defined Python type in place of a FIXED_DICT instance. This
enables the user to customise the behaviour of a FIXED_DICT data type.

The type system can also be arbitrarily extended with the USER_TYPE type. Unlike a wrapped FIXED_DICT
type, the structure of a USER_TYPE type is completely opaque to BigWorld. As such, the implementation of
a USER_TYPE type is more involved. The implementation of the type operations is performed by a Python
object (such as an instance of a class) written by the user. The Python object serves as a factory and serialiser
for instances of that type, and it can choose to use whatever Python representation of that type it sees fit —
it can be as simple as an integer, or it can be an instance of a Python class.

For more details on custom user types, see “Implementing Custom Property Data Types” on page 45 .

5.1.4. Alias of Data Types

BigWorld also allows aliases of types to be created. Aliases are a concept similar to a C++ typedef, and are
listed in the XML file <res>/scripts/entity_defs/alias.xml. The format is described below:

<root>
  ... other alias definitions ...
  <ALIAS_NAME> TYPE_TO_ALIAS [<Default> Value </Default> 1 ] </ALIAS_NAME>
</root>



Properties

36 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

<res>/scripts/entity_defs/alias.xml — Data type alias declaration syntax

1 For details, see “Default Values” on page 37 .

Some examples of useful aliases are described in the list below:

Table . Entity Types

Alias Maps to Description

ANGLE FLOAT32 An angle measured in radians.

BOOL INT8 A Boolean type (encoded as zero=false, non-zero=true).

Mapped to INT8, the smallest BigWorld type.

INFO UINT16 Element of information about a mission.

MISSION_STATS ARRAY <of> INFO
</of>

Array of mission information data elements (i.e., INFO type alias).

Note that this is an aliased array, and the type of its elements is an aliased type.

OBJECT_ID INT32 Handle to another entity. The name makes clear the property contains a handle to an
entity.

STATS_MATRIX ARRAY <of>
MISSION_STATS </
of>

Matrix of mission information data elements (i.e., INFO type alias).

Note that this is an aliased array, and the type of its elements is another aliased array.

Using the syntax for alias definition to the aliases describe above, we have the following file:

<root>

  <!-- Aliased data types --> 
  <OBJECT_ID>  INT32   </OBJECT_ID>
  <BOOL>       INT8    </BOOL>
  <ANGLE>      FLOAT32 </ANGLE>
  <INFO>       UINT16  </INFO>

  <!-- Aliased arrays ?
  <MISSION_STATS>  ARRAY <of> INFO           </of> </MISSION_STATS>
  <STATS_MATRIX>   ARRAY <of> MISSION_STATS  </of>  </STATS_MATRIX>

</root>

<res>/scripts/entity_defs/alias.xml — Definition of data type alias

With aliases, one can also define custom Python data types, which have their own streaming semantics on the
network. We declare these types in the file <res>/scripts/entity_defs/alias.xml file as follows:

<root>
  <ALIAS_NAME> 
    USER_TYPE 
    <implementedBy> UserDataType.instance </implementedBy>
  </ALIAS_NAME>
</root>

<res>/scripts/entity_defs/alias.xml — Custom Python data type declaration syntax

For more details on this mechanism, see “Implementing Custom Property Data Types” on page 45 .



Properties

37

5.2. Server to Client bandwidth usage of Property updates

When the server sends a property update to the client, it generally includes a byte representing the length of
the data being streamed. However, if the server is able to determine that the size of a particular property is
always the same when streamed to the client, that byte can be eliminated.

The server will consider a property to be a fixed-size type if it is any combination of:

• A Primitive Type with a constant size. See “Primitive Types” on page 30 .

• An ARRAY or TUPLE with a declared size and containing a fixed-size type. See “ARRAY and TUPLE
Types” on page 32 .

• A FIXED_DICT which cannot be None, contains only fixed-size types, and which is not wrapped with a
class implementing addToStream. See “FIXED_DICT Data Type” on page 33  and “Implementing
Custom Property Data Types” on page 45 .

Slice assignment of ARRAY elements and updates to individual ARRAY or TUPLE elements or FIXED_DICT
values do not benefit from this optimisation for fixed-size types.

You can optimise your server to client bandwidth usage by ensuring that values which are updated together
are fixed-size, and bundled into FIXED_DICT structures. If the entire FIXED_DICT is updated at once, then
only a single message needs to be sent, without a byte indicating the length of the message.

Properties that are generally updated individually are better off not being bundled into FIXED_DICTs, as
updating an individual element of a FIXED_DICT uses more bandwidth than updating a top-level property.

Where possible, avoid propagating variable-sized properties to the client. The cost of a variable-sized prop-
erty is only one byte though, so for example an ARRAY should have its size specified only if it is always that
long, rather than to indicate the maximum interesting length.

One other thing to note is that there is a limited number of identifiers for properties to propagate to the client,
and if you have more properties for a given entity type than this, the excess properties will be sent slightly
less efficiently (generally one byte more per value update) and as if they were variably-sized. The server
prefers to send large fixed-size or variably-sized properties using this 'overflow' mechanism.

The dumpEntityDescription DBMgr Configuration Option can be used to examine the client to server
bandwidth requirements of your entity properties and methods. See the document Server Operations Guide's
section “DBMgr Configuration Options”.

5.3. Default Values

When an entity is created, its properties are initialised to their default values. Default values can be overrid-
den at the property level (in the entity definition file2) or at the type level (in alias.xml3).

The default value for each type and the syntax for overriding it are described below:

• ARRAY — Default: []

Example:

<Default> 1

   <item> Health potion </item>
   <item> Bear skin     </item>
   <item> Wooden shield </item>
</Default>

2For details, see the introduction to this chapter.
3For details on this file's grammar, see the document File Grammar Guide's section alias.xml.

#dest=
#dest=
#dest=
#dest=


Properties

38 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

1 Constructs the equivalent Python list [ 'Health potion', 'Bear skin', 'Wooden shield' ].

• BLOB — Default: ''

Example:

<Default> SGVsbG8gV29ybGQhB </Default> 1

<!-Hello World! -->

1 BASE6-encoded string value must be specified.

• FIXED_DICT

For details, see “FIXED_DICT Data Type” on page 33 .

• FLOAT32 — Default: 0.0

Example:

<Default> 1.234 </Default>

Note

The MySQL database may have less precision than specified here. If so, this value
should be modified to match the precision of the database.

• FLOAT64 — Default: 0.0

Example:

<Default> 1.23456789 </Default>

Note

The MySQL database may have less precision than specified here. If so, this value
should be modified to match the precision of the database.

• INT8, INT16, INT32, INT64 — Default: 0

Example:

<Default> 99 </Default>

• MAILBOX — Default: None

Default value cannot be overridden.

• PYTHON — Default: None

Example:



Properties

39

<Default>
  { "Strength": 90, "Agility": 77 }
</Default>

• STRING — Default: ''

Example:

<Default> Hello World! </Default> 1

1 Value must be specified without quotes.

• TUPLE — Default: ()

Example: See ARRAY data type

• UINT8, UINT16, UINT32, UINT64 — Default: 0

Example:

<Default> 99 </Default>

• UNICODE_STRING — Default: u''

Example:

<Default> Hello World! (this is a UTF-8 string) </Default> 1

1 Value must be specified without quotes, and must be encoded as UTF-84.

• USER_TYPE — Default: Return value of the user-defined defaultValue() function.

Example:

<Default>
   <intVal>  100       </intVal>
   <strVal>  opposites </stringVal>
   <dictVal>
      <value>
         <key>   good    </key>
         <value> bad     </value>
      </value>
    </dictValue>
</Default>

• VECTOR2 — Default: PyVector of 0.0 of the appropriate length.

Example:

<Default> 3.142 2.71 </Default>

4For more details on encodings, see Character Sets and Encodings on page 117 .



Properties

40 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• VECTOR3 — Default: PyVector of 0.0 of the appropriate length.

Example:

<Default> 3.142 2.71 1.4 </Default>

• VECTOR4 — Default: PyVector of 0.0 of the appropriate length.

Example:

<Default> 3.142 2.71 1.4 3.8 </Default>

5.4. Data Distribution
Properties represent the state of an entity. Some states are only relevant to the cell, others only to the base,
and yet others only to the client. Some states, however, are relevant to more than one of these.

Each property then has a distribution type that specifies to BigWorld which execution context (cell, base, or
client) is responsible for updating the property, and where to propagate its value within the system.

Data distribution is set up by specifying the sub-section <Flags> of the section <Properties> in the file
<res>/scripts/entity_defs/<entity>.def.

The bit flags available are defined in bigworld/src/lib/entitydef/data_description.hpp, and
are described in the list below:

• DATA_BASE

Required flags: N/A — Excluded flags: DATA_GHOSTED — Master value on: Base

Data will be updated on the base, and will not be available on the cell.

• DATA_GHOSTED

Required flags: N/A — Excluded flags: DATA_BASE — Master value on: Cell

Data will be updated on the cell, and will be ghosted on other cells.

This means that it is safe to read the value of this property from another entity, because BigWorld safely
makes it available even across cell boundaries.

• DATA_OTHER_CLIENT

Required flags: DATA_GHOSTED — Excluded flags: N/A — Master value on: Cell

Data will be updated on the cell, and made available to clients who have this entity in their AoI.

This makes the property safe to read from the client for any entity, except for that client's player avatar
entity. This flag is often combined with DATA_OWN_CLIENT to create a property that is distributed to all
clients.

• DATA_OWN_CLIENT

Required flags: N/A — Excluded flags: N/A — Master value on: Base, if DATA_BASE is set. Otherwise,
on cell.

Data is propagated to client owning this entity.

This only makes sense with player entities.



Properties

41

5.4.1. Valid Data Distribution Combinations

The list below describes the valid combinations of the above bit flags:

• ALL_CLIENTSA

Available to: Other cells, Cell, Own client, Other clients

Property is available to all entities on cell and client.

Corresponds to setting both OWN_CLIENT and OTHER_CLIENTS flags.

Examples include:

• The name of a player.

• The health status of a player or a creature.

• BASE

Available to: Base

Property is only available on the base.

Examples include:

• List of members of a chat room.

• Items in a character's inventory.

• BASE_AND_CLIENT

Available to: Base, Own client

Property is available on the base and on the owning client. Corresponds to setting both OWN_CLIENT and
BASE flags.

Note

Properties of this type are only synchronised when the client entity is created. Nei-
ther the client nor the base is automatically updated when property changes. Meth-
ods must be used to propagate new value, which is simple, since only one player
needs to receive it.

• CELL_PRIVATE

Available to: Cell

Property is only available to its entity, and only on cell.

Examples include:

• Properties of an NPCs 'thoughts' in AI algorithms.

• Player properties relevant to game play, but dangerous to allow players to see (e.g., healing time after
battle).

• CELL_PUBLIC

Available to: Other cells, Cell



Properties

42 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Property is available only on the cell, and is available to other entities.

Examples include:

• The mana level of a player (which can be seen only by enemies, not by other players).

• The call sign for grouping from enemy NPC.

• CELL_PUBLIC_AND_OWNA

Available to: Other cells, Cell, Own client

Property is available to other entities on the cell, and to this one on both the cell and the client.

Unlike OWN_CLIENT, this data is also ghosted, and therefore available to other entities on the cell.

• EDITOR_ONLY

Available to: World Editor

This value may be useful when using BigWorld.fetchEntitiesFromChunks from a BaseApp. It could
be used to decide programmatically whether a particular entity should be loaded.

For example, you may associate a level of difficulty with each entity, so entity will only be loaded if the
mission's level of difficulty is high enough.

• OTHER_CLIENTSA

Available to: Other cells, Cell, Other clients

Property is available from client to entities that are not this player's avatar. Also available on cell to other
entities.

Examples include:

• The state of dynamic world items (e.g., doors, loot containers, and buttons).

• The type of a particle system effect.

• The player who is currently sitting on a seat.

• OWN_CLIENTA

Available to: Cell, Own client

Property is only available to this entity, on both the cell and the client.

Examples include:

• The character class of a player.

• Number of experience points for a player.

A — When properties with this distribution flag are updated by server, an implicit method is called on client. For details,
see “Client callbacks on property changes” on page 69 .

5.4.2. Using Distribution Flags

When choosing a distribution flag for a property, consider the points described below:

• Which methods need the property?



Properties

43

You have to make the property available on an execution context (cell, base, or client) if that context has
a method that manipulates the property.

• Does this property need to be accessed by other entities?

This could include methods being called to access its value. If this is the case, we need to make the property
ghosted.

When doing this, remember that the ghosted entities' properties may be a little 'lagged', i.e., they may not
represent the exact state of an entity at a given time. Also, remember that other entities can only read the
property; only the entity that owns the property may change it.

• Is the client interested in this value directly?

Client/server bandwidth is scarce, so the number of properties on the client needs to be minimised.

Sometimes, a group of properties can be maintained on the cell and only a derived additional property
needs to be sent to the client. For example, a client part would probably not need to know that a combi-
nation of six AI state variables are causing a guard to be angry; they would however need to know the
derived value that the guard is brandishing an axe.

• Could a player cheat by seeing this property?

If so, then care must be taken about sending it to the client.

• There can only be one master value of any property.

The master value must reside on either the base or cell. Consequently, if the same property is available
on both the base and the cell, the other holder of the property needs to have the value propagated to it
via a method.

5.4.3. Data Propagation

Data propagation occurs when the entity is first created. Subsequent modifications to properties will only be
local to the component, except when the modification occurs in a CellApp, in which case the change will be
automatically propagated to all interested parties. For example, CELL_PUBLIC properties are propagated to
all other CellApps that have a ghost of the entity, OTHER_CLIENTS properties are propagated to all clients
that have the entity in their AoI, and so on.

When changing the value of a property in a component other than a CellApp, the change can be manually
propagated using remote method calls. For details, see Methods on page 59 .

5.4.3.1. Property Callbacks On Ghosted Entities

When modifying a property that will be propagated to an entity's ghost on an adjacent cell, that is for
CELL_PUBLIC, OTHER_CLIENTS and ALL_CLIENTS properties, optional callbacks can be implemented on
the cell entity class to react to those property updates for those ghosted cell entities. They are similar to the
client-side callbacks:

• @bwdecorators.callableOnGhost

def set_<property name>( self, oldValue )

This method is called when the property has changed. The oldValue parameter is the old value of the
property, the new value has already been set.

If the change is a nested and the setNested_<property name> is implemented, this method will not
be called. Similarly, if the change is a slice change and setSlice_<property name> is implemented,
this method will not be called.



Properties

44 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• @bwdecorators.callableOnGhost

def setNested_<property name>( self, changePath, oldValue )

This method is called for nested property changes, for example when a change occurs for an ARRAY element
or a FIXED_DICT sub-property. If this method does not exist, the set_<property name> callback will
be called instead, if it exists.

The changePath parameter contains the path to the change, for ARRAY values, the index in the array is
used, for FIXED_DICT, the string of the key is used as a path component.

For example, suppose we have the following property definition:

<myProperty>
    <Type> ARRAY <of> 
        FIXED_DICT 
            <Properties>
                <a>
                    <Type> ARRAY <of> INT32 </Type>
                <a/>
                <b>
                    <Type> STRING </Type>
                </b>
            </Properties>
        </of>
    </Type>
    <Flags> CELL_PUBLIC </Flags>
</myProperty>

Suppose following statement on the cell entity is run:

>>> entity.myProperty[3].a[5] = 8

This would result in a call to setNested_myProperty, with changePath set to:

[3, 'a', 5]

• @bwdecorators.callableOnGhost

def setSlice_<property name>( self, changePath, oldValue )

This method is called for slice changes to ARRAY properties. If this method does not exist, the
set_<property name> callback will be called instead, if it exists.

Examples of slice changes are below:

>>> entity.myProperty.append[3].a.append( 10 )
>>> entity.myProperty[3:9] = [50, 6, 9, 10]

The changePath parameter contains the path to the change. Refer the documentation for
setNested_<property name> above. The new slice is described by start and end indices that are the
last element in the changePath list.

Note that these callbacks are never called on the real cell entity. As they are callable on ghosted cell entities,
they must be decorated with the callableOnGhost decorator function from the bwdecorators module.



Properties

45

5.4.3.2. Forcing Data Propagation for Python and Custom User Types

Changes to properties of PYTHON and custom user types are not automatically propagated, unless the prop-
erty is reassigned.

This behaviour mainly affects composite Python types like dictionaries, arrays, and classes, because modifi-
cations to the object do not cause data propagation unless the property is reassigned to itself.

For example, if entity e has the property as illustrated below:

<pythonProp>
  <Type> PYTHON </Type>
  ...
</pythonProp>

Assigning a new value to pythonProp will cause data propagation:

e.pythonProp = { 'gold': 100 }

However, modifying the value will not cause data propagation:

e.pythonProp[ 'gold' ] = 50
e.pythonProp[ 'arrows' ] = 200

Different parts of the entity will see different values for pythonProp, unless data propagation is manually
triggered by reassigning the property back to itself:

e.pythonProp = e.pythonProp

5.5. Implementing Custom Property Data Types

Custom data types are useful for the implementation of data structures with complex behaviour that is shared
between different components, or that must be attached to cell entities (in which case they must be able to
be transferred from one cell to another).

5.5.1. Wrapping a FIXED_DICT Data Type

By default, the FIXED_DICT data type behaves like a Python dictionary. This behaviour can be changed by
replacing the dictionary-like FIXED_DICT type with another Python type (referred to as a wrapper type in
this document).

To do so, specify a type converter object in the <implementedBy> section in the FIXED_DICT type decla-
ration. For example:

<Type> 
  FIXED_DICT
  <implementedBy> CustomTypeConverterInstance  </implementedBy>
  <Properties> ... </Properties>
  ...
</Type>

Declaration of a Wrapped FIXED_DICT Data Type



Properties

46 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

CustomTypeConverterInstance must be a Python object that converts between FIXED_DICT instances
and wrapper instances.

It must implement the following methods:

Table . Methods that should be implemented by wrapper type.

Method Description

addToStream( self, obj ) Optional method that converts a wrapper instance to a string suitable for transmitting over
the network.

The obj parameter is a wrapper instance. This method should return a string representation
of obj. Typically, this is done using the cPickle module.

If this method is present, then createFromStream must also be.

If this method is not present, then wrapper instances are transmitted over the network by first
converting them to FIXED_DICT instances using the getDictFromObj method, and then
recreated at the receiving end using the createObjFromDict method.

createFromStream( self, stream ) Optional method that creates an instance of the wrapper type from its string network form.

The stream parameter is a Python string obtained by calling the addToStream method.
This method should return a wrapper instance constructed from the data in stream.

If this method is present, then addToStream must also be provided.

createObjFromDict( self, dict ) Method to convert a FIXED_DICT instance to a wrapper instance.

The dict parameter is a FIXED_DICT instance. This method should return the wrapper in-
stance constructed from the information in dict.

getDictFromObj( self, obj ) Method to convert a wrapper instance to a FIXED_DICT instance.

The obj parameter is a wrapper instance. This method should return a Python dictionary (or
dictionary-like object) that contains the same set of keys as a FIXED_DICT instance.

isSameType( self, obj ) Method to check whether an object is of the wrapper type.

The obj parameter in an arbitrary Python object. This method should return True if obj is a
wrapper instance.

5.5.1.1. Example of Wrapping FIXED_DICT with a Class

It is often desirable to wrap a FIXED_DICT data type with a class to facilitate object-oriented programming.

import cPickle

class MyCustomType( object ):          # wrapper type
  def __init__( self, dict ):
    self.a = dict[ "a" ]
    self.b = dict[ "b" ]
  ...                    # other MyCustomType methods

class MyCustomTypeConverter( object ):    # type converter class
  def getDictFromObj( self, obj ):
    return { "a": obj.a, "b": obj.b }
  
  def createObjFromDict( self, dict ):
    return MyCustomType( dict )

  def isSameType( self, obj ):
    return isinstance( obj, MyCustomType )

  def addToStream( self, obj ):          # optional
    return cPickle.dumps( obj )



Properties

47

  def createFromStream( self, stream ):    # optional
    return cPickle.loads( stream )

instance = MyCustomTypeConverter()    # type converter object

<res>/scripts/common/MyCustomTypeImpl.py — Wrapper type and type converter object

<Type> 
  FIXED_DICT
  <implementedBy> MyCustomTypeImpl.instance  </implementedBy>
  <Properties>
    <a> ... </a>
    <b> ... </b>
  </Properties>
  ...
</Type>

Excerpt of a wrapped FIXED_DICT type declaration

The above example makes a FIXED_DICT type behave as a class with members a and b, instead of as a
dictionary with the same keys.

The drawback with the above example is that member updates are not automatically propagated to other
components. For example, if the above data type is used in an entity attribute called custType, the following
script code would only set the value of the attribute for the local copy of the entity:

e.custType.a = 100
e.custType.b = 200

To ensure that all copies of the entity e have the updated values, the attribute must be set to a different
instance of MyCustomType with the updated values:

e.custType = MyCustomType( { "a": 100, "b": 200 } )

Alternatively, MyCustomType can be implemented using descriptors that reference the original
FIXED_DICT instance:

class MemberProxy( object ):              # descriptor class
  def __init__( self, memberName ):
    self.memberName = memberName

  def __get__( self, instance, owner ):
    return instance.fixedDict[ self.memberName ]

  def __set__( self, instance, value ):
    instance.fixedDict[ self.memberName ] = value

  def __delete__( self, instance ):
    raise NotImplementedError( self.memberName )

class MyCustomType( object ):            # wrapper class
  a = MemberProxy( "a" )
  b = MemberProxy( "b" )

  def __init__( self, dict ):
    self.fixedDict = dict



Properties

48 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

  ...                      # other MyCustomType methods

class MyCustomTypeConverter( object ):      # type converter class
  def getDictFromObj( self, obj ):
    return obj.fixedDict        # must return original instance
  
  def createObjFromDict( self, dict ):
    return MyCustomType( dict )

  def isSameType( self, obj ):
    return isinstance( obj, MyCustomType )

  # addToStream and createFromStream cannot be implemented

<res>/scripts/common/MyCustomTypeImpl.py — Wrapper type and type converter object using descriptors

In the above example, MyCustomType references the original FIXED_DICT instance in its fixedDict mem-
ber. Access to members a or b will be redirected via the descriptor class to the fixedDict member. As up-
dates to FIXED_DICT instances are automatically propagated to other components, updates to members a
and b are also automatically propagated.

The drawback with this approach is that custom streaming is not possible. If the addToStream and cre-
ateFromStream methods are implemented, then the custom object is created directly from the stream. Since
it is not possible to instantiate a FIXED_DICT object in Python script, it will not be possible for the custom
object to reference a FIXED_DICT object that will propagate partial changes.

5.5.1.2. Implementing a USER_TYPE Data Type

The USER_TYPE data type predates the FIXED_DICT data type, and much of its functionality can be achieved
by wrapping a FIXED_DICT data type. However, USER_TYPE data type additionally allows customising its
representation as a <DataSection>.

A USER_TYPE data type consists of the following pieces:

• A declaration of the Python instance implementing the USER_TYPE data type. For example:

<Type> USER_TYPE <implementedBy> UserType.instance </implementedBy> </Type>

<res>/scripts/entity_defs/<entity>.def — User type declaration syntax

However, it is recommended to declare a USER_TYPE data type in <res>/scripts/entity_defs/
alias.xml 5 to give it a name that we can use in the entity definition files 6 (named <res>/scripts/
entity_defs/<entity>.def).

• A class that defines methods to read and write this data type from various places.

• A module, containing the above class, and an instance of this class, which will be used to serialise and
unserialise the custom data type.

The custom data type might also declare a Python class that represents the type at runtime. A Python list, a
dictionary, or some other native Python data type might also represent it.

The class we implement provides methods to serialise whatever Python type we use to represent a concept.
This means that we can transmit the class over the network and serialise it to a database, simply by writing
the appropriate methods in this class.

5For details on this file's grammar, see the document File Grammar Guide's section alias.xml
6For an example of declaration of aliases for data types, see “Alias of Data Types” on page 35 .

#dest=
#dest=


Properties

49

These methods are described in the list below:

Table . Custom data type serialisation methods.

Method Description

addToStream( self, obj) Converts the Python object obj into a string representation to be placed onto the network,
and return that string. It does the opposite of createFromStream. The struct library from
Python is useful in performing this task.

For example, if your type contains a single INT32 member, then addToStream could be im-
plemented as:

def addToStream( self, obj ):
 return struct.pack( "i", obj )

createFromStream( self, stream ) Creates a Python object from the string passed in through stream. It does the opposite of
addToStream.

The length of the stream must be checked before trying to unpack it.

For example, if your type contains a single INT32 member, then createFromStream could
be implemented as:

def createFromStream( self, stream ):
  if len(stream) != 4: # one integer
    raise "Error: string has wrong length"
  else:
    return struct.unpack( "I", stream )

addToSection( self, obj, section ) Adds a representation of obj to the section <DataSection>.

It is used for persisting properties into the database. Hence, if a property is not persistent,
this method does not have to be implemented.

createFromSection( self, section ) Creates and returns a Python object from its persisted representation in section <DataSec-
tion>.

It is used for persisting properties into the database, and parsing default values from <res>/
scripts/entity_defs/<entity>.def files.

You should always implement this method, even if you do not implement addToSection.

fromStreamToSection( self, stream,
section )

Converts data from a stream representation (a string) to a <DataSection> representation
in section. It can be implemented as follows:

def fromStreamToSection( self, stream,
 section ):
  o = self.createFromStream( stream )
  self.addToSection( o, section ) 

It can also be implemented more efficiently (for instance if the <DataSection> representa-
tion is very similar to the stream representation). For example:

section.asBlob = stream

fromSectionToStream( self, section
)

Converts data from a <DataSection> representation in section to a stream representa-
tion, and returns it.

It can be implemented as follows:

def fromSectionToStream( self, section ):
  o = self.createFromSection( section )



Properties

50 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Method Description

  return self.addToStream( o ) 

It can also be implemented more efficiently (for instance if the <DataSection> representa-
tion is very similar to the stream representation). For example:

return section.asBlob

defaultValue( self ) Returns a reasonable default value for this data type.

It is used when there is no default value specified when this data type is used in a property.

We place a class implementing these methods into a module in the directory <res>/scripts/common, and
create an instance variable as an instance of this class.

For example, we may define a module called MyCustDataType.py, as illustrated below:

class MyCustDataType:
  def addToStream( self, obj ):
    ...
  def createFromStream( self, stream ):
    ...
  def addToSection( self, obj, section ):
    ...
  def createFromSection( self, section ):
    ...
  def fromStreamToSection( self, stream, section ):
    ...
  def fromSectionToStream( self, section ):
    ...
  def defaultValue( self ):
    ...
instance = MyCustDataType()

<res>/scripts/common/MyCustDataType.py — Serialisation methods

If the property is persistent, and stored in a MySQL database, then an additional method has to be imple-
mented. This method will declare the binding of the data into the database. For more details, see The Database
Layer on page 97 .

The variable instance is the object that performs the manipulation of this data type by BigWorld. In the aliases
file <res>/defs/alias.xml, we would include the following definition:

<root>
  ...
  <MY_CUSTOM_DATA_TYPE> 
    USER_TYPE
    <implementedBy> MyCustDataType.instance </implementedBy>
  </MY_CUSTOM_DATA_TYPE>

<res>/defs/alias.xml — Definition of MY_CUST_DATA_TYPE

5.6. Volatile Properties

Some properties are updated more often than others, and almost all entities have a set of properties that
need to be handled specially due to this. These properties are called volatile properties, and are pre-defined
by the BigWorld engine.



Properties

51

Typically, properties flagged with OTHER_CLIENTS (or ALL_CLIENTS) are only sent to the appropriate
client applications when the property changes. These changes are sent reliably. Properties that are deemed
to be volatile are sent to the client each time that entity is considered by an AoI (via its priority queue mech-
anism). These are sent unreliably as a newer value will be sent the next time that entity is considered. For
more details on how the AoI priority queue works, see “Player AoI Updates” on page 171 .

The default volatile properties defined by BigWorld are outlined below:

Table . BigWorld's pre-defined volatile properties.

Property Description

position The (x,y,z) position of the entity. Represented in Python as a TUPLE of three floats.

yaw

pitch

roll

Three extra volatile properties, which are typically used for the direction an entity is facing, but may be used for other pur-
poses. They still must, however, have the ranges of the corresponding element of a direction:

(-pi,pi) for yaw

(-pi/2,pi/2) for pitch

(-pi,pi) for roll

These properties are updated with an optimised protocol used between the client and the server, in order
to minimise bandwidth.

The volatile properties are listed separately to the normal properties in the file <res>/scripts/
entity_defs/<entity>.def.

Each entity can decide which of these volatile properties are automatically updated. Additionally, they can
have a priority attached to them. This priority determines a distance from the entity above which the property
is no longer sent.

The syntax is as follows:

<root>
  ...
  <Volatile>
    <position/> | <position>  float  </position> 
    <yaw/>      | <yaw>       float  </yaw> 
    <pitch/>    | <pitch>     float  </pitch> 
    <roll/>     | <roll>      float  </roll> 
  </Volatile>
  ...

<res>/scripts/entity_defs/<entity>.def — Declaration of volatile properties

This is how the volatility status and priority of a property are interpreted:

• If a volatility status is not specified, then it will never be updated (BigWorld.VOLATILE_NEVER).

• If a volatility status is specified:

• If a priority is not specified, then property will always be updated, regardless of distance from entity
(BigWorld.VOLATILE_ALWAYS).

• If a priority is specified, then the value is used as the maximum distance from entity (in metres) for
which property will still be updated.



Properties

52 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note

The volatile distance for pitch cannot be less than that of yaw and the volatile distance
for roll cannot be less than that of pitch.

Supposing an entity the volatile properties as defined below:

<root>
  ...
  <Volatile>
    <position/>   
    <yaw>    30.0  </yaw> 
    <pitch>  25.0  </pitch> 
  </Volatile>
  ...
</root>

<res>/scripts/entity_defs/<entity>.def — Example definition

For the above example, we have the following for each property:

• position — Always updated (BigWorld.VOLATILE_ALWAYS)

• yaw — Updated up to a distance of 30.0 metres.

• pitch — Updated up to a distance of 25.0 metres.

• roll — Never updated (BigWorld.VOLATILE_NEVER)

Note

Only non-moving entities should be defined without volatile properties.

Each position or direction change of an entity without any volatile properties is sent to
the necessary clients in a detailed but less efficient way. This allows an entity's position
to be correct when it is occasionally moved (e.g., a chair has been slightly moved). If
this happen consistently, it can consume a lot of server to client bandwidth.

5.7. LOD (Level of Detail) on Properties

Sometimes bandwidth usage can be optimised by not distributing information to clients that are distant. We
can do this by attaching a <DetailLevel> tag to a property. This tag determines the distance after which
property changes will not be sent to the client.

Note that this is purely an optimisation for the property. This option should only be used if bandwidth usage
is proven to be too high. If this feature is enabled for the property, then you must test it very carefully to
check if the result achieved in terms of game play is what you expected.

The definition of the LOD (level of detail) of a property in the file <res>/scripts/entity_defs/
<entity>.def is described below:

<root>
  ...
  <Properties>



Properties

53

    ...
    <modelNumber>
      ...
      <DetailLevel> NEAR </DetailLevel>
    </modelNumber>
    ...

<res>/scripts/entity_defs/<entity>.def — Declaration of LOD for property

The example above declared a LOD labelled NEAR for the property. The actual value of NEAR is defined in
the sub-section <level> of the section <LodLevels> in the entity's file.

For example, to subdivide the AoI into the ranges labelled NEAR, MEDIUM, and FAR (with everything further
than FAR being transmitted whenever entities are within each other's AoI), the entity's definition file will
include the lines below:

<root>
  ...
  <LODLevels>
    <level>  20  <label> NEAR    </label> </level>
    <level> 100  <label> MEDIUM  </label> </level>
    <level> 250  <label> FAR     </label> </level>
  </LODLevels>
  ...
</root>

<res>/scripts/entity_defs/<entity>.def — Definition of labels for LODs

The LODs specified for the entity in the example file above are illustrated below:

Location of LOD boundaries relative to the entity

Detail levels are inherited from parent definition files. Any level with the same label as a parent will modify
that level, and any new levels will be added.

There is currently a limit of six levels of detail for each entity type

5.7.1. LOD and Hysteresis

In addition to its parameter <label>, the sub-section <level> can also have <hyst> parameter.

It is defined as illustrated in the example below:

<root>
  ...
  <LODLevels>
    <level>  20 <label> NEAR   </label> <hyst>  4 </hyst> </level>
    <level> 100 <label> MEDIUM </label> <hyst> 10 </hyst> </level>



Properties

54 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

    <level> 250 <label> FAR    </label> <hyst> 20 </hyst> </level>
  </LODLevels>
  ...

<res>/scripts/entity_defs/<entity>.def — Definition of hysteresis regions

This parameter defines a hysteresis region starting from the LOD's outer boundary and moving outwards.
It prevents frequent changes in the LOD of a property, which saves significant processing time on the cell,
as properties do not have to change their priorities often. In order to do this, the <hyst> specifies a buffer
region around the boundary of a LOD level, which an entity must pass through completely before changing
to a lower LOD.

The declaration of the <hyst> parameter is optional, and if not declared, it will default to 10 metres.

As an example, consider a stationary entity, and another entity travelling through points A, B, C, D, E, and
finally back to A, as illustrated in the diagram below:

Entity moving around LODs of another entity

We consider the minimum LOD of properties that will be propagated from the moving entity to the stationary
entity, as listed in the table below:

Table . Entity moving around LODs of another entity.

Point LOD Reason

A NEAR Unaffected by hysteresis.

B NEAR Entity has moved from NEAR to MEDIUM, but not yet completely through the hysteresis.

C MEDIUM Entity has moved from NEAR to MEDIUM, and completely through the hysteresis.

D MEDIUM Entity is still in MEDIUM.

E MEDIUM Entity is still in MEDIUM.

A NEAR Entity has moved from MEDIUM to NEAR.

In the example above, we have the following regarding the change of LOD for the moving entity:

• The change of LOD for the moving entity from NEAR to MEDIUM occurs at a distance of 24 metres from the
stationary entity (20 metres as defined for the NEAR LOD, plus 4 metres for its hysteresis). If no <hyst>



Properties

55

parameter were specified, the change would happen at 30 metres (since hysteresis would then default to
10 metres).

• The change of LOD for the moving entity from MEDIUM to NEAR occurs at 20 metres from the stationary
entity (since hysteresis does not affect moving to a higher LOD).

5.8. Bandwidth Optimisation: Send Latest Only

When an OTHER_CLIENTS property of an entity changes, an event object is created and added to the event
history. This event history is used when updating client applications that have this entity in their AoI. When
this entity is considered, any events that have been added since the last time this entity was considered are
sent to the client. There is the potential for multiple changes to a single property to be sent in a single update.
For more details on how the AoI priority queue works, see “Player AoI Updates” on page 171 .

If the SendLatestOnly flag is set on a property, only the latest change is kept in the event history. This
avoids sending multiple changes. This can save bandwidth being sent to the client and can save some memory
on CellApps if a property is changed frequently.

This value is false by default.

Client methods also have this flag. See “Bandwidth Optimisation: Send Latest Only” on page 66 .

Note that changing the contents of ARRAY and FIXED_DICT data type instances should be avoided if the
property is SendLatestOnly since this requires the entire property to be resent.

5.9. Bandwidth Optimisation: Is Reliable

When an OTHER_CLIENTS property of an entity changes, a message is sent to appropriate client applications
to update their view of this entity. By default, this message is sent reliably so that the change will be received
even when there is packet loss. There may be rare situations where sending these unreliably is preferred. This
is typically only used with the SendLatestOnly option and with a property that is changed continuously.

Setting SendLatestOnly to true and IsReliable to false and changing a value every game tick causes
behaviour similar to volatile position and direction values.

Client methods also have this flag. See “Bandwidth Optimisation: Is Reliable” on page 66 .

Note that changing the contents of ARRAY and FIXED_DICT data type instances should be avoided if the
property has IsReliable set to false since this requires the entire property to be resent.

5.10. Detailed Position

Entity position updates sent to the client are usually relative to the client position. These values are limited
in magnitude to maxAoIRadius, which allows them to be compressed to conserve bandwidth.

However, if an entity does not have any volatile properties, it will implicitly send its detailed position to
the clients interested in it. The detailed position is made up of absolute coordinates on the space. Since the
position is not classified as volatile, it will be sent to all clients interested in the entity every time its value
changes.

For entity types with volatile properties, a detailed position can be sent to interested clients by using the
DetailedPosition option. This option is useful if higher precision is required for an entity's position
updates than is provided by the usual, compressed values. However, it should be used sparingly, as it uses
much larger types, and thus uses more bandwidth.

The DetailedPosition option can have a SendLatestOnly flag, which defaults to false if not specified.
See “Bandwidth Optimisation: Send Latest Only” on page 55  for more details. Using this flag will help
reduce bandwidth usage for entity types whose positions change frequently.



Properties

56 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

The grammar for the DetailedPosition option is displayed below:

<root>
   ...
   <DetailedPosition>
      <SendLatestOnly> value </SendLatestOnly>
   </DetailedPosition>
   ...
</root>

5.11. Appeal Radius

It is sometimes desirable to have properties sent to the client from entities outside the client's AoI. For exam-
ple, it could be that a large dragon should be visible from many kilometres away. Increasing the AoI radius
to a significantly larger value is far from ideal, since it would drastically increase bandwidth usage due to
unnecessary updates from many more entities.

A non-zero AppealRadius value specifies an area around the entity. If this area intersects with the client's
AoI, property updates will be sent to the client as if the entity were in its AoI. For example, if the client's
aoiRadius is 500m, and an entity's AppealRadius is set to 1500m, then the player will be able to see the
entity from up to 2000m away. Specifically, the client will receive property updates from the entity if the
distance between the avatar and the entity is less than the sum of the aoiRadius and the entity's Appeal-
Radius, on both the X and Z axes.

In the diagram below, three clients, A, B and C, are near a large entity. The entity is within the AoI of Client
C only. Client B, however, is close enough to the entity that its AoI intersects with the entity's area of appeal.
For this reason, Client B will receive property updates as if the entity were in its AoI.

Clients approaching an entity's area of appeal

Entity types that set an AppealRadius will implicitly set the DetailedPosition/SendLatestOnly op-
tion. The relative position updates usually sent for an entity are restricted to values in the client's AoI, mak-
ing entities outside this area too far away to have their positions represented. DetailedPosition is used
because it allows values outside this range. See “Detailed Position” on page 55  for more details.

5.12. Temporary Properties

Temporary properties can be used for properties that do not need to be backed up or offloaded with an entity.

The grammar for temporary property definition is displayed below:

<root>
   ...
   <TempProperties>
      <tempPropertyName1/>
      <tempPropertyName2/>



Properties

57

      ...
   </TempProperties>
   ...
</root>

These should generally be rare but are useful for properties that cannot be streamed such as sockets or prop-
erties that are recreated on restoring. These apply to both cell and base entities.

5.13. Persistent

Typically, there is at least one database table associated with each entity type in the game's entity database.
This is where entities of this type can be persisted. Frequently, there are entity types that never need to be
persisted.

You can avoid having a table created in the database by setting its Persistent property to false.

<root>
   ...
   <Persistent>false</Persistent>
   ...
</root>

This defaults to true. The only real advantage in setting this to false is to reduce the number of tables created.
There is no real performance impact.

5.14. User Data Object Linking With UDO_REF Properties

There is a special property type, UDO_REF, that can be used in both entities and user data objects. This prop-
erty type makes it possible to create a connection between an entity and a user data object, or between two
user data objects. This property type is a key feature of user data objects, as it allows the creation of complex
graphs made up of different types of user data objects and entities that can be used by the entity scripts as
desired. A UDO_REF property is nothing more than a reference to a user data object. When an entity or a user
data object with a UDO_REF property is loaded, the user data object referenced by the UDO_REF property
could exist in an unloaded state if the user data object referenced hasn't been loaded yet. In this case, the
script will only be able to get the user data object's unique identification number through the guid attribute.
Once the referenced user data object is loaded, all it's attributes and properties can be accessed.

The most important example of this property type is in the PatrolNode user data object. The old patrol path
system, including the old PATROL_PATH property type, have been deprecated. Patrol functionality is now
achieved with the PatrolNode user data object, which can be linked to other PatrolNode objects through
an array of UDO_REF properties. Entities that wish to patrol through a graph of PatrolNode objects just
need have a UDO_REF property that links to a PatrolNode.



59

Chapter 6. Methods
Methods allow events to be propagated, both between different execution contexts of an entity (i.e., cell, base,
client), as well as between different entities. BigWorld separates entity methods into categories based on the
execution context within which they will be executed.

In general, methods should not be used for propagating states. The use of properties is recommended for
this purpose. For example, a player holding a gun should be a property, while a player shooting should be
a method.

The categories of methods are:

Category Runs on Common uses

<BaseMethods> BaseApp Updates properties on the base.

Serves as a root point to propagate messages to related things.

<CellMethods> CellApp Notifies the cell of changes in response to player interaction.

Allows communication between nearby entities.

<ClientMethods> Clients Notifies the client of events, so that the player can see them. Implicit
set_<property_name> methods need not be declared.a.

aFor details, see “Client callbacks on property changes” on page 69

Method categories.

The grammar for method declaration is described below:

<[ClientMethods|CellMethods|BaseMethods]>

   <method_name>
      <Exposed/>

      <Args>
         <arg1_name> data_type </arg1_name>
         <arg2_name> data_type </arg2_name>
      </Args>

      <ReturnValues>
         <ret1_name> data_type </ret2_name>
         <ret2_name> data_type </ret2_name>
      </ReturnValues>

      <!-- Only send one call to clients if called repeatedly -->
      <SendLatestOnly> [true|false] </SendLatestOnly> 1

      <!-- Send the call reliably -->
      <IsReliable> [true|false] </IsReliable> 2

   </method_name>

</[ClientMethods|CellMethods|BaseMethods]>

1 For details, see “Bandwidth Optimisation: Send Latest Only” on page 66 .
2 For details, see “Bandwidth Optimisation: Is Reliable” on page 66 .

<res>/scripts/entity_defs/<entity>.def ‐ Method declaration syntax



Methods

60 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

6.1. Basic Method Specification

All methods in all categories have some fundamental common characteristics. They are declared in the rel-
evant section in the file <res>/scripts/entity_defs/<entity>.def, with an XML tag per method.

The method's arguments and return values (if any) are also defined in the file, and its types are specified in
the same way as property types. For more details, see “Property Types” on page 30 .

In order to declare a method called yell on the cell, which receives a string argument named phrase, we
would have the lines below:

<root>
  ...
  <CellMethods>
    <yell>
      <Args>
        <phrase> STRING </phrase> <!-- phrase to exclaim -->
      </Args>
    </yell>
  </CellMethods>
  ...
</root>

<res>/scripts/entity_defs/<entity>.def ‐ Declaration of cell method yell

Once the method is declared, it also needs to be declared in the appropriate Python implementation file.
Each context of execution (cell, base, and client) has a folder containing scripts for each entity.

In our example, the method was added to the section <CellMethods>, and therefore will be executed on
the cell entity.

The cell script for this entity, named <res>/scripts/cell/<entity>.py, will need to define the yell
method, as illustrated below:

import BigWorld
...
class <entity>(BigWorld.Entity):

  def __init__(self):
    BigWorld.Entity.__init__(self)

  def yell(self, phrase):
    # insert code to implement yell here
    return

<res>/scripts/cell/<entity>.py ‐ Definition of cell method yell

6.2. Two-way calls

Remote two-way method calls can be used to get return values from Python calls between processes. Return
values for entity methods are declared in the same format as the method arguments in the entity definition
file, except that they are listed under the ReturnValues tag instead of Args. For example, the webCre-
ateAuction Base method for an Avatar has the following definition:

<webCreateAuction>
  <Args>
    <itemSerial>  ITEMSERIAL  </itemSerial>



Methods

61

    <expiry>      UINT32      </expiry>
    <startBid>    GOLDPIECES  </startBid>
    <buyout>      GOLDPIECES  </buyout>
  </Args>
  <ReturnValues>
    <auctionID>   AUCTIONID   </auctionID>
  <ReturnValues>
</webCreateAuction>

This method takes a number of arguments containing the details of the item being listed for auction, and
returns the unique auction ID. However, this method makes a remote call to an entity that is potentially on
another process, which prevents us from receiving a return value in the usual way. Instead, this method will
return a Twisted Deferred object, that will send the return values as an argument to a callback method once
they are received. This entire process is explained in “Twisted Deferred Objects” on page 61 .

6.2.1. Twisted Deferred Objects

To obtain the return value of a two-way method, Twisted Deferred objects are used. When a method is called,
a Deferred object is returned. Two types of callback methods can then be added to this object: a callback for
successful calls, and an errback for when an an error has occured. When the method has been executed, it
will call one of the two callback methods, depending on the success of the call. It is also possible to chain
more than one callback for both success and failure.

For a more detailed explanation about how Deferred objects are used, see the Twisted documentation at
http://twistedmatrix.com/documents/current/core/howto/defer.html.

As an example, we will implement remoteTakeDamage, a Base method for an Avatar that causes it to lose
some health, and returns its remaining health. This method will call takeDamage, one of the Avatar's Cell
methods.

takeDamage will take the damage amount as its argument, and return two values: the entity's remaining
health, and its maximum health. These values will be printed, and the remaining health amount will be
returned from remoteTakeDamage as the Deferred object's its final value.

Since the Base entity and Cell entity for the Avatar are on different processes, the call will use Deferred objects
to effectively achieve an asynchronous two-way call. The methods will have the following definitions in the
entity definition file, Avatar.def:

...
    <BaseMethods>
        <remoteTakeDamage>
            <Args>
                <damage>        INT32   </damage>
            </Args>
            <ReturnValues>
                <health>        INT32   </health>
            </ReturnValues>
        </remoteTakeDamage>
        ...
    </BaseMethods>

    <CellMethods>
        <takeDamage>
            <Args>
                <damage>        INT32   </damage>
            </Args>
            <ReturnValues>
                <health>        INT32   </health>
                <maxHealth>     INT32   </maxHealth>

http://twistedmatrix.com/documents/current/core/howto/defer.html


Methods

62 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

            </ReturnValues>
        </takeDamage>
        ...
    </BaseMethods>

remoteTakeDamage has the following implementation in fantasydemo/res/scripts/base/
Avatar.py:

# base/Avatar.py

from twisted.internet import defer
...

def remoteTakeDamage( self, damage )
    deferred = self.cell.takeDamage( damage )
    deferred.addCallback( partial( self.onDamageTaken, damage ) )
    return deferred

def onDamageTaken( self, damage, healthArgs ):
    health, maxHealth = healthArgs[ 0 ], healthArgs[ 1 ]
    print "Avatar 's' took %d damage, reducing its health to %d/%d" % \
        (self.basePlayerName, damage, health, maxHealth)
    return (health,)

Since the call to takeDamage is asynchronous, we will not receive the return value immediately. Instead,
a Deferred object will be returned, referred to by deferred. Once a result is available, it will be stored in
the Deferred object, taking the form of a tuple containing the return values. Since we are unable to receive
and use the values immediately, we can specify a method to be called using the values as an argument, once
they become available.

The addCallback method is used to specify a method that will be called once this result is available. This
method will be given the result tuple as its argument. In our example, once the result is available in the
Deferred object, it will be sent as the final argument to the onDamageTaken method. If additional callback
methods are specified using addCallback, they will be called in turn. The result from each one will be
stored as the new result in the Deferred object, and sent as the argument for the next callback method in the
list. This is called a 'callback chain'.

When there are no remaining callback methods in the chain, the final result will be stored in the Deferred
object. At this point, any additional callbacks that are added will be called immediately, since there is already
a result available.

Finally, the result of onDamageTaken will be stored in the Deferred object, and sent to the caller of remote-
TakeDamage.

Methods can also be specified to be called if a remote method call fails. This is done using the addErrback
method, for example:

deferred.addErrback( onError )

If an error object is returned from the call, it will be used as the argument to onError.

Errbacks can be chained in the same way as callbacks, by using multiple calls to addErrback. The add-
Callbacks method adds both a callback and an errback to a deferred object, but it has slightly different
behaviour than adding the two separately using addCallback and addErrback. addCallbacks adds
both methods at the same level in the call chain, whereas adding them separately will put each method on
its own level. This is explained in detail in the Twisted documentation, at http://twistedmatrix.com/docu-
ments/current/core/howto/defer.html.

http://twistedmatrix.com/documents/current/core/howto/defer.html
http://twistedmatrix.com/documents/current/core/howto/defer.html


Methods

63

The implementation of takeDamage, in cell/Avatar.py, is as follows:

# cell/Avatar.py

import CustomErrors
from twisted.internet import defer
...

def takeDamage( self, damage ):
    if (damage < 0):
        # Goes to errback which 
        return defer.fail( CustomErrors.InvalidFieldError(
                "Avatar can not take negative damage" ) )

    self.health = self.health - damage

    if (self.health < 0):
        self.health = 0

    # Goes to onDamageTaken callback
    return (self.health, self.maxHealth)

Methods that are called in this way must return either a tuple containing the return values, or a Deferred ob-
ject. If a tuple is returned from takeDamage, its values will be stored in deferred, in the remoteTakeDam-
age method, and sent as arguments into its callback method, onDamageTaken, as described above. How-
ever, if a Deferred object is returned, its result tuple and any callbacks specified for it will be propagated
to remoteTakeDamage's deferred object, and the onDamageTaken callback will be added to the end of
the chain.

For examples of remote methods that create Deferred objects, add callbacks and errbacks to them and return
them, refer to the web interface Base methods in FantasyDemo's Avatar and AuctionHouse entities, lo-
cated at fantasydemo/res/scripts/base.

In our implementation of takeDamage, an error results in a CustomErrors.InvalidFieldError object
(a custom error derived from Exception) to be returned using defer.fail. This method creates a special
error object: a Deferred object that has already had an errback called. Using this method is a simple way of
returning an error to the original caller. Once the error object is received by the original caller, it will be used
as the argument for the first errback method, if there is one. Instead of calling defer.fail, an exception
can be raised:

raise CustomErrors.InvalidFieldError( "Avatar can not take negative
 damage" ) )

This will have the same result as returning the error object using defer.fail, and will also send the call
stack for the error to MessageLogger.

In this example, we use CustomErrors objects. These custom errors are derived from BWError, and are
the recommended way to send errors in two-way calls. For details about custom errors, refer to “Error ob-
jects” on page 63 .

6.2.2. Error objects

If a two-way call fails, it will send an error object to the Deferred object, and invoke the first errback method,
if there is one specified. This object is an instance of an Exception.

A number of error types deriving from our custom exception class BWError are defined in bigworld/res/
scripts/server_common/BWTwoWay.py. These can be extended to suit the errors that could come about
in the game scripts. Two subclasses of BWError are defined: BWStandardError, which is primarily used



Methods

64 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

as a base class for errors arising in the server binaries, and BWCustomError, which is used to as a base class
for errors occuring in the game scripts.

6.2.2.1. BWStandardError

Error objects originating in the server binaries are derived from the BWStandardError type, and are de-
clared in bigworld/res/scripts/server_common/BWTwoWay.py. These error types are as follows:

• BWAuthenticateError

A player can not be authenticated with the credentials they provided.

• BWInternalError

The server experienced an error that was caused internally.

• BWInvalidArgsError

A method is called with invalid arguments.

• BWMercuryError

No response was received for a request.

• BWNoSuchCellEntityError

A cell entity can not be found.

• BWNoSuchEntityError

An entity can not be found.

6.2.2.2. BWCustomError

New error types should be implemented to allow errors to be as helpful as possible. BWCustomError should
be used as the base class for a range of error classes specific to the game scripts. For example, FantasyDemo
defines a number of custom error classes for its two-way calls specific to its auction house implementation,
such as InsufficientGoldError and InvalidItemError. For a description of each of the custom error
types used in FantasyDemo, refer to the Server Web Integration Guide's section“PHP Error handling”.

Custom errors are declared in <res>/scripts/server_common/CustomErrors.py. The above imple-
mentation of remoteTakeDamage shows how a custom error can be returned as the deferred object instead
of the return values:

return defer.fail( CustomErrors.<Error Type>( <Args> ) )

6.3. Service Methods

Methods for services are defined in the much same way as base, cell and client methods. However, there
are some slight differences, since, unlike the other categories, services are not entities. Service methods are
declared in the file <res>/scripts/service_defs/<service>.def, with an XML tag per method.

Service methods fall under the Methods tag, instead of under a specific category such as BaseMethods or
CellMethods.

In order to declare a method called addNote on the service, which receives a string argument named
newNote, we would have the lines below:

<root>

#dest=
#dest=


Methods

65

  ...
  <Methods>
    <addNote>
      <Args>
        <newNote> STRING </newNote>
      </Args>
      <ReturnValues>
        <noteID> NOTE_ID </newNote>
      </ReturnValues>
    </addNote>
  </CellMethods>
  ...
</root>

<res>/scripts/service_defs/<service>.def ‐ Declaration of service method addNote

Once the method is declared, it also needs to be implemented in the service Python implementation file. The
service execution context has a directory containing the scripts for each service.

The script for this entity, named <res>/scripts/service/<service>.py, will need to define the
addNote method, as illustrated below:

import BigWorld
...
class <service>( BigWorld.Service ):

  def addNote( self, description ):
    # insert code to implement addNote here
    return

<res>/scripts/service/<entity>.py ‐ Definition of service method addNote

6.4. Intra-Entity Communication

Different execution contexts of an entity communicate with each other by calling methods on the other exe-
cution contexts. These are exposed as special properties of the entity.

As a quick reference, the available objects are described below:

• allClients ‐ Available on: Cell

When/how to use: To call a client method on all client instances of this entity.

Example: self.allClients.someMethod()

• base ‐ Available on: Cell, Client

When/how to use: To call a base method of this entity. Calls to this object are executed on the base script.
The client cannot directly call methods on the base of other entities.

Example: self.base.someMethod()

• cell ‐ Available on: Base, Client

When/how to use: To call a cell method of this entity. Calls to this object are executed on the cell script. All
client instances can access their cell object (when the entity exists on the cell).

Example: self.cell.someMethod()



Methods

66 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• otherClients ‐ Available on: Cell

When/how to use: To call a client method on all client instances of this entity, except on its own.

Example: self.otherClients.someMethod()

• ownClient ‐ Available on: Cell, Base

When/how to use: To call a client method only on this entity's client. This object calls the method only
on the entity on the client application that is 'playing' as this entity, not on other client applications that
can see this entity.

Example: self.ownClient.someMethod()

The methods of a nearby entity can be called from the client directly on the cell part of that entity.

BigWorld automatically exposes these objects to the relevant script classes.

What this means is that it is possible for any script that is part of an entity (cell, base or client part) to
call other scripts that are part of the same entity. The definition file (<res>/scripts/entity_defs/
<entity>.def) describes which methods are exposed to different execution contexts.

6.5. Bandwidth Optimisation: Send Latest Only

When a method is called on Entity.otherClients (or Entity.allClients), an event object is created
and added to the event history. This event history is used when updating client applications that have this
entity in their AoI. When this entity is considered1, any events that have been added since the last time this
entity was considered are sent to the client. There is the potential for multiple calls of a single method to be
sent in a single update.

If the SendLatestOnly flag is set on a client method, only the latest call is kept in the event history. This
avoids sending multiple calls. This can save bandwidth being sent to the client and can save some memory
on CellApps if a method is called frequently and only the latest call is needed.

This value is false by default.

Properties with the OTHER_CLIENTS flag also have this flag. See “Bandwidth Optimisation: Send Latest
Only” on page 55 .

6.6. Bandwidth Optimisation: Is Reliable

When a method is called on Entity.otherClients (or Entity.allClients), a message is sent to the
appropriate client applications that have this entity in their AoI2. By default, these messages are sent reliably.
If the IsReliable flag is set to false on a client method, this message will be sent unreliably.

Properties with the OTHER_CLIENTS flag also have this flag. See “Bandwidth Optimisation: Is Reli-
able” on page 55 .

6.7. Sending Auxiliary Data to the Client Via Proxy

Auxiliary data can be streamed to the client via the proxy, without affecting the normal game traffic. This
data is opportunistically streamed to the client when bandwidth is available.

The bandwidth used by auxiliary data streaming can be controlled using the bw.xml options in <baseApp/
downloadStreaming>. For details of this option group refer to the Server Operations Guide section
“BaseApp Configuration Options”.

1For more details on how the AoI priority queue works, see “Player AoI Updates” on page 171 .
2For more details on how the AoI priority queue works, see “Player AoI Updates” on page 171 .

#dest=
#dest=


Methods

67

All data types in this streamed data are user-defined, since BigWorld does not have any internal uses for it.

Data is added to a proxy via method streamStringToClient:

id = Proxy.streamStringToClient( id, data )

or via method streamFileToClient:

id = Proxy.streamFileToClient( id, resource )

Where the parameters are:

• id

16-bit ID of the data. If -1 is received, then the next ID in sequence that is not currently in use is selected.
The caller of this method is responsible for the management of this parameter. The same ID value used
by the method is returned to the caller.

• data

Data to be sent to the attached client. Must be in string format.

• resource

The string name of the resource to be sent to the client.

Once the client has received the entire data string, the callback BWPersonality.onStreamComplete is
called on the client.

6.8. Exposed Methods ‐ Client-to-Server Communication

Because MMOGs operate over the Internet, and in order to stop players cheating, server methods (those on
the cell or the base) are not automatically allowed to be called by the client.

In order to make a server method callable from the client (so that the world can provide interactivity), its
declaration has to include the tag <Exposed/>, as illustrated below:

<root>
  ...
  <CellMethods>
    <yell>
      <Exposed/>
      <Args>
        <phrase> STRING </phrase> <!-- phrase to exclaim -->
      </Args>
    </yell>
  </CellMethods>
  ...
</root>

<res>/scripts/entity_defs/<entity>.def ‐ Declaration of the exposed method

The tag <Exposed/> accomplishes two things:

• It makes the method available to clients.

• On the cell, it acts as an additional argument tag that is automatically filled in with the entity ID of the
client calling it.



Methods

68 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Client instances actually call the method with one argument fewer than the number received by the cell
entity, which prevents 'entity-faking' outside the safe server environment. The entity ID needs to be passed
as an argument when calling exposed methods from the server components.

The definition of the method on the cell must be extended to take this parameter, as illustrated below:

import BigWorld
class EntityName(BigWorld.Entity):

  def __init__(self):
    BigWorld.Entity.init(self)

  def yell(self, sourceEntityID, phrase):
    # insert code to implement yell here
    # if desired, check that self.id == sourceEntityID before proceeding
    return

<res>/scripts/cell/<entity>.py ‐ Definition of cell method yell

On the client, the method yell can be called with the code below:

self.cell.yell( "BigWorld message test" )

Example of a client calling a cell method yell

If the cell method yell implements the check of sourceEntityID against self.id, only its client will be
able to call it. Others clients will not be able to execute it.

There might be occasions where the method might run with a different sourceEntityID. For example, for
a method called shakeHand, it is a good idea to check that the source entity is within a couple of metres
away from the self entity before proceeding (and maybe that neither is dead).

6.8.1. Security Considerations of Exposed Methods

Script writers should be aware that the arguments of any exposed method need to be heavily scrutinised on
the server side before being operated on.

The underlying C++ code that handles the passing of arguments ensures that the method will be invoked
on the server side only if:

• The right number of arguments is being passed.

• The arguments have the expected type.

Beyond that, however, the underlying architecture cannot provide any further constraints on the values that
clients may pass to method calls on the server.

For example, integers may take any valid 32-bit value, strings and arrays may be of any length, …. It is up
to the script writer to ensure that the arguments to an exposed method have values that make sense in the
context of that method.

You should carefully inspect the value of any arguments to an exposed method before using them.

It is never safe to trust arbitrary Python objects from the client as passed in through PYTHON parameters to
exposed method invocations. A WARNING log message is emitted at startup by any component that parses
the entity definitions if an exposed method has parameter of type PYTHON. The safer alternative is to use
some other data type that is more concretely defined, for example the FIXED_DICT data type, and validate
each known element.



Methods

69

6.9. Server to Client bandwidth usage of Method calls

The arguments of a method call made from the server to the client are optimised in the same way property
updates are optimised.

See “Server to Client bandwidth usage of Property updates” on page 37 .

6.10. Client callbacks on property changes

When the server changes a property on the client a callback method is called on the entity to allow the client
to take appropriate action.

set_<property_name> is called when a property of an entity is replaced with a new value. That is, a value
in the entity's __dict__ is replaced.

If an existing property is modified, either setNested_<property_name> or
setSlice_<property_name> is called.

6.10.1. Implicit set_<property_name> Methods

When the server updates a property with distribution flag 3 ALL_CLIENTS, OTHER_CLIENTS or
OWN_CLIENT, an implicit method called set_<property_name> is called on the client.

This method should not need be declared in the section <ClientMethods> of the definition file as it is
automatically provided by BigWorld.

All implicitly defined set_<property_name> methods have one argument which receives the old value
of the property when the method is called. For example:

class Seat( BigWorld.Entity ):
    ...
  def set_seatType( self, oldValue ):
    ...

<res>/scripts/client/Seat.py ‐ Example of an implicit set_seatType for the Seat entity.

Note that if an existing property is modified instead of being replaced and the appropriate
setNested_<property_name> or setSlice_<property_name> method does not exist, this method is
called with the oldValue argument as None.

6.10.2. Implicit setNested_<property_name> Methods

If a nested property of an existing property is modified, the setNested_<property_name> is called. This
includes modifying a single element of an ARRAY or FIXED_DICT. The method accepts two arguments. The
first represents the path to the change and the second is the value that has been replaced.

For example:

class Seat( BigWorld.Entity ):
    ...
  def setNested_myFixedDict( self, path, oldValue ):
    ...

The first argument represents the path to the changed property. For example, if the change was:

3For details on property's distribution flags, see “Data Distribution” on page 40



Methods

70 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

self.myFixedDict.rightHandItem.weight = 10

The value of path would be:

["rightHandItem", "weight"]

If you had a property that was ARRAY <of> ARRAY <of> INT32 </of> </of>.

self.myArray[ 5 ][ 3 ] = 8

would result with the value of path being:

(5, 3)

6.10.3. Implicit setSlice_<property_name> Methods

If a slice of an array is modified, the setSlice_<property_name> is called. This includes appending and
deleting from an array. The method accepts two arguments. The first represents the path to the changed
slice and the second is the slice that has been replaced. The last value in the path is a tuple containing two
integers. These represent the range of the new values. To create a slice containing the new values, use my-
ModifiedArray[ path[-1][0] : path[-1][1] ].

For example, if self.myArray is an existing array with 5 elements:

self.myArray.append( 10 )

would result in setSlice_myArray being called with:

path = [(5,6)]
oldValues = [ ]
newValues = self.myArray[ path[-1][0] : path[-1][1] ]

If the array is part of a FIXED_DICT and the array has 5 elements with the last value 21.

del self.myFixedDict.myArray[-1]

would result in:

path = ["myArray", (4,4)]
oldValues = [21]

6.11. LOD on Methods

Like properties, some methods need to be broadcast only to nearby entities.

For example, even though an entity may be visible at an AoI distance (say, 500 metres), it seems unlikely that
players will be able to tell the difference between a smiling and a non-smiling entity.

To reflect his, the smile method's level of detail, can be declared as illustrated below:



Methods

71

<root>
  ...
  <ClientMethods>
    ...
    <smile>
      ...
      <DetailDistance> 30 </DetailDistance>
    </smile>
    ...
  </ClientMethods>
  ...
</root>

<res>/scripts/cell/<entity>.py ‐ Declaration of client method smile

The specification of the LOD for a method is far simpler than it is for a property. This is because a non-
broadcast property change might have to be sent later if the LOD increases, while a non-broadcast method
in the same scenario will not have to.

Consequently, the method just needs to declare a tag <DetailDistance> inline, and when it is called on
exposed objects allClients or otherClients, it is broadcast only to clients within the specified distance
around the entity.

6.12. Inter-Entity Communication
Once the entities have methods assigned to them, it becomes useful to be able to call methods on other entities.

If you have an object ent as a Python script representation of another entity, then you can call
ent.someMethod() to call that method on ent. This assumes that someMethod() runs on the same execu-
tion context you are in. For example, if you are on the cell, then ent.someMethod() must be defined and
provided by the entity type of ent.

If you are on the cell, you can call a method on the base, with the code below:

ent.base.otherMethod()

This means that once you are able to obtain an entity object, there is a plethora of options for invoking meth-
ods on different execution contexts of different entity instances. For more details, see “Intra-Entity Commu-
nication” on page 65 .

But to achieve this, first it is necessary to retrieve the object for another entity. The mechanism for that is
described in the next sub-section

6.12.1. Entity IDs

In order to uniquely identify every object in the game universe, BigWorld assigns a unique number to every
entity. This is referred to as the entity ID.

In the BigWorld Python module (which is imported at the start of most scripts), there is an object which
maps entity IDs to the corresponding entity object. This object has the same interface as a Python dictionary,
and is called BigWorld.entities.

Given an entity id entityID, its entity object can be retrieved with the code below:

ent = BigWorld.entities[ entityID ]

Retrieval of entity object using its ID



Methods

72 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

One should be very careful with entity IDs, and always check for the existence of the corresponding entity
before assuming that it is safe to use it. BigWorld.entities throws an exception if the entity looked up
does not exist.

Each execution context has a version of the BigWorld.entities object with different entities in it.

BigWorld.entities contains the entities that are relevant to the execution context in which it is located,
as listed below:

Execution context Entities listed in BigWorld.entities

Cell Real and ghosted entities located on all cells managed by this cell's CellApp.

Base Entities located on this base's BaseApp a.

Client Entities in the client's AoI.

aFor sending messages to bases on other BaseApps, see “Mailboxes” on page 73

Entities listed in BigWorld.entities per execution context.

Entity IDs can be obtained in various ways:

1. From exposed methods (client sends entity ID as argument).

2. From the entity object's id property.

You can pass the object's ID from one execution context to another (e.g., from the client to the cell), so
that the other context can obtain the corresponding object. You can also use this property to obtain the
ID of a newly created entity.

3. From various utility methods that one can use to find entity references.

One of these methods is entitiesInRange.4This method is defined for every cell entity, and returns
all entity objects located within a certain distance from the calling entity. The resulting output can be
queried again for more specific search results.

For example, to find all the Guard entities within 100 metres of the current entity, you could have the
code below:

def findGuards():
  output = []
  for entity in self.entitiesInRange( 100 ):
    if entity.__class__.__name__ == "Guard":
      output += [entity]
  return output

<res>/scripts/cell/<entity>.py ‐ Obtaining ID of surrounding entities

Care should be taken when using this approach for entity discovery as it is a linear search, and hence does
not scale well. Specifically to be avoided are searches over large entity sets that could be obtained from a
search of large distances, or from using the complete set of entities in BigWorld.entities. For a small
distance however, one would not expect large numbers of objects (although this depends on the game).

6.12.2. Retrieving Services

While an entity is identified by its entityID, a service is identified simply by its name, regardless of how
many ServiceApps are offering it. Each Service instance is referred to as a service fragment.

4For other methods, please refer to the BigWorld.Entity class reference in the Base, Cell and Client Python API documentation.



Methods

73

In the BigWorld Python module, there is an object which maps the name of a service to the corresponding
service fragment on one of the ServiceApps that offer it. This object is called BigWorld.services and, like
BigWorld.entities, it has the same interface as a Python dictionary.

The service serviceName can be retrieved using the code below:

serviceMailbox = BigWorld.services[ serviceName ]

Retrieval of service using its name

A service retrieved in this way will be a mailbox to the corresponding service fragment. For details about
mailboxes, refer to “Mailboxes” on page 73 . Once this mailbox is retrieved, the service's methods can
be invoked. For example:

BigWorld.services[ 'ExampleService' ].myTest( u"This is a test" )

6.13. Mailboxes

Mailboxes are used to communicate with entities that are remote, i.e., not on the current process.

Entities can only access other entities that are running in the same execution context5However, it is often
useful to be able to send a message to entities in other execution contexts. For example, an entity may wish
to send a message to all members of a chat channel, but the channel might not have all its members located
on the same BaseApp as the executing entity.

Mailboxes are used to implement the following properties of an entity:

• self.cell

• self.base

• self.ownClient

There are also a special set of mailboxes available for use from the cell which reference other entities in
relation to the current entity. These mailboxes are discussed in “Special Mailboxes” on page 74 .

These afore mentioned properties (cell, base, ownClient) allow you to reference objects located on dif-
ferent processes, and can be sent like any other value, using method calls, and the MAILBOX data type.

You can use the MAILBOX like a normal entity reference, and call methods declared in the entity's definition
file on other entities on other processes.

Considering that an entity B (referenced in the following example as anotherEntity) has a method
heyThere which takes one argument of type MAILBOX, an entity A can pass its base mailbox to entity B
from the cell, as in the example below:

anotherEntity.heyThere( self.base )

<res>/scripts/cell/<original_entity>.py ‐ Passing base mailbox from cell

On the receiving entity B (referenced in the example as anotherEntity), the calling entities (entity A) base
mailbox (as received via the method argument) can be used to call a method someMethod on entity A. For
example:

5For more details, see “Inter-Entity Communication” on page 71



Methods

74 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

def heyThere( self, originalEntity ):
  originalEntity.someMethod()

<res>/scripts/cell/<another_entity>.py ‐ Receiving base mailbox

It is also possible to store mailboxes in a class as properties. However this is only useful for base entity
mailboxes, since they will not change address as the entity moves around the space.

Cell entity mailboxes should not be stored, because they can change as the entity moves between cells. It is
possible to pass cell entity mailboxes to another entity for once-off use, since they are guaranteed to be usable
for the time it takes to call a method and have it respond (i.e., up to approximately 1 second).

Using mailboxes, it is also possible to call methods within a different execution context to that of the mailbox
being called. For example, using a base mailbox of an entity (baseMB in the following code), it is possible
to call a cell method of the base entity as follows:

baseMB.cell.cellMethod()

Calling a cell method of another entity through its base mailbox

The call is sent to the base entity first, which then calls the cell method from where the base entity resides.
Though it is more convenient than calling a base method that in turn calls the cell method, it still takes two
hops to call the cell entity.

Available usages are:

• baseMB.cell

• baseMB.ownClient

• cellMB.base

• cellMB.ownClient

These are in fact instances of MailBoxes, and can be passed as method arguments. However, the same re-
striction applies to cellMB.base and cellMB.client as to cell mailboxes ‐ they can change as an entity
moves around, and therefore should not be stored for later use.

Note that both baseMB.ownClient and cellMB.ownClient refer to their own client only. There are no
shortcut calls to otherClients and allClients.

A convenient way to obtain other entities' mailboxes is by using the methods
BigWorld.lookUpBaseByDBID and BigWorld.lookUpBaseByName on the BaseApp. For more details,
see the BaseApp Python API's entry Main Page → BigWorld (Module) → Member Functions.

6.13.1. Special Mailboxes

On top of the previously discussed mailboxes, the CellApp also offers a special set of mailboxes which can
be used to communicate with entities within the AoI of the reference entity.

The available mailboxes are:

• entity.allClients

• entity.otherClients

• entity.clientEntity( EntityID )

api_python/baseapp/index.html#dest=BaseApp_Python_API


Methods

75

The allClients mailbox will call a method on all client entities that exist in the AoI of the reference entity
as well as on the reference entity's ownClient.

The following diagram illustrates a call to the allClients mailbox on Entity A such as
A.allClients.chat(). This results in the chat() method being called on Entity A on ClientApps A,
B and C.

The otherClients mailbox, is almost identical to the allClients mailbox, except that the method being
called will not be executed on the reference entity's ownClient. This is useful for situations where the ref-
erence entity's client was the initiator of the action.

The following diagram illustrates a call to the otherClients mailbox on Entity A such as
A.otherClients.jump(). This results in the jump() method being called on Entity A on ClientApps B
and C.



Methods

76 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

The most complicated mailbox is clientEntity( EntityID ). This mailbox is used to call a method on
an entity that is represented on the reference entity's ClientApp. This is useful for causing a behaviour that
is specific to a single Client to only be seen by the interested client, such as a quest giver talking to the player.

The following diagram illustrates a call to the clientEntity mailbox on Entity B providing the EntityID of C
such as B.clientEntity( C.id ).wave(). This results in the wave() method being called on Entity
C on ClientApp B.



Methods

77

6.14. Method Execution Context

All entity method calls across physical machines are asynchronous. For example, if you execute
self.cell.cellMethod() or self.client.clientMethod() on a base entity, the call returns imme-
diately without any value. The actual method execution takes place on the machine where the cell or client
part of the entity resides.

To inform the calling entity of the execution result you will have to call a function from within the method.

The example below describes the client entity of class Avatar initiating a sequence of actions to open a door,
executing the following steps:

1. The client method openDoor of class Avatar calls its cell method openDoor.



Methods

78 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

2. That method then calls the cell method unlock of class Door, passing self as an argument. This way,
Door receives a mailbox of the cell entity Avatar, which is later used (with exposed object client) to call
the appropriate cell method on Avatar.

3. That method then checks the keycard, and using the cell mailbox (sourceEntity), makes a call directly
to the appropriate client method of class Avatar (in this example, we assume it was successful).

• The client entity of the Avatar class:

class Avatar( ):
  ...
  def openDoor( self, doorID ):
    # Call the cell method to open the door
    self.cell.openDoor( doorID )
  ...
  def doorOpenFailed( self, doorID, keycard ):
    # Animation shows the Avatar scratching his head
  ...
  def doorOpenSucceeded( self, doorID, keycard ):
    # Animation shows the door with corresponding doorID opening
  ...

<res>/scripts/client/Avatar.py ‐ Definition of door methods

• The cell entity of the Avatar class:

class Avatar( ):
  ...
  def openDoor( self, doorID ):
    # locate the door
    door = self.locateTheDoor( doorID )
    keycard = self.getKeycardFromInventory()
    door.unlock( self, keycard )
   ...

<res>/scripts/cell/Avatar.py ‐ Definition of methodopenDoor

• The cell entity of the Door class:

class Door( BigWorld.Entity ):
  ...
  def unlock( self, sourceEntity, keycard ):
  # check source is close enough
  # check keycard is good
  if not self.isGoodKeycard( keycard ):
    sourceEntity.client.doorOpenFailed( self.id, keycard )
  else:
    self.isOpen = True
    sourceEntity.client.doorOpenSucceeded( self.id, keycard )
  ...

<res>/scripts/cell/Door.py ‐ Definition of methodunlock

The same callback technique is used to return values from a called method.

The example below describes the client entity of class Avatar initiating a sequence of actions to inquire
about an item's description based on its inventory index, executing the following steps:



Methods

79

1. The client method investigateInventory of class Avatar calls its base method itemDescrip-
tionRequest.

2. That method then calls its client method itemDescriptionReply.

3. That method then displays the item's description.

• The client entity of the Avatar class:

class Avatar( ):
  ...
  def investigateInventory( self, indexInInventory ):
    # first get the details from the server
    self.base.itemDescriptionRequest( indexInInventory )
    # maybe have a timeout in case server doesn't reply
  ...
  def itemDescriptionReply( self, indexInInventory, desc ):
    # call the callback
    if desc == []:
      GUI.addAlert( "No such item" + str(indexInInventory) )
      return
    GUI.displayItemWindow( indexInInventory, desc )
  ...

Example <res>/scripts/client/Avatar.py ‐ Definition of inventory methods

• The base entity of the Avatar class:

class Avatar( ):
  ...
  def itemDescriptionRequest( self, indexInInventory ):
    try:
      desc = self.generateDescription( indexInInventory )
    except:
      desc = []    # in case no such index
    self.client.itemDescriptionReply( indexInInventory, desc )
  ...

Example <res>/scripts/cell/Avatar.py ‐ Definition of itemDescriptionRequest

For those entities residing in the same process, the method calls take place synchronously. However, since
there is no guarantee that the calling entities and the called ones will always be in the same process, it is
better to adopt the callback solution.

A special case is an entity method that is not defined in the entity's definition file (<res>/scripts/
entity_defs/<entity>.def ‐ For details, see “The Entity Definition File” on page 20 ). In this case, the
method is always executed synchronously, and is only executed in the process of the caller. For example, a
method call on a ghosted entity normally will be delegated to the real one. However, if this method is not
defined in the entity's definition file, it will be treated as a usual Python method, and run locally.

This mechanism does save a bit of network traffic between server components, and can return a result im-
mediately to the caller, but it is also limited in that it can only access the read-only ghosted properties. Trying
to access non-ghosted properties or to write read-only properties would result in unexpected errors. Unless
carefully planned, one should not take advantage of this feature.



81

Chapter 7. Inheritance in BigWorld
Class-based inheritance is a useful design technique in object-orientated software, and is implemented in
most object-orientated languages.

BigWorld uses three separate classes (for the cell, base, and client entity parts) to implement an entity, and
a definition file (<res>/scripts/entity_defs/<entity>.def) to tie them all together. As such, there
are a variety of ways that entities, or parts of entities, may use inheritance in their specification and imple-
mentation.

There are three different ways to declare inheritance relationships in BigWorld, all fulfilling different needs.

7.1. Python Class Inheritance

The Python language allows classes to be derived from each other.

For example, to define a class B, derived from A, and methods for each of them, you can have the code below:

class A:
  def f( self ):
    print "A.f was called"

class B( A ):
  def g( self ):
    print "B.g was called"

Declaring Python class A and its derived class B

Then suppose you have a program with the code below:

x = B()
x.f()
x.g()

Program using Python class inheritance

The output of this program will be as illustrated below:

A.f was called
B.g was called

Example program output

When used in entities, this form of inheritance allows the sharing of common implementation details between
entity types. Multiple inheritance is allowed, so that you can use many Python classes to help implement
disparate features in some entities.

This concept is illustrated in the diagram and code fragments below:



Inheritance in BigWorld

82 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Python class inheritance

The code fragments below show how the Python class CommonBase could be used in an entity Derive-
dEntity1

1. If a base class' cell script (<res>/scripts/cell/CommonBase.py) is defined as below:

# note that this class is not derived from BigWorld.Entity
# so it is just an ordinary Python class
class CommonBase:
  ...
  def readyForAction( self ):
    # implement method's logic
    return True
  ...

2. If a derived entity's cell script (<res>/scripts/cell/DerivedEntity1.py) is defined as below:

import BigWorld
from common import CommonBase
...
# derive from CommonBase, so you can use the method readyForAction
class DerivedEntity1( BigWorld.Entity, CommonBase ):
  ...
  def __init__( self ):
    BigWorld.Entity.__init__( self )
    CommonBase.__init__( self )
  ...
  def someAction( self ):
    if self.readyForAction():
      print "action performed"
  ...

3. Then you can call methods from the base class, as illustrated below:

DerivedEntity1.readyForAction()

1Although this example is implemented on the cell, this technique is also useful for base and client scripts.



Inheritance in BigWorld

83

7.2. Entity Interfaces

BigWorld also supports inheritance in a form similar to Java's interface system. There can be a folder <res>/
scripts/defs/interfaces that can be used to declare common parts of entities. This allows the defini-
tion in one place of often-used declarations.

This concept is illustrated below:

Python entity interfaces

The format of entity interface definition files is similar to the format of entity definition files, except that
interface definition files do not have the section <Parent>. For more details on entity definition files, see
“The Entity Definition File” on page 20 .

The outline of an interface definition file is described below (all sections are optional):

<root>

  <Implements>
    <!-- interface references -->
  </Implements>
  
  <Properties> 1

    <!-- properties -->
  </Properties>

  <ClientMethods> 2

    <!-- client methods -->
  </ClientMethods>

  <CellMethods> 3

    <!-- cell methods -->
  </CellMethods>

  <BaseMethods> 4

    <!-- base methods -->
  </BaseMethods>

  <LoDLevels> 5

    <!-- levels of detail -->
  </LODLevels>

</root>



Inheritance in BigWorld

84 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

<res>/scripts/entity_defs/interfaces/<entity>.def ‐ Minimal entity definition file

1 For details, see Properties on page 29 .
2 For details, see Methods on page 59 .
3 For details, see Methods on page 59 .
4 For details, see Methods on page 59 .
5 For details, see “LOD (Level of Detail) on Properties” on page 52 .

Unlike entities, entity interfaces do not need to have associated Python implementation files, although this
can be a good idea.

The code fragments below illustrate the result of using an interface in an entity definition file:

1. If an entity is defined implementing an interface (<res>/scripts/entity_defs/
someEntity.def), as below:

<!-- someEntity -->
<root>
  ...
  <Implements>
    <Interface> someInterface </Interface>
  </Implements>
  ...
</root>

2. And if the implemented interface is defined (<res>/scripts/entity_defs/inter-
faces/someInterface.def) as below:

<!-- someInterface -->
<root>
  <Properties>
    <name>
      <Type>  STRING       </Type>
      <Flags> ALL_CLIENTS  </Flags>
    </name>
  </Properties>
</root>

3. Then conceptually, the resulting entity definition is as defined as below:

<!-- someEntity -->
<root>
  ...
  <Properties>
    <name>
      <Type>  STRING       </Type>
      <Flags> ALL_CLIENTS  </Flags>
    </name>
  </Properties>
  ...
</root>

A property from an interface can be overridden if the description needs to be changed. In this case, the entire
property description is replaced with the new one, so all appropriate fields need to be specified.



Inheritance in BigWorld

85

7.3. Entity Parents

It is often possible to define an entity that provides functionality common to other entity types as a single base
entity. For example, a collection of NPCs may share most of their implementation, but need some specific
tuning to turn them into a guard or a shopkeeper.

This concept is illustrated below:

Python entity parents

The code fragments below demonstrate this form of inheritance.

1. Define the base entity GenericEntity (<res>/scripts/entity_defs/GenericEntity.def):

<!-- GenericEntity -->
<root>
  <!-- common properties and methods -->
</root>

2. Define GenericEntity's base script:

import BigWorld

class GenericEntity( BigWorld.Base ):
  ...
  def __init__( self ):
    BigWorld.Base.__init__( self )
  ...

3. Define GenericEntity's cell script:



Inheritance in BigWorld

86 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

import BigWorld

class GenericEntity( BigWorld.Entity ):
  ...
  def __init__( self ):
    BigWorld.Entity.__init__( self )
  ...

4. Define derived entity SpecificEntity:

<!-- SpecificEntity -->
<root>
  <!-- inheritance is defined in this tag -->
  <Parent> GenericEntity </Parent>

  <!-- add more properties and methods here -->
</root>

5. Define SpecificEntity's base script:

import BigWorld
import GenericEntity

class SpecificEntity( GenericEntity.GenericEntity ):
  ...
  def __init__( self ):
    GenericEntity.GenericEntity.__init__( self )
 ...

6. Define SpecificEntity's cell script:

import BigWorld
import GenericEntity

class SpecificEntity( GenericEntity.GenericEntity ):
  ...
  def __init__( self ):
    GenericEntity.GenericEntity.__init__( self )
  ...

7.4. Client Entity Reuse

There may be times when an entity type only needs to be specialised on the server. Using the optional section
<ClientName> in a .def file allows a different (usually parent) entity type to be used for the client entity.

For example, if NPC is derived from Avatar, and NPC contains additional properties that the client does not
need to access, NPC objects can be sent to clients as Avatar objects. This means that the client does not need
a specific script to handle NPCs.

7.5. User Data Object Interfaces and Parents

The inheritance of interfaces and parents described for entities also apply to User Data Objects. Due to the
similarity of User Data Objects to regular Entities, for further details, please refer to sections “Entity Inter-
faces” on page 83  and “Entity Parents” on page 85



Inheritance in BigWorld

87

For an example of inheritance in User Data Objects see <res>/scripts/user_data_object_defs/
testItem.def and <res>/scripts/user_data_object_defs/testParent.def.



89

Chapter 8. Entity Instantiation and Destruction
Due to the way that BigWorld entities must be set up and linked to each other, they must be instantiated
differently to how other objects are instantiated in Python. Similarly, because the parts must be unlinked at
destruction time, there are special ways of accomplishing this.

As mentioned in section “The Entity Script Files” on page 21 , an entity can have a part located on the cell
(in both real and ghost forms), a part on the base, and another on clients that have the entity in their AoI.
Different entity types may support their instances being only on one, two, or all three of these. Also, it is
possible for instances of entity types to have less parts than their type supports.

Most commonly, the base part of an entity is created first and then, if appropriate, its cell part. There are a
number of reasons for this.

• The base entity can be created directly from the database, while the cell entity cannot.

• The base entity can create its cell part, but the reverse is not true.

• The cell entity needs an associated base entity to be fault-tolerant.

• The cell entity needs an associated base entity to write itself to the database.

For entity types that have base and cell parts, the base part is always created before the cell part, and destroyed
after it. It is also possible to create a cell entity that does not have a base part.

8.1. Entity Instantiation on the BaseApp

The base entity can be created in the following ways:

• Directly from script, using the methods BigWorld.createBaseAnywhere 1,
BigWorld.createBaseLocally, or BigWorld.createBaseRemotely

• From the database, using the methods BigWorld.createBaseFromDBID or
BigWorld.createBaseFromDB.

For more details on instantiating entities from the data stored in the database, see The Database Layer on page
97 .

The method BigWorld.createBaseAnywhere can specify both the base and cell entity properties, and has
the following signature:

def createBaseAnywhere( entityTypeName, *args, **kwargs ):

Method BigWorld.createBaseAnywhere's signature

The parameter entityTypeName is a string containing the name of the entity type to instantiate. For exam-
ple, to instantiate an entity ExampleEntity, this parameter would be "ExampleEntity".

In its simplest form, it creates the entity with all default values, and is invoked as in the example below:

newEntity = BigWorld.createBaseAnywhere( "ExampleEntity" )

1BigWorld.createBaseAnywhere is the recommended method of creating an instance of a base entity as it allows BaseAppMgr to
select the least loaded BaseApp to be created on.



Entity Instantiation and Destruction

90 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Example of method BigWorld.createBaseAnywhere

This method can optionally take a list of other parameters that are searched to create base and cell entity
values. These parameters can be:

• Keyword arguments

• Dictionaries

• ResMgr.DataSection

The keyword arguments are searched first, then the dictionaries, and finally the DataSection. If a value is not
found for any of the entity's properties, the default value for that property / data type is assigned.

Keyword arguments and dictionary values not found in the entity's definition are set as base entity proper-
ties.

8.1.1. ServiceApps

A ServiceApp is a specialised type of BaseApp. It will not have player entities created on it as part of the
login process or base entities created with BigWorld.createBaseAnywhere().

Although rare, entities can be created on ServiceApps using BigWorld.createBaseLocally(). This can
be useful, for example, to associate an entity with a Service fragment in order to store state. Entities can also
be created using BigWorld.createBaseRemotely().

8.2. Cell Entity Creation From BaseApp

The method BigWorld.createBaseAnywhere creates only the base representation of the entity. If a cell
entity is required, it is the base entity's duty to instantiate its associated cell entity.

To create the associated cell entity, the following methods are used:

• Base.createCellEntity

• Base.createInNewSpace

• Base.createInDefaultSpace

These methods read the base entity's special variable Base.cellData (which is initialised with the cell
entity's data when the base entity is created) to get the initialisation values for the cell entity. If the entity
type does not support a cell entity, the base entity will not have cellData.

The variable cellData is behaves like a dictionary containing all cell properties defined in the entity's def-
inition file (<res>/scripts/entity_defs/<entity>.def).

It also has three additional members:

• position ‐ Sequence of three floats (x, y, z), or a Vector3 with position to create the new entity at.

• direction ‐ Sequence of three floats (roll, pitch and yaw) with direction for the new cell entity.

• spaceID ‐ ID of the space for the cell entity to be created in, if space is not specified in a different way.

Once the cell entity is successfully created, the following steps take place:

1. The variable cellData is deleted.



Entity Instantiation and Destruction

91

2. A variable called cell is created, with the mailbox of the cell entity.

3. The callback Base.onGetCell is invoked.

8.2.1. Creation Near an Existing Cell Entity

The diagram below illustrates the creation of the cell entity using the method Base.createCellEntity of
the BigWorld module. This method cannot be used when the cell entity has already been created.

Creation of the cell entity using the method createCellEntity of BigWorld.Base.

The declaration of method createCellEntity in Python would look like this2:

class Base:
  ...
  def createCellEntity( self, mailbox = None ):
    ...

<res>/scripts/base/Base.py ‐ Declaration of method createCellEntity

The parameter mailbox is a cell entity mailbox. The new cell entity is created in the same space and cell
as the mailbox references (if mailbox is not None). Ideally, the two entities are close, as this increases the
likelihood of the entity starting on the correct cell.

The diagram below shows the flow of communications if the entity is created on the correct cell:

Flow of communication when cell entity is created on correct cell.

The diagram below shows the flow of communications if the entity is created on an incorrect cell:

2The method createCellEntity is implemented in C++ ‐ the example declares it in Python just for explanation purposes.



Entity Instantiation and Destruction

92 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Flow of communication when cell entity is created on an incorrect cell.

8.2.2. Creation in a Numbered Space

It is also possible to create the cell entity by having an appropriate value for spaceID in the property cell-
Data. This should be avoided, as it requires the request to go via the CellAppMgr, which can cause a bot-
tleneck.

Once the cell entity has been created, the notification method onGetCell is called on the base entity. This
is the signal that it is now safe to start using the mailbox to the cell entity self.cell.

For entity someEntity, the method onGetCell can be defined as illustrated below:

import BigWorld

class someEntity( BigWorld.Base ):
  ...
  def onGetCell( self ):
    # this method was called, that means cell entity has been created.
  ...

<res>/scripts/base/someEntity.py ‐ Definition of method onGetCell

8.2.3. Creation in a New Space

The method Base.createInNewSpace dispatches a request to the CellAppMgr to create a new space, and
the entity on it.

The resulting message trace is illustrated below:

Flow of communication when creating cell entity on a new space.



Entity Instantiation and Destruction

93

8.2.4. Creation in Default Space

The method Base.createInDefaultSpace is similar to method Base.createInNewSpace, except that
a new space is not created.

This is only available if flag <useDefaultSpace> is set to true in the configuration file <res>/serv-
er/bw.xml.

8.3. Entity Destruction

The base entity is always created before the cell entity and is destroyed after it.

The sequence of events ensued by the destruction of a cell entity is described below:

Step Base Cell

1 Calls method destroyCellEntity. Calls method destroy.

2  Has method onDestroy automatically called.

3 Has method onLoseCell automatically called. If base is to
be destroyed, this is a good place to call method destroy.

 

4 cell property is losta.  

5 cellData property is restored, with values it had when de-
stroyedb.

 

aFor details on this property, see “Cell Entity Creation From BaseApp” on page 90 .
bFor details on this property, see “Cell Entity Creation From BaseApp” on page 90 .

Sequence of events during entity destruction on the cell.

The method Base.destroy has two Boolean keyword arguments:

• deleteFromDB ‐ The default value is false.

• writeToDB ‐ The default value is true if the entity has previously been written to the database.

8.4. Entity Instantiation From The CellApp

When creating a cell entity, it can be created either with its base counterpart or not. The following sub-sections
describe both approaches.

8.4.1. Instantiation With No Base Counterpart

The method BigWorld.createEntity can be called to create a cell entity with no associated base entity.

This scenario is illustrated below:



Entity Instantiation and Destruction

94 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Creation of cell entity without base counterpart.

The method BigWorld.createEntity has the following signature:

def createEntity( entityTypeName, spaceID, position, direction, properties ):

Method BigWorld.createEntity's signature.

For details on the parameters for this method, see the CellApp Python API's entry Main Page → Cell →
BigWorld → Function → createEntity.

8.4.2. Instantiation With Base Counterpart

The method BigWorld.createEntityOnBase allows the CellApp to create base entities. It has the follow-
ing signature:

def createEntityOnBaseApp( entityTypeName, properties ):

Method BigWorld.createEntityOnBaseApp's signature

This function takes the following parameters:

• entityTypeName ‐ Name of the entity type to create.

• properties ‐ A dictionary of properties on the base as listed in the entity's definition file.

This function dispatches a message to a BaseApp to create a base entity, which can later call method cre-
ateCellEntity to create the cell entity.

Creation of cell entity with its base counterpart

8.5. Loading Entities From Chunk Files

World Editor can be used to insert entity placeholders into chunks. These placeholders can be
read by Python script on the server to load these entities into the game world using the
BigWorld.fetchEntitiesFromChunks method on BaseApps.

The following example code is taken from fantasydemo/res/scripts/base/TeleportPoint.py:

class TeleportPoint( BigWorld.Base ):
  ...
  BigWorld.fetchEntitiesFromChunks( self.geometry, EntityLoader( self ) )
                                                                              
  

api_python/cellapp/index.html#dest=CellApp_Python_API


Entity Instantiation and Destruction

95

class EntityLoader:
  def __init__( self, dstEntity ):
    self.dstEntity = dstEntity
                                                                              
  
  def onSection( self, entityDataSection, matrix ):
    e = BigWorld.createEntity( 
      entityDataSection.readString( "type" ),
      entityDataSection[ "properties" ],
      createOnCell = self.dstEntity.cell,
      position = matrix.applyToOrigin(),
      direction = (matrix.roll, matrix.pitch, matrix.yaw))

fantasydemo/res/scripts/base/TeleportPoint.py

The BigWorld.fetchEntitiesFromChunks method causes all chunks in the space to be loaded in a load-
ing thread. Each <entity> data section in the loaded chunks causes the method onSection to be called
on the handler object. This method can then use the data section to create an appropriate entity.

For more details on loading data section information in a thread-safe way, see both the document How To
Avoid Files Being Loaded in the Main Thread and the BaseApp Python API's entries Main Page → Base
→ BigWorld → Function → BigWorld.fetchDataSection, BigWorld.fetchEntitiesFromChunks,
and BigWorld.fetchFromChunks.

#dest=
#dest=
api_python/baseapp/index.html#dest=BaseApp_Python_API


97

Chapter 9. The Database Layer
The database layer is BigWorld's persistent storehouse of entities. It allows writing specific entities into online
storage (usually into a database table or disk file), and retrieving them back into the world again later.

The database layer is not intended to be accessed frequently by each entity, but instead only at entity creation
and destruction times (and perhaps at critical trade points). You should not attempt to access the database in
response to every action a character performs ‐ let the disaster recovery mechanisms handle game integrity.

This chapter provides details on how to store and retrieve entities from the database.

9.1. Persistent Properties
The first step to make an entity persistent is to edit its definition file (named <res>/scripts/
entity_defs/<entity>.def) and specify the properties to be made persistent.

The persistent set of properties is often a small subset of the entity properties. For example, a role playing
game typically has a set of core attributes (strength, dexterity, etc...), and a set of derived attributes that need
to be modified transiently (maybe the character always gets full vitality when logging on, and so vitality
points need not be persisted).

To mark an entity property as persistent, it needs the tag <Persistent> added to it, as illustrated below:

<root>
  ...
  <Properties>
    ...
    <somePersistentProperty>
      <Type>       TYPENAME </Type>
      <Flags>      FLAGS    </Flags>
      <Persistent> true     </Persistent>
    </somePersistentProperty>
    ...
  </Properties> 
  ...
</root>

<res>/scripts/entity_defs/<entity>.def ‐ Marking a property as persistent

If the type is FIXED_DICT, then the <Persistent> tag can be specified for each property of the
FIXED_DICT data type.

For example:

<root>
  ...
  <Properties>
    ...
    <someFixedDictProperty>
      <Type>    FIXED_DICT
        <Properties>
          <a> <Type> TYPENAME </Type> </a>
          <b> 
            <Type> TYPENAME </Type>
            <Persistent> false </Persistent>
          </b>
        </Properties>
      </Type>
      <Flags>    FLAGS      </Flags>



The Database Layer

98 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

      <Persistent>  true    </Persistent>  
    </somePersistentProperty>
    ...
  </Properties>
  ...
</root>

In the above example, someFixedDictProperty.a is persistent, but someFixedDictProperty.b is not.
If the <Persistent> tag at the <someFixedDictProperty> level is false, then neither a nor b will be
persistent. By default, the <Persistent> tag at the FIXED_DICT field level is true, so it is not necessary
to specify it, except for selectively turning off the persistence of some fields.

Other parameters can be set for persistent properties for the MySQL database engine. For more details, see
“Mapping BigWorld Properties Into SQL” on page 102 .

9.1.1. Non-Persistent Properties

Properties that are reset each time the entity is created should not be made persistent. For example, entity's
A.I. and GUI states are usually non-persistent. Reducing the number of persistent properties will reduce the
load on the database. If a property is not persistent, its value will be set to its default value when the entity
is loaded from the database (see “Reading and Writing Entities” on page 100 ).

A MAILBOX property is always non-persistent.

9.1.2. Built-In Properties

The following built-in properties are persistent:

• Base : databaseID .

• Cell : position , direction and spaceID .

All other built-in properties are non-persistent.

Note

The entity's built-in id property is not persistent. It will change each time the entity
is re-created. This includes the case where the entity is re-created automatically by the
disaster recovery mechanism (see Disaster Recovery on page 163 ). Therefore, when
storing entity IDs of other entities, they should be stored in non-persistent properties
so that they will be automatically reset to the properties' default value when the entity
is re-created by the disaster recovery mechanism. This avoids the possibility of storing
invalid entity IDs.

The entity's id property is unchanged when the entity is restored by our fault tolerance
mechanism (see Fault Tolerance on page 159 ).

Use the entity's database ID for a long term reference to the entity.

9.1.3. Database Indexing

A simple property can be indexed in the database data definitions, so that look-ups on those
properties will be aided by an index, such as when using the BaseApp's Python API call
BigWorld.lookUpBasesByIndex(). Each property can have either a unique or non-unique index. If not
specified, no index is created for that property.

An example of specifying indices on properties is below:

<root>



The Database Layer

99

  ...
  <Properties>
    ...
    <playerNickname>
      <Type>          STRING    </Type>
      ...
      <Persistent>    true      </Persistent>
      <Indexed>       true 
        <Unique>      true      </Unique>
      </Indexed>
    </playerNickname>
    ...
    <playerNumKills>
      <Type>          UINT16    </Type>
      ...
      <Persistent>    true      </Persistent>
      <Indexed>       true 
        <Unique>      false      </Unique>
      </Indexed>
    </playerNumKills>

  </Properties>

There are some restrictions and conditions when indexing properties:

• Indexing is only supported when using MySQL databases.

• Only persistent properties are indexable.

• Only UNICODE_STRING, STRING, BLOB, FLOAT,UINT and INT variants are indexable. For example, com-
posite types such as ARRAY and FIXED_DICT are not indexable.

• UNICODE_STRING, STRING are only indexable up to their first 255 characters. BLOB types are only index-
able up to their first 255 bytes.

When defining an index, if the Unique section is omitted, the index is assumed to be non-unique.

9.1.4. The Identifier Tag

The <Identifier> tag is an optional tag for persistent STRING or BLOB entity properties. It specifies a
property to be the identifier for that entity type. Entities can be retrieved from the database by using their
identifier instead of their database ID. For this reason, all entities of the same type must have unique identi-
fiers. At most one property per entity can be tagged as an identifier.

For example, assuming the entity definition file below:

<root>
  ...
  <Properties>
    ...
    <playerNickname> 
      <Type>       STRING </Type>
      <Flags>      Flags  </Flags>
      <Persistent> true   </Persistent>
      <Identifier> true   </Identifier>
    </playerNickname>

    <someProperty1> 
      <Type>       UINT32 </Type>
    </someProperty1>



The Database Layer

100 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

    <someProperty2> 
      <Type>       STRING </Type>
      <Persistent> true   </Persistent>
    <someProperty2>
    ...

Example <res>/scripts/entity_defs/<entity>.def ‐ Setting the Identifier property

Then assuming that there are three instances of the above entity type, they could be represented like in the
table below:

Table . Entity data with its <Identifier> property.

playerNickname someProperty2

playerNickname1 "cfeh"

playerNickname2 "fwep"

playerNickname3 "fwep"

Note that <someProperty1> is not represented in the database because it is not specified as being persis-
tent.

Entity types with an <Identifier> property can be searched by name, using methods such as
BigWorld.lookUpBaseByName and BigWorld.createBaseFromDB. For details, see the BaseApp Python
API.

Marking a property as an identifier property also adds a unique index to that property. See the section
“Database Indexing” on page 98  above.

9.2. Reading and Writing Entities

The database provides the means of saving entities and bringing them back into the world at a later time.
It also guarantees that each saved entity can have only one instance within the world. This assures that any
writes to the database for the entity will be correctly carried out.

In order to use this functionality, you must first create a persistent entity. Such an entity must exist on a
BaseApp, and could be of type BigWorld.Base or BigWorld.Proxy. You can create it with any of the
normal techniques. For more details, see “Entity Instantiation on the BaseApp” on page 89 .

The key for persisting an entity is its property databaseID, combined with its entity type. The property
databaseID is a 64-bit integer that is unique among entities of the same type, and usually corresponds to
an auto-increment field in a database table. When an entity is created with any of the usual techniques, its
databaseID is set to 0, indicating that it has never been written to the database.

To add a newly created entity to the database, its method writeToDB has to be invoked (from either cell
or base).

If invoked on the base entity, writeToDB receives an optional argument specifying the callback method.
Upon completion, writeToDB will invoke the callback, passing a Boolean argument indicating if writing
to the database succeeded or failed, and the base entity that invoked the method. A notification method is
used, as the database write is an asynchronous operation.

The code fragments below illustrate the use of method writeToDB from the base.

1. In someEntity's base script (<res>/scripts/base/someEntity.py), define callback method for
writeToDB:

import BigWorld

api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/baseapp/index.html#dest=BaseApp_Python_API


The Database Layer

101

class someEntity( BigWorld.Base )
  ...
  def onWriteToDBComplete( successful, entity ):
    if successful:
      print "write %i OK. databaseID = %i" % (entity.id, databaseID)
    else:
      print "write %i was not successful" % entity.id
  ...

2. Invoke methods to create base and add it to database:

ent = BigWorld.createBase( "someEntity" )
ent.writeToDB( onWriteToDBComplete )

3. The result displayed in BaseApp:

write 92 OK. databaseID = 376182

Next time this entity is destroyed (by invoking method ent.destroy), it will be 'logged off' ‐ the database
layer keeps track of whether the entity is in the world.

A destroyed entity can later be brought back to the world using the method
BigWorld.createBaseFromDBID and the properties stored in the database, as illustrated below:

BigWorld.createBaseFromDBID( "someEntity", 376182, optionalCallbackMethod )

Since loading a destroyed entity from the database is also an asynchronous operation, if you wish to be
notified of the completion of this process, you need to pass a callback function as the third argument of
method BigWorld.createBaseFromDBID. The callback function receives the entity identifier as the only
argument, which is the databaseID if entity was successfully loaded, or None, otherwise.

The code fragments below illustrate the request to reload entities from the database:

1. In someEntity's base script (<res>/scripts/base/someEntity.py), define callback method for
createBaseFromDBID:

import BigWorld

def onComplete( entity ):
  if entity is not None:
    print "entity successfully created" 
  else:
    print "entity was not created" 

2. Call createBaseFromDBID with a valid databaseID:

BigWorld.createBaseFromDBID( "someEntity", 376182, onComplete )

3. The result displayed in BaseApp:

entity successfully created



The Database Layer

102 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

4. Call createBaseFromDBID with an invalid databaseID:

BigWorld.createBaseFromDBID( "someEntity", 10000000000, onComplete )

5. The result displayed in BaseApp:

entity was not created

9.3. Mapping BigWorld Properties Into SQL

When designing persistent properties, it is useful to understand how the mapping from BigWorld types to
SQL types is performed by the database layer. This information can be used for performance tuning, or in
manually modifying the database.

9.3.1. Entity Tables

Each entity type will have a main entity table, and zero or more sub-tables in the database.

An entity type's main table is named tbl_<entity_type_name>. Data for the majority of BigWorld types
will be stored in the columns of the main table. Types like ARRAY and TUPLE, however, require the use of
additional tables, referred to as sub-tables in this document.

Except for ARRAY and TUPLE properties, data for each entity is stored as a single row in the entity type's
main table.

9.3.2. The databaseID property

The databaseID property of an entity is stored in the id column in the main table ‐ this is why entities
without persistent properties still have a main entity table.

9.3.3. Simple Data Types

A property with a simple data type is mapped to a single SQL column (named sm_<property_name>)
with a type that accommodates.

The table below describes each BigWorld simple data type, and which MySQL type it is mapped to:

Table . Mapping of simple BigWorld data types to SQL.

BigWorld data type Mapped to MySQL type (column
sm_<property_type>)

INT8 TINYINT

UINT8 TINYINT UNSIGNED

INT16 SMALLINT

UINT16 SMALLINT UNSIGNED

INT32 INT

UINT32 INT UNSIGNED

INT64 BIGINT

UINT64 BIGINT UNSIGNED

FLOAT32 FLOAT

FLOAT64 DOUBLE



The Database Layer

103

9.3.4. VECTOR Data Types

Properties with vector types are mapped to the appropriate number of columns of MySQL type FLOAT
‐ named vm_<index>_<property_name>, where <index> is a number from 0 to the size of the vector
minus 1.

The list below describes each BigWorld VECTOR data type, and which MySQL type it is mapped to:

Table . Mapping of BigWorld VECTOR data types to MySQL.

BigWorld data
type

# of columns Mapped to MySQL type (column
vm_<index>_<property_name>)

VECTOR2 2 FLOAT

VECTOR3 3 FLOAT

VECTOR4 4 FLOAT

9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Types

Properties of types STRING, UNICODE_STRING, BLOB, and PYTHON will be mapped to column
sm_<property_name>, with the type being dependent on the <DatabaseLength> attribute of the prop-
erty specified in the entity definition file (for details, see “The Entity Definition File” on page 20 , and Prop-
erties on page 29 ), as it determines the width of the column when the type is mapped to SQL.

The list below summarises the mapping of STRING, UNICODE_STRING, BLOB, and PYTHON data types:

• PYTHON

• DatabaseLength < 256 ‐ TINYBLOB

• DatabaseLength >= 256 and < 65536 ‐ BLOB

• DatabaseLength >= 65536 and < 16777215 ‐ MEDIUMBLOB

• STRING

• DatabaseLength < 256 ‐ VARBINARY

• DatabaseLength >= 256 and < 65536 ‐ BLOB

• DatabaseLength >= 65536 and < 16777215 ‐ MEDIUMBLOB

• DatabaseLength >= 16777216 ‐ LONGBLOB

• UNICODE_STRING

The UNICODE_STRING type maps to the MySQL string types outlined below. The character encoding
used for storing these strings in the database is determined by the value of the bw.xml option dbMgr/uni-
codeString/characterSet1. For more details on the UNICODE_STRING and the issues involved when
dealing with character sets, please refer to the chapter Character Sets and Encodings on page 117 . The
UNICODE_STRING type has similar storage requirements to the STRING type as shown below:

• (DatabaseLength x 3) < 256 ‐ VARCHAR

• (DatabaseLength x 3) >= 256 and < 65536 ‐ TEXT
1For more details see the Server Operations Guide, chapter Server Configuration with bw.xml, section “DBMgr Configuration Options”.

#dest=
#dest=
#dest=


The Database Layer

104 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• (DatabaseLength x 3) >= 65536 and < 16777215 ‐ MEDIUMTEXT

• DatabaseLength >= 16777216 ‐ LONGTEXT

The definition of <DatabaseLength> is illustrated below:

<root>
  ...
  <Properties>
    ...
    <someProperty>
      <Type>            STRING  </Type>
      <Persistent>      true    </Persistent>
      <DatabaseLength>  16      </DatabaseLength>
    </someProperty>
    ...

<res>/scripts/entity_defs/<entity>.def ‐ Defining property's mapped SQL type

9.3.6. PATROL_PATH and UDO_REF Data Types

The PATROL_PATH type has been deprecated in favor of the use of User Data Objects and should be avoided
as they will be removed in a future release. The <PatrolNode> User Data Object replaces the station nodes
of the old system.

Properties with UDO_REF type are mapped to a column of type BINARY, named sm_<property_name>.
The column width is 16 bytes, which corresponds to the 128-bit GUID that identifies a Patrol Path or User
Data Object type.

The 128-bit GUID is stored in the column as four groups of 32-bit unsigned integers. Each integer is in lit-
tle endian order. For example, if the GUID is 00112233.44556677.8899AABB.CCDDEEFF, then the byte
values in the column will be 3322110077665544BBAA9988FFEEDDCC.

9.3.7. ARRAYs and TUPLEs

Each ARRAY or TUPLE property is mapped to an SQL table, referred to as sub-tables of the entity's main
table, and named <parent_table_name>_<property_name>.

<parent_table_name> is the name of the entity type's main table, unless the ARRAY or TUPLE is nested
in another ARRAY or TUPLE property, in which case <parent_table_name> is the name of the parent
ARRAY's or TUPLE's table.

Note

Although BigWorld does not impose a limit on nesting ARRAY or TUPLE types,
MySQL has a limit of 64 characters on table names.

As sub-table names are always prefixed with their parent table name, this effectively
limits the nesting depth.

ARRAY or TUPLE sub-tables have a parentID column that stores the id of the row in the parent table
associated with the data. The sub-table will also have an id column to maintain the order of the elements, as
well as to provide a row identifier in case there are sub-tables of this sub-table.

The other columns of the sub-table will be determined by the ARRAY's or TUPLE's element type (e.g., an
ARRAY <of> INT8 </of> will result in one additional column of type TINYINT). Most BigWorld types



The Database Layer

105

only require one additional column, which will be called sm_value. For details on how an ARRAY or TUPLE
of FIXED_DICT is mapped into the database, see “FIXED_DICTs” on page 106 .

9.3.7.1. Storing ARRAYs and TUPLEs as a BLOB

Instead of storing ARRAY and TUPLE data in a separate tables, each ARRAY or TUPLE can be configured to
stored their data in an internal binary format inside a MEDIUMBLOB column. This behaviour is controlled
by the <persistAsBlob> option:

<root>
  ...
  <Properties>
    ...
    <someProperty>
      <Type> 
        ARRAY <of> INT32 </of> 
        <persistAsBlob> true </persistAsBlob>
      </Type>
    </someProperty>

<res>/scripts/entity_defs/<entity>.def ‐ Storing an ARRAY property as a blob

<persistAsBlob> is false by default.

Storing the data as a blob can improve database performance significantly, especially for deeply nested ar-
rays. However, the binary data is in BigWorld's internal format and should not be modified directly using
SQL statements. The data should only be modified by loading the entity into BigWorld, modifying the data
in Python and then writing the entity back to the database.

Note

There is currently no way of migrating the ARRAY or TUPLE data from separate tables
into the MEDIUMBLOB binary format or vice versa. When switching <persistAs-
Blob> between true and false, the data in the database associated with the ARRAY
or TUPLE will be lost. Therefore, the <persistAsBlob> option should not be changed
lightly.

Note

Changing the element type of the ARRAY or TUPLE will invalidate the data in the
database. This will cause the entity which contains the ARRAY or TUPLE to fail to
load. This problem exists even when changing between elements of similar types, for
example from an ARRAY <of> INT32 </of> to an ARRAY <of> INT16 </of>.
It is recommended that you:

1. Set <persistAsBlob> to false.

2. Run the sync_db tool. For more details, see Server Programming Guide's Server
Operations Guide's chapter “Synchronise Database With Entity Definitions”.

3. Change the ARRAY or TUPLE element type and set <persistAsBlob> to true.

4. Run the sync_db tool again.

#dest=
#dest=
#dest=


The Database Layer

106 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

9.3.7.2. The <DatabaseLength> Attribute

The <DatabaseLength> attribute of an ARRAY or TUPLE property is applied to the element type of the
array if the element type is STRING, BLOB or PYTHON.

Other types either disregard the <DatabaseLength> modifier or, as in the case of FIXED_DICT, have their
own method of specifying the <DatabaseLength>.

9.3.8. FIXED_DICTs

If an entity type contains a FIXED_DICT property, then that property's fields are mapped to the database as
though they where properties of the entity.

FIXED_DICT columns have more elaborate names than non-FIXED_DICT columns:

• sm_<property_name>_<field_name>

If the FIXED_DICT property contains an ARRAY or TUPLE field then the name of the sub-table is corre-
spondingly more elaborate:

• <parent_table_name>_<property_name>_<field_name>.

If a FIXED_DICT type is used as an element of an ARRAY or TUPLE, then the fields are mapped into the
columns of the ARRAY's or TUPLE's sub-table. The columns will be named sm_<field name>.

If the FIXED_DICT property has the <AllowNone> attribute set to true, then an additional column called
fm_<property_name> will be added to the table. This column will have the value 0 when the property's
value is None, or 1 otherwise.

The <DatabaseLength> attribute should be specified at the field level of a FIXED_DICT property ‐ the one
specified at the property level is ignored.

9.3.9. USER_TYPEs

If you have a USER_TYPE data type, then you can specify how it should be mapped to SQL. For more details
on custom data types, see “Implementing Custom Property Data Types” on page 45 .

In order to provide this mapping, a method called bindSectionToDB needs to be implemented in the
USER_TYPE implementation. This method receives an object as its argument to be used to declare the data
binding. For example, for a USER_TYPE implemented by an instance of the type TestUserType:

...
  class TestUserType( object ):
    ...
    def addToStream( self, obj ):
      ...

    def bindSectionToDB( self, binder ):
      ...

instance = TestUserType()

Defining USER_TYPE database mapping method.

The object received by bindSectionToDB to perform the type mapping (binder in the preceding example)
provides the following methods:



The Database Layer

107

• bind( property, type, databaseLength )

Binds a property (based on name) from the data section to a field (or fields) in the current SQL table, and
creates a column called sm_<property_name>.

The parameter type is a string that corresponds to the <Type> field of the XML definition of the property.
For example:

Table . Examples of type mapped to string.

Data
type

XML type

Simple <Type> INT </Type> INT

ARRAY <Type> ARRAY <of> INT</of> </
Type>

ARRAY <of> INT</of>

Custom <Type> USER_TYPE <implement-
edBy> module.instance </imple-
mentedBy> </Type>

USER_TYPE <implementedBy>
module.instance </implementedBy>

The parameter databaseLength is optional (defaulting to 255), and determines the size and data type
of STRING mapped. For more details, see “STRING, UNICODE_STRING, BLOB, and PYTHON Data
Types” on page 103 .

• beginTable( property )

Starts the specification of a new SQL table (called <current_table_name>_<property_name>) for
binding Python compound objects e.g. lists, tuples, dictionaries. Any calls to the method bind following
a beginTable call will bind to fields in the new table until endTable is called.

Typically, beginTable is only used for binding Python compound objects that contains a variable number
of compound objects e.g. list of tuples. For simple lists and tuples, it is sufficient to call bind with 'ARRAY
<of><simple_type></of>' as the type. For compound objects that contain a fixed number of items, it
is more efficient to bind each item as a separate field in parent table instead of creating a new table.

All tables created by beginTable will have an additional field called parentID used in associating rows
in the new table with the parent table.

• endTable()

Finishes the specification of new SQL table started by method beginTable.

Upon completion, specification of the parent table is resumed.

The implementation of the method bindSectionToDB must match the implementation of the method ad-
dToStream. The order and the parameter type of calls to bind must match the order in which the properties
are serialised.

The table below shows the addToStream implementation followed by the corresponding bindSection-
ToDB implementation:



The Database Layer

108 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

addToStream implementation Corresponding bindSectionToDB implementation

stream += struct.pack( "b", obj.intValue ) binder.bind( "intValue", "INT8" )

stream += struct.pack( "B", obj.intValue ) binder.bind( "intValue", "UINT8" )

stream += struct.pack( "h", obj.intValue ) binder.bind( "intValue", "INT16" )

stream += struct.pack( "H", obj.intValue ) binder.bind( "intValue", "UINT16" )

stream += struct.pack( "i", obj.intValue ) binder.bind( "intValue", "INT32" )

stream += struct.pack( "I", obj.intValue ) binder.bind( "intValue", "UINT32" )

stream += struct.pack( "q", obj.intValue ) binder.bind( "intValue", "INT64" )

stream += struct.pack( "Q", obj.intValue ) binder.bind( "intValue", "UINT64" )

stream += struct.pack( "f", obj.floatValue ) binder.bind( "floatValue", "FLOAT32")

stream += struct.pack( "b", len(obj.stringValue) )
+ stringValue

binder.bind( "stringValue", "STRING", 50)

stream += struct.pack ( "i", len(obj.listValue) )
for item in obj.listValue stream += struct.pack
( "f", item )

binder.beginTable( "listValue" )
binder.bind( "value", "FLOAT32" )

binder.endTable()

or

binder.bind( "listValue", "ARRAY <of> FLOAT32 </
of>" )

Implementation of method addToStream and corresponding bindSectionToDB.

9.3.9.1. Examples

• Mapping a simple user-defined data type

The example below illustrates a simple user data type that represents a UTF-8 string.

It maps the Python type unicode to a BigWorld data type. The method bindSectionToDB binds the
property to a 50-byte SQL string column. Since this type requires only one column, there is no need to give
it a name, thus the property argument can be an empty string.

class UTF8String():
  "
  UTF8(unicode) string
  "
  def addToStream( self, obj ):
    # obj is a Python Unicode object.
    string = obj.encode( "utf-8" ) 1

    return struct.pack( "b", len(string) ) + string

  def addToSection( self, object, section ):
    # Since UTF-8 is compatible to C strings(no NULL characters)
    # it is safe to store a Unicode string as C string.
    # The asString setter/getter method stores the value in the
    # root of DataSection 'section'.
    section.asString = obj.encode( "utf-8" )

  def createFromStream( self, stream ):
    # Return a Python Unicode object.
    (length,) = struct.unpack( "b", stream[0] )
    string = stream[ 1 : length+1 ]
    return string.decode( "utf-8" )

  def createFromSection( self, section ):



The Database Layer

109

    # The asString method returns the value of section root
    # as a simple C string.
    # Return a Python Unicode object.
    return section.asString.decode( "utf-8" )

  def bindSectionToDB( self, binder ):
    # The empty string represents the root of DataSection.
    # The value in the DataSection root will be stored in
    # SQL database as a column of STRING type
    binder.bind( "", "STRING", 50 )

  def defaultValue( self ):
    # Return an empty Python Unicode object.
    return u""

instance = UTF8String()

<res>/scripts/common/UTF8String.py

1
Note

In order to enable the utf-8 encode operation, the Python encodings
module will need to be imported from fantasydemo/res/scripts/com-
mon/BWAutoImport.py.

• Mapping a complex user-defined type

The example below implements the class Test, and the class TestDataType, which accesses the values
on Test.

Test contains three member variables:

• An integer.

• A string.

• A dictionary.

TestDataType's method addToSection will represent the attributes of Test objects like the following
<DataSection>:

<testData>

  <intValue>    100        </intValue>

  <stringValue> opposites  </stringValue>

  <dictValue>
    <value>
      <key>    good     </key>
      <value>  bad      </value>
    </value>
     <value>
      <key>    old      </key>
      <value>  new      </value>
    </value>
    <value>
      <key>    big      </key>



The Database Layer

110 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

      <value>  small    </value>
    </value>
  </dictValue>

</testData>

Test object's DataSection

TestDataType's method createFromSection will create Test objects from DataSections like the
one above.

TestDataType's method bindSectionToDB will bind the Test object's integer and string variables to
two columns, and add a child table for the dictionary member, as illustrated below:

Representation of Test entity data in the MySQL database

The classes Test and TestDataType are defined as below:

import struct

class Test( object ):
  def __init__( self, intValue, stringValue, dictValue ):
    self.intValue = intValue
    self.stringValue = stringValue
    self.dictValue = dictValue

  def writePascalString( string ):
    return struct.pack( "b", len(string) ) + string

  def readPascalString( stream ):
    (length,) = struct.unpack( "b", stream[0] )
    string = stream[1:length+1]
    stream = stream[length+1:]
    return (string, stream)

class TestDataType( object ):
  def addToStream( self, obj ):
    if not obj: obj = self.defaultValue()
    stream = struct.pack( "i", obj.intValue )
    stream += writePascalString( obj.stringValue )
    stream += struct.pack( "i", len( obj.dictValue ) ) 1

    for key in obj.dictValue.keys():
      stream += writePascalString( key )
      stream += writePascalString( obj.dictValue[key] )
    return stream
  
  def createFromStream( self, stream ):
    (intValue,) = struct.unpack( "i", stream[:4] )
    stream = stream[4:]
    stringValue, stream = readPascalString( stream )
    dictValue = {}
    size = struct.unpack( "i", stream[:4] )
    stream = stream[4:]



The Database Layer

111

    while len( stream ):
      key, stream = readPascalString( stream )
      value, stream = readPascalString( stream )
      dictValue[key] = value
    return Test( intValue, stringValue, dictValue )

  def addToSection( self, obj, section ):
    if not obj: obj = self.defaultValue()
    section.writeInt( "intValue", obj.intValue )
    section.writeString( "stringValue", obj.stringValue )
    s = section.createSection( "dictValue" )
    for key in obj.dictValue.keys():
      v = s.createSection( "value" )
      print key, obj.dictValue[key]
      v.writeString( "key", key )
      v.writeString( "value", obj.dictValue[key] )

  def createFromSection( self, section ): 2

    intValue = section.readInt( "intValue" )
    if intValue is None:
      return self.defaultValue()
    stringValue = section.readString( "stringValue" )
    dictValue = {}
    for value in section["dictValue"].values():
      dictValue[value["key"].asString] = value["value"].asString
    return Test( intValue, stringValue, dictValue )

  def fromStreamToSection( self, stream, section ):
    o = self.createFromStream( stream )
    self.addToSection( o, section )

  def fromSectionToStream( self, section ):
    o = self.createFromSection( section )
    return self.addToStream( o )

  def bindSectionToDB( self, binder ):
    binder.bind( "intValue", "INT32" )
    binder.bind( "stringValue", "STRING", 50 )
    binder.beginTable( "dictValue" )
    binder.bind( "key", "STRING", 50 )
    binder.bind( "value", "STRING", 50 )
    binder.endTable()

  def defaultValue( self ):
    return Test(100, "opposites", {"happy":"sad", "big":"small",
 "good":"bad"})

instance = TestDataType()

<res>/scripts/common/TestDataType.py

For details on methods supported for DataSection objects, see the BaseApp Python API, CellApp Python
API, and Client Python API's entry Class list → DataSection.

1 While it is important to stream and destream the size of dictionaries and array's correctly in Python, it
is also important to realise that there is a C++ assumption of these sizes existing on the stream in order
for entities to be sent to the DBMgr for persistent storage.

api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/client/index.html#dest=Client_Python_API


The Database Layer

112 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

2
Note

This script function does not process the input command and its corresponding
output ‐ the input command is handled by the database management system.

It is the user's responsibility to ensure that the command is compatible with the
underlying database. The command's output should be processed by the callback
function provided by the user.

9.4. Execute Arbitrary Commands on Database

BigWorld provides a facility for developers to execute arbitrary commands on the underlying database. By
using the method BigWorld.executeRawDatabaseCommand you can execute custom statements or com-
mands, and access data that do not conform to the standard BigWorld database schema.

Each database interface can interpret the data (command) and convert it to the expected format. For example,
the MySQL interface expects an SQL statement, and the XML interface expects a Python statement.

9.4.1. Execute Commands on SQL Database

When executing a command on a SQL database, the method BigWorld.executeRawDatabaseCommand
has the following signature:

BigWorld.executeRawDatabaseCommand( sql_statement, sqlResultCallback )

It has the following parameters:

• sql_statement

The SQL statement to execute. For example: 'SELECT * FROM tbl_Avatar'.

• sqlResultCallback

The Python callback to be invoked with the result from SQL.

The callback will be invoked with different parameters depending on whether a single result set is returned,
or there are multiple result sets returned. Multiple results can be returned from calling stored procedure
calls, or if the sql_statement passed in contains multiple SQL statements separated by semicolons.

For a single-result-set command, the following parameters are passed to the callback:

• resultSet (List of list of strings)

For SQL statements that return a result set (such as SELECT), this is a list of rows, with each row being
a list of strings.

For SQL statements that do not return a result set (such as DELETE), this is None.

• affectedRows (Integer)

For SQL statements that return a result set (such as SELECT), this is None.

For SQL statements that do not return a result set (such as DELETE),this is the number of affected rows

• error (String)

If there was an error in executing the SQL statement, this is the error message. Otherwise, this is None.



The Database Layer

113

For multiple-result-set commands, a list is passed in containing tuples of three elements each. The three ele-
ments correspond to the arguments above (resultSet, affectedRows and errors), and the list contains
one of these tuples for each of the returned result sets.

9.4.2. Execute Commands on XML Database

When executing a command on a XML database, the method BigWorld.executeRawDatabaseCommand
has the following signature:

BigWorld.executeRawDatabaseCommand( python_statement, pythonResultCallback )

It has the following parameters:

• python_statement

The Python expression to execute

• pythonResultCallback

The Python callback to be invoked with the result from the Python expression.

The XML database is stored in a global data section named BigWorld.dbRoot. The structure of the data
section is defined by the entity definition files (<res>/scripts/entity_defs/<entity>.def).

The callback is called with three parameters:

• resultSet (List of list of strings)

Output of the Python expression, as a string.

The string is embedded inside two levels of lists, so resultSet[0][0] retrieves the string.

• affectedRows (Integer)

This parameter will always be None.

• error (String)

If there was an error in executing the Python expression, this is the error message. Otherwise, this is None.

The code fragments below execute a command on the XML database:

1. Request the health level of an avatar called 'Fred':

BigWorld.executeRawDatabaseCommand(
    "[a[1]['health'].asInt for a in BigWorld.dbRoot.items() if
 a[0]=='Avatar' and a[1]['playerName'].asString == 'Fred']", healthCallback
 )

2. Implement the Python callback:

def healthCallback( result, dummy, error ):
    if (error):
         print "Error:", error
         return
    print "Health:", result[0][0]

3. If the avatar's health level is 87, then the output will be:



The Database Layer

114 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Health: [87]

9.5. Secondary Databases

Secondary databases are an optional feature that can be used to help reduce load on the primary database by
distributing database writes onto machines with BaseApp processes. After an entity has been loaded from
the primary database onto a BaseApp they are considered active and store any property modifications into a
secondary database stored on the same machine as their associated BaseApp. Secondary databases will write
back their contents to the primary database after an active entity is destroyed, becoming inactive.

Flow of persistent entity data when secondary databases are enabled

Each BaseApp has its own secondary database, including machines which may host more than one BaseApp.
A secondary database is an SQLite database file on the BaseApp machine's local disk. Secondary databases
can be enabled or disabled using the <baseApp/secondaryDB/enable> configuration option. For details
on this option, see the document Server Operations Guide's section Server Configuration with bw.xml → “Sec-
ondary Database Configuration Options” .

Entities are currently stored in raw binary form inside secondary databases and should only be manipulated
using BigWorld tools like the data consolidation tool consolidate_dbs.

9.5.1. Data Consolidation

In case of a complete system failure, active entities may not have the opportunity to flush their data to the pri-
mary database. The data consolidation tool is run to transfer the active entity data from secondary databases
to the primary database.

The data consolidation process is automatically run during system shutdown to transfer the persistent data
of entities that were active when the system was shutdown.

The data consolidation tool is automatically run during start-up if the system was not shutdown successfully.

Unlike the BigWorld server, which uses UDP for interprocess communications, the data consolidation tool
uses TCP connections to transfer the secondary databases from the BaseApp machines to the DBMgr ma-

#dest=
#dest=
#dest=
#dest=


The Database Layer

115

chine. If there is a firewall on the DBMgr machine, it needs to be configured to allow TCP connections from
BaseApp machines.

For more details on the data consolidation tool, see the document Server Operations Guide's section “Data
Consolidation Tool”.

9.5.2. Database Snapshot

Due to the existence of secondary databases, the data in the primary database may be quite stale. A backup
made of the primary database may be considered too stale for functional use. As a solution to this issue, a
secondary database snapshot tool is provided to make more up-to-date backups by backing up data from
secondary databases as well. For details, see the document Server Operations Guide's section “Database
Snapshot Tool”.

Note

Despite the name of the tool, it does not generate a true snapshot of the system. The tool
does not ensure that all active entities have flushed their data to the secondary databas-
es before taking a copy of the secondary database. It makes a best effort at copying the
primary and all the secondary databases at close to the same time.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


117

Chapter 10. Character Sets and Encodings
When dealing with characters outside the ASCII range it may be necessary to convert multi-byte values into
a well defined format for network transmission and storage in either a file or database.

All areas of the server and the server tools default to using the UTF-8 character encoding as it is well known
and widely implemented and supported.

The following chapter discusses the different areas of the server and tools that consider character encoding,
along with how the default character encoding can be modified (if possible).

When discussing Unicode and character encodings we use some common terminology. This is briefly out-
lined below to avoid any confusion later.

• Unicode

A standard for representing text (characters and symbols) from any language.

Characters for each language are represented by a unique code point. When discussing a code point, a U or
U+ will typically be prefixed before the code point for clarity.

Examples include:

Code point Description

U+0041 Latin letter A

U+0448 Cyrillic letter SHA

U+4E04 CJK (Han) ideogram for above

U+3082 Hiragana letter MO

U+30E2 Katakana letter MO

• Character encoding

A standard for representing a multi-byte value, for example a 3 byte Unicode code point, when transmit-
ting data between applications.

Examples include: UTF-8, Big5, GB18030, GB2312, KOI8-R

• Encode

The process of converting a Unicode code point (or series of code points) into a specific character encoding.

For example, encoding U+4E09 (Han character for 3) into UTF-8 would result in a three byte value E4
B8 89.

• Decode

The process of converting a byte (or array of bytes) from a character encoding into a set of Unicode code
points.

For example, decoding the GB18030 value 08 1A (Han character for above) into a Unicode code point
would result in the value U+4E04.



Character Sets and Encodings

118 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

10.1. Python and Entity Properties

In every Python interpreter there is a default encoding that is used to convert from string objects to uni-
code objects. The current default encoding can be seen by running the following from within a Python in-
terpreter:

>>> import sys
>>> sys.getdefaultencoding()
'ascii'

Within the BigWorld FantasyDemo source code, the default encoding is controlled by the variable
DEFAULT_ENCODING in the file fantasydemo/res/scripts/common/BWAutoImport.py. By default
this value is set to utf-8, however this may be changed to any valid Python encoding as required.

As Python is the scripting language used for interacting with entities and their properties, it is important to
understand the implications of the default Python encoding on entity properties. This primarily affects two
types of entity property data types, STRING and UNICODE_STRING.

10.1.1. STRING

Entity properties using the STRING data type are transferred around the network as byte arrays without any
modification and are stored as a BLOB in the MySQL database. Properties of this type are expected to map
directly to a Python string object.

When assigning a unicode string to a STRING property, the programmer must explicitly encode() the
string. For example assuming the default encoding is UTF-8:

>>> self.string_property = u"\u4e04".encode()
>>> print repr( self.string_property )
'\xe4\xb8\x84'

As STRING properties are stored in the database as a binary BLOB, any character encoding may be used
using this method as it is up to the programmer to ensure all Python script references to the string are using
the same encoding.

10.1.2. UNICODE_STRING

Entity properties that use the UNICODE_STRING data type are expected to be a Python unicode type object
that can have their encode() and decode() methods invoked as required to convert, respectively, from
and to Python string objects.

In order to transfer UNICODE_STRING properties around the network, they are encoded to UTF-8 by the
BigWorld engine and then decoded to a Python unicode object after being destreamed. This is performed
by the the UnicodeStringDataType class in bigworld/src/lib/entitydef/data_types.[ch]pp.

Note

There should be no reason to modify the encoding used to stream / destream
UNICODE_STRING properties. This information is provided for reference purposes on-
ly.

The MySQL storage of UNICODE_STRING properties is slightly different to regular STRING objects. These
properties result in TEXT or VARCHAR columns in the database with a specific character set encoding on each
table and column. For more details please refer to the section “UNICODE_STRING storage” on page 119 .



Character Sets and Encodings

119

10.2. DBMgr and Encodings

When considering DBMgr and MySQL's usage of character encodings, we must be clear on all areas that
character sets are used.

Character encoding is only particularly relevant when dealing with UNICODE_STRING properties as STRING
properties are already being considered as a byte array.

Streaming UNICODE_STRING properties to DBMgr uses the encoding / decoding mechanism outlined in
“UNICODE_STRING” on page 118 .

Once DBMgr needs to send a UNICODE _STRING property to MySQL it is passed as UTF-8 to the
MySQL client connection1 for transmission. All BigWorld connections to a MySQL server are established
in UTF-8 mode. This can be seen in the MySql::connect() method located in bigworld/src/lib/
dbmgr_mysql/wrapper.cpp.

When data is received by the MySQL server from a client connection it may optionally convert the data into
another character set2. The client connection establishment outlined in the previous step ensures that this
character set is also UTF-8 which means that no character set modification will occur here.

Now that the MySQL server has completely received the client data it can store it in whatever format is
necessary. When creating entity tables, BigWorld defaults all UNICODE_STRING columns to store their
data as UTF-8. This ensures the most compatible mode possible for all customers as UTF-8 should cover
the entire Unicode range of characters. The following section “UNICODE_STRING storage” on page 119
outlines how the UNICODE_STRING properties are stored in more detail along with details on how to alter
the encoding on disk.

10.2.1. UNICODE_STRING storage

Entity properties that have a data type of UNICODE_STRING are stored in a MySQL database as TEXT or
VARCHAR columns depending on whether a <DatabaseLength> was specified in the entity definition file.

In order to allow more efficient storage of data in MySQL, it is possible to change the storage type of
UNICODE_STRING property columns using the dbMgr/unicodeString/characterSet3 bw.xml op-
tion. The effect of modifying this value can best be seen by using an example.

Using the Chinese character for 3 (unicode code point U+4E09) we can see from the following Python code
that the byte representation of the character is smaller in the GB23124 character set than in UTF-8.

>>> print repr( three )
u'\u4e09'
>>> print repr( three.encode( "utf8" ) )
'\xe4\xb8\x89'
>>> print repr( three.encode( "gb2312" ) )
'\xc8\xfd'

For this reason for certain games it may make sense to use an alternate character set for storing
UNICODE_STRING properties, however it is worth noting that while this is a supported feature, it may in-
troduce unexpected issues due to differences in the Client input method5 and the Python unicode string
encoding6.

1This corresponds to the MySQL variable character_set_client.
2This corresponds to the MySQL variable character_set_connection.
3For more information on this option see the Server Operations Guide, chapter Server Configuration with bw.xml, section “DBMgr

Configuration Options”.
4The GB2312 character set is used in the example above rather than the more modern GB18030 character set as MySQL does not support

GB18030.
5For more information see the Client Programming Guide, chapter Input Method Editors (IME).

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


Character Sets and Encodings

120 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

For more information on MySQL character encodings please refer to the MySQL online documentation.

10.2.1.1. Storing invalid characters

As it is possible to modify the character set that UNICODE_STRING properties are stored as in MySQL, it is
important to understand how MySQL handles the case of writing data to a column that cannot be encoded
to the column's character set.

To illustrate this case we will start with a simple Python example. If we attempt to encode() the code point
U+4E04 to the ASCII character encoding, an exception is raised as follows:

>>> print u"\u4E04".encode( "ascii" )
Traceback (most recent call last):
  File "<stdin>", line 1 in ?
UnicodeEncodeError: 'ascii' codec can't encode character u'\u4e04' in position
 0: ordinal not in range(128)

This behaviour unfortunately is not replicated in MySQL which will instead silently fail and insert ? charac-
ters in place of the invalid characters. As this failure is silent, it is possible to unknowingly corrupt data in
your database by having a dbMgr/unicodeString/characterSet value that doesn't not fully cover the
range of values that may be provided to MySQL. This is one of the reasons we recommend you leave the
storage type as UTF-8 unless absolutely required.

10.2.2. Sorting search results

As each language has its own conventions regarding the order in which a set of values should be sorted,
MySQL also provides the ability to modify the behaviour of search results when querying a database. This
rules used to define sorting order is referred to as a collation.

Each character set that is available in MySQL has one or more collations available. For example the UTF-8
character set in MySQL has 21 collations available which can be seen by running the command:

mysql> SHOW COLLATION LIKE 'utf8_%';

This is relevant for both custom search results you may perform on the BigWorld entity database, as well as
for internal server lookups that are performed for looking up entities by their <Identifier> property7.

Collations are generally referred to as one of the following:

• Case sensitive

• Case insensitive

• Binary

Depending on the behaviour of your game, you may wish to modify the default UNICODE_STRING colla-
tion with the dbMgr/unicodeString/collation8 bw.xml option.

By default the server collation is utf8_bin which will provide case sensitive lookups.

For more information on MySQL collations and behaviour, please refer to the MySQL online documentation
Character Set Support.

6For more details see “Python and Entity Properties” on page 118 .
7This only applies when an <Identifier> property is a UNICODE_STRING.
8For more information on this option see the Server Operations Guide, chapter Server Configuration with bw.xml, section “DBMgr

Configuration Options”.

#dest=
#dest=
#dest=
#dest=


121

Chapter 11. Profiling
Profiling the server can take on a number of forms depending on the stage of development you are in and
what kind of issues you are attempting to isolate. The following list is a brief outline of the different areas
you may wish to profile.

• Entities

Entities are the main game object which are used by all components of the BigWorld engine. Inefficient
or bloated entities can cause excessive load and network communication on your server processes which
will reduce the overall performance of your server cluster. This in turn can affect the total number of active
users your server can support.

For more information see “Profiling Entities” on page 121 .

• Python script

Python script represents the majority of custom game code and as such is one of the most variable sources
of load that is placed on the BigWorld server processes. Profiling Python script should be performed on a
semi-regular basis and preferably while performing load tests in order to ensure that there are no major
bottlenecks in your script.

For more information see “Python Game Script” on page 122 .

• Server Processes

As the BigWorld server processes are the core of a server cluster that run custom script and game code,
it can be useful to identify which areas of the server processes are under load. This can help to pinpoint
issues in either game script, navigation issues, network communication, entity management or any of the
other numerous tasks that are handled by the server processes.

For more information see “Profiling Server Processes (C++ Code)” on page 124 .

• Client Communication

Understanding the network traffic being sent to client connections can help lower bandwidth usage, thus
reducing network costs as well as increasing the overall performance of your server cluster.

For more information see “Client Communication” on page 126 .

• Server Process Communication

In order to diagnose network related latency issues on individual server processes, it can be useful to
identify which network messages are causing the most load on each process.

For more information see “Server Communication” on page 128 .

We recommend you run profiles regularly while you are developing or making changes to configuration,
etc. as you can see what effect a change can make. You should keep the profiles that you generate to use
as a historical reference for your games performance over the development life. For example, if you make
a script change, and suddenly cell load is quite high, you can use the profiles to see when this load spike
started and narrow down the cause of the issue to script usage as well as the particular methods causing
the script load spike.

11.1. Profiling Entities

As Entities are the main game object being used by all components of the BigWorld engine it is important to
make sure that your game entities are implemented as efficiently as possible. This includes:



Profiling

122 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Minimising persistent properties.

• Ensuring properties have the smallest applicable data type (while considering long term scaling).

• Ensuring properties have the most appropriate data propagation flags assigned.

• Ensuring properties have AoI where appropriate.

The best mechanism currently in place for profiling entity sizes is the usage of the WebConsole filtered watch-
ers view to collect information about the impact of each entity type's properties, coupled with a peer review
system to ensure that multiple people have an understanding of the impact of property types.

11.1.1. Persistent Properties

Persistent properties cause load from both network transmission costs between CellApp, BaseApp and DB-
Mgr, as well as placing load onto DBMgr when not using Secondary Databases. By minimising the number
of persistent properties as well as decreasing the size of properties that are being persisted you will effect a
long term performance gain in your cluster.

Determining the persistent properties can be performed by using the WebConsole filtered watcher page
using a Processes of 'cellapp' and a Path of 'entityTypes/*/properties/*/persistent'. Once you have narrowed
down the persistent properties you can perform a review of them to determine any optimisations that can
be made.

11.1.2. Property Data Types

Choosing the smallest possible data type that can be used for a property will assist in lowering network load
within your cluster. This includes all properties regardless of whether they are persisted.

11.1.3. Property Data Propagation

Often the easiest solution when developing a game is to set all properties to CELL_PUBLIC or ALL_CLIENTS
as it provides the greatest visibility of the property. This quite often works perfectly when developing in the
office on a single machine server that isn't heavily loaded, however this can lead to large problems when
performing load tests and scaling a game up to production.

Ideally the best approach when deciding on the propagation flags to use with properties is to use the object
oriented design philosophy of calling methods on an object, in this case an Entity, to request that it perform
work for you, rather than accessing its private information yourself.

A common example is the health or HP of an entity. This value may be constantly changing due to damage
or regenerating health over time and is often only directly relevant for the entity the property is associated
with. While other entities may be interested in this property, they are only transiently interested, such as
when they are all in combat together, or if the entities have formed a group of players. In this circumstance
it may make sense to have the propagation flag as CELL_PRIVATE which can be requested as required by
a method call. This reduces the amount of network traffic generated from broadcasting the health property
every time it is updated but still allows access to the property when required.

11.2. Python Game Script

control_cluster.py pyprofile

Profiling Python script generally occurs as a result of identifying particular bottlenecks in script that are caus-
ing issues with server processes, such as long tick times resulting in process termination through a SIGQUIT
signal.



Profiling

123

Profiling server side script is performed with the control_cluster.py script using the pyprofile1 com-
mand. This command only applies to server components that run Python script, i.e., CellApp, BaseApp and
DBMgr.

This command will dump a table of the top cumulative and internal times for script calls over a period of
time. The user can optionally display tables of callers and callees as well. See control_cluster.py --help for
exact usage and options.

This tool is invaluable in determining which script calls are causing the most server-side CPU load for your
game, for example:

11.2.1. Understanding the output

PyProfile will output its results for each process that has been queried in two orderings, internal time and
cumulative time. The output format of these two result sets are identical. The profile aims to help in identi-
fying the most time-expensive Python script methods implemented by your game.

      6681 function calls in 0.106 CPU seconds

Ordered by: internal time
List reduced from 30 to 10 due to restriction <10>

ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   643    0.019    0.000    0.020    0.000 Guard.py:446(moveToPosition)
   102    0.016    0.000    0.016    0.000 Creature.py:476(moveTowardsPoint)
   643    0.011    0.000    0.050    0.000 Guard.py:349(think)
   354    0.010    0.000    0.036    0.000 Creature.py:332(think)
   239    0.007    0.000    0.008    0.000 Guard.py:584(nextPatrolNode)
   627    0.006    0.000    0.054    0.000 Guard.py:735(onMove)
   202    0.006    0.000    0.006    0.000 Flock.py:166(onTimer)
   404    0.005    0.000    0.019    0.000 Guard.py:653(doCamp)
   101    0.004    0.000    0.004    0.000 DustDevil.py:26(onTimer)
   239    0.004    0.000    0.019    0.000 Guard.py:639(doPatrol)

The hotshot Python module which produces these reports uses two different names when referring to the
same information. The internal time report corresponds to the total time column outlined in the table below
along with the other column descriptions.

Column Name Description

ncalls The total number of calls seen for this function.

tottime The amount of time (in seconds) that is spent executing the code only inside of the current
method. Methods called from this method are not included.

cumtime The amount of time (in seconds) this method took to execute, including the execution time of
any other methods called from this method.

percall The percall columns refer to the columns immediately to the left of them and indicate the av-
erage time per call for the profile time they refer to.

filename:lineno(function) The filename and line number containing function the profile refers to.

1For information on pyprofile usage see the control_cluster.py help.

$ control_cluster.py help pyprofile



Profiling

124 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

11.2.2. Increasing Memory Usage / Entity Count

Automatic garbage collection has been disabled in BigWorld to avoid the Python engine from utilising large
amounts of CPU time at unexpected intervals. In order to allow Python objects to be deleted, the server
processes will only delete objects when their reference count reaches zero. This approach has the side effect
of not deleting objects that have circular references or are referenced by objects having circular references.
See “Debugging Circular References”.

11.3. Profiling Server Processes (C++ Code)

When experiencing load spikes in your server that are not easily attributable to a specific cause it can be
useful to profile the C++ server code to help narrow down the areas where the most time is being spent. This
is supported on both the BaseApp and the CellApp using the control_cluster.py command cprofile.

This cprofile command collects and reports the internal C++ profiles of a server process over a period of
time. The profiles are broken down into key time sensitive code blocks such as sending updates to clients,
entity navigation, etc.

Below is the cprofile output from a CellApp running the FantasyDemo resources that is idling:

Profile                Count   Cumulative Times          Internal Times       
  
Idle                    2758 |  8.963s   3249us  88.0% |  8.963s   3249us 
 88.0%
scriptCall              8825 |  0.804s     91us   7.9% |  0.744s     84us  
 7.3%
callUpdates              102 |  0.383s   3758us   3.8% |  0.109s   1067us  
 1.1%
shuffleEntity          15648 |  0.069s      4us   0.7% |  0.069s      4us  
 0.7%
backup                   102 |  0.065s    637us   0.6% |  0.052s    510us  
 0.5%
boundaryCheck            448 |  0.035s     78us   0.3% |  0.035s     78us  
 0.3%
findPath                 466 |  0.030s     65us   0.3% |  0.030s     65us  
 0.3%
RunningTime                0 |  0.000s      0us   0.0% |  0.025s      0us  
 0.2%
callTimers               102 |  0.637s   6241us   6.3% |  0.020s    193us  
 0.2%
visionUpdate            9999 |  0.018s      1us   0.2% |  0.018s      1us  
 0.2%
tickStats                102 |  0.017s    163us   0.2% |  0.017s    163us  
 0.2%
canNavigateTo           2018 |  0.046s     22us   0.5% |  0.016s      8us  
 0.2%
calcBoundary             102 |  0.016s    159us   0.2% |  0.014s    140us  
 0.1%
onTimer                 3614 |  0.618s    170us   6.1% |  0.010s      2us  
 0.1%
watchersTCP              250 |  0.007s     26us   0.1% |  0.007s     26us  
 0.1%
transientLoad            509 |  0.004s      8us   0.0% |  0.004s      8us  
 0.0%
gameTick                 102 |  1.158s  11356us  11.4% |  0.004s     41us  
 0.0%
findEntity              1327 |  0.003s      2us   0.0% |  0.003s      2us  
 0.0%
onMove                   796 |  0.198s    248us   1.9% |  0.002s      2us  
 0.0%

#dest=


Profiling

125

chunksMainThread         509 |  0.006s     10us   0.1% |  0.001s      2us  
 0.0%

Total running time: 10.181s (0.000s spare)

The following sections outline some of the code blocks that are profiled along with a short description of
their meaning. The sections have been broken down into code that is common between server processes, and
server process specific code.

11.3.1. Common Code Block Profiles

Profile Type Description

Idle Time spent idling while polling for network / file descriptor activity.

RunningTime Time spent collating profile statistics.

tickStats Time spent updating moving average for statistics.

watchersTCP Time spent processing TCP watcher requests.

watchersUDP Time spent processing UDP watcher requests.

11.3.2. BaseApp Code Block Profiles

Profile Type Description

archive Time spent archiving entities to the database as part of the second level fault tolerance. See
Server Operations Guide chapter Backups and Disaster Recovery.

backup Time spent performing entity backups to other BaseApps as part of the first level fault toler-
ance mechanism. See Server Operations Guide chapter Fault Tolerance.

encryptRecv Time spent decrypting incoming network traffic from the EncryptionFilter (bigworld/src/
lib/network/encryption_filter.cpp).

encryptSend Time spent encrypting outgoing network traffic from the EncryptionFilter (bigworld/src/
lib/network/encryption_filter.cpp).

tickGameTime Time spent processing game ticks.

#dest=
#dest=
#dest=
#dest=


Profiling

126 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

11.3.3. CellApp Code Block Profiles

Profile Type Description

backup Time spent backing up cell entities to their Base.

boundaryCheck Time spent calculating all entities that need to be offloaded, ghosted or removed.

calcBoundary Time spent calculating the number of entities that can be offloaded and notifying CellAppM-
gr.

callTimers Time spent processing timers.

callUpdates Time spent calling updatable objects such as controllers and witnesses. Calls to
Controller.update() are included in this time.

canNavigateTo Time spent calculating whether an Entity can move to a destination position from its current
location.

chunksMainThread Time spent performing chunk loading / unloading calculations in the main thread.

findEntity Time spent locating a specific entity within the known population on the CellApp.

gameTick Time processing the game tick.

onMove Time spent in the onMove() script callback from a movement controller.

onTimer Time spent in the onTimer() script callback from the timer controller.

scriptCall Time spent in any Python script call that has been invoked from C++.

shuffleEntity Time spent updating the range lists on entity movement.

transientLoad Time spent performing entity management tasks such as creation, deletion and initialisation.

visionUpdate Time spent updating the vision of entities.

11.4. Client Communication

control_cluster.py eventprofile

Recall that the server sends down both non-volatile data and volatile data down to the client. Volatile data is
in the form of position and pose updates, while non-volatile data consists of the property updates on an entity
and client-side method calls for that entity, sent down to any player that can witness that entity. The profiling
of non-volatile data can give valuable insight into which methods and property updates are particularly high
throughput, enabling effective optimisation of the network impact of entity scripts.

There is a distinction made between own-client communication and other-client communication. Own-client
communication consists of method calls and property updates that only an entity's own client will receive.
These include updates for properties marked as OWN_CLIENT as well as method calls that are made using
the ownClient mailbox, and are private to the player's own entity and not broadcast to other players. Note
that this type of client communication only applies to player entities.

In contrast, there is also other-client communication for an entity, which consists of the public method calls
and property updates that players having that entity in their AoI are able to witness. This includes updates
for properties marked as OTHER_CLIENTS or ALL_CLIENTS, as well as method calls made on an entity''s
otherClients or as well as the allClients mailbox. These events are potentially propagated to any
player that has that entity in their AoI.

Other-client events are not propagated to witnessing clients immediately. For instance, the distance a player
is from the entity an event pertains to will affect how soon that event is propagated after the event has actually



Profiling

127

occurred on the server side. In addition, the LoD level set on properties and methods will affect whether a
particular event will be sent down to a witnessing player.

Client communication is broken down into three types for the purposes of profiling:

• Property changes and method calls to an entity's own client (privateClientEvents). This tracks when-
ever any own-client communication occurs.

• Property changes and method calls that can be made available to players that witness it (publicClien-
tEvents). This tracks whenever any public property is updated or any client method is called that can
be sent down to any witnessing players.

• Property changes and method calls that are actually sent down to players (totalPublicClien-
tEvents). This tracks the total number of public properties that were actually sent down to witnessing
players, subject to LoD levels.

The eventprofile command samples a running server over a period of time, collecting counts and sizes of
all non-volatile communication down to the client. A sample output of eventprofile is provided below,
followed by a brief description of the sections. This section is brief as the event profile command is scheduled
to be updated to use the new property statistics available under the entityTypes watcher tree.

Waiting 120.0 secs for sample data ...
**** cellapp01 ****

Event Type: privateClientEvents

Name                                    #       Size    AvgSize  Bandwidth

Avatar.cellBounds                     120       2880     24.000     24.000
Avatar.myArray                          2         41     20.500      0.342
Avatar.modeTarget                       2         16      8.000      0.133
Avatar.myDict                           1         11     11.000      0.092
Avatar.mode                             2         10      5.000      0.083

Event Type: publicClientEvents

Name                                    #       Size    AvgSize  Bandwidth

Creature.moving                      4741      23705      5.000    197.542
Creature.performAction                956       4780      5.000     39.833
Guard.moving                          647       3235      5.000     26.958
Creature.creatureState                150        750      5.000      6.250
Guard.didGesture                       69        345      5.000      2.875
Avatar.modeTarget                       2         16      8.000      0.133
Merchant.modeTarget                     2         16      8.000      0.133
Avatar.mode                             2         10      5.000      0.083
Beast.initiateRage                      2          8      4.000      0.067

Event Type: totalPublicClientEvents

Name                                    #       Size    AvgSize  Bandwidth

Creature.moving                      1559       7795      5.000     64.958
Creature.performAction                396       1980      5.000     16.500
Creature.creatureState                 52        260      5.000      2.167
Merchant.modeTarget                     2         16      8.000      0.133
Beast.initiateRage                      2          8      4.000      0.067



Profiling

128 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

11.4.1. Private Client Events

These include:

• Changes on properties marked as OWN_CLIENT or ALL_CLIENTS.

• Client-side method calls on a player's own entity that are propagated to that player's own client via
Entity.ownClient, Entity.client or Entity.allClients.

11.4.2. Public Client Events

These include:

• Changes on properties marked as OTHER_CLIENTS or ALL_CLIENTS.

• Client-side methods calls that are made on the mailboxes Entity.otherClients,
Entity.allClients, or using the special Entity.clientMethod( entityID ) method.

11.4.3. Total Public Client Events

These include:

• Changes on properties marked as OTHER_CLIENTS or ALL_CLIENTS that were actually sent down to
witnessing players.

• Client-side method calls that are made on the mailboxes Entity.otherClients,
Entity.allClients, or using the special Entity.clientMethod( entityID ) method, that were ac-
tually sent down to witnessing players.

11.5. Server Communication

control_cluster.py mercuryprofile

Server communication primarily occurs via Mercury2 interfaces. These can be seen on server processes under
the Watcher tree path nub/interfacesByName.

The output of mercuryprofile provides a condensed table of results that can be optionally sorted as re-
quired by using options when running the profile. A sample of the output from a single instance of CellApp
is provided below.

cellapp01 - Internal Nub

 id                   name     br    mr max br   aml abps amps
  0       DBInterfaceBirth      8     1      8   8.0  0.0  0.0
  1                addCell     92     4     23  23.0  0.0  0.0
  2                startup      8     1      8   8.0  0.0  0.0
  3            setGameTime      4     1      4   4.0  0.0  0.0
 14         cellAppMgrInfo 380184 95046      4   4.0 40.0 10.0
 18         updateGeometry 646272 38016     17  17.0 68.0  4.0
 19    spaceGeometryLoaded     78     4     22  19.5  0.0  0.0
 21           createEntity    270     4     70  67.5  0.0  0.0
 22 createEntityNearEntity  63181   466    295 135.6  0.0  0.0
 35       writeToDBRequest   1536   384      4   4.0  0.1  0.0

2For more information on Mercury see the Server Overview section “Inter-Process Communication (Mercury)”.

#dest=
#dest=


Profiling

129

 50        runScriptMethod  49110  4821    190  10.2 -5.0 -0.5
255                  Reply  10892   165   9600  66.0 -0.0 -0.0

By default this output is sorted by ID. As mentioned the sorting can be altered by providing command
line options with running the profile. Refer to the online help with control_cluster.py help mer-
curyprofile for more details. The table below provides a description of each column type.

Column Name Description

id The Mercury message ID for this message. This corresponds to the watcher value nub/in-
terfaceByName/messageName/id.

name The name for this Mercury message. This corresponds to the watcher value nub/inter-
faceByID/ID/name.

br The total number of bytes received for messages of this message type.

mr A count of the number of messages received for this message type.

max br The maximum numbers of bytes received for a single instance of this message type from all
messages of this type that have been seen.

aml The average message length (in bytes) for this message type.

abps The average bytes per second that this message type is handling.

amps The average number of messages per second of this message type.

Each server process type provides a different interface based on the functionality that process is providing.
The two major causes of network traffic from Mercury messages are the BaseApp and CellApp. The following
sections outline the most commonly encountered interface messages and their associated functionality. With
this information it is possible to narrow down the scope of any potential issues.



Profiling

130 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

11.5.1. BaseApp Interface Summary

Interface Name Description

addGlobalBase Messages received from the BaseAppMgr informing a BaseApp of a new global base.

backupBaseEntity Messages containing backup information for bases on other BaseApps. This is part of the
first level fault tolerance mechanism. See Server Operations Guide chapter Fault Tolerance.

backupCellEntity Messages from cell entities containing backup information. This is part of the first level fault
tolerance mechanism.

callBaseMethod Messages from other processes requesting a Python method is run on a base entity.

callCellMethod Messages from a CellViaBaseMailBox. These messages are forwarded on to the requested
base's cell entity.

callClientMethod Messages from a ClientViaBaseMailBox. These messages are forwarded to the Proxy's con-
nect client entity.

cellEntityLost Messages from a cell entity notifying its base that it has been destroyed.

createBaseFromDB Messages asking for a base entity to be created using a known DBID as a result of calling
BigWorld.createRemoteBaseFromDB*().

createBaseWithCellData Messages requesting a base entity is created.

createCellPlayer Messages forwarded from a CellApp to a Client connection via a Proxy notifying the client
that its Witness has been created.

currentCell Messages from CellApps to BaseApps notifying a base of an offload in its cell entity. This oc-
curs as a normal part of offloading entities as part of load balancing.

detailedPosition Messages containing position updates from the cell to the client.

entityMessage Messages that are received on a nub to call a specific interface method. For internal nubs
this corresponds to all methods defined in an entity's <baseMethod> section. For external
nubs this corresponds only to methods that are an <Exposed> <baseMethod>.

forwardedBaseMessage Messages intended for a base that has been recently offloaded to another BaseApp.

logOnAttempt Messages from the DBMgr for logon attempts.

modWard Messages from the cell notifying the proxy and the client of a change of client control as a
result of calling BigWorld.controlledBy().

sendToClient Messages from the cell notifying the proxy that it has sent all the required updates for the en-
tity for the current tick and they should now be forwarded to the client.

setBackupBaseApps Messages from the BaseAppMgr notifying the current BaseApp of the other BaseApps that it
is responsible for performing backups of.

setClient Message to notify the BaseApp that the next message received refers to a specific Entity.
This will generally correspond with the number of callBaseMethod, callCellMethod and call-
ClientMethod messages.

setCreateBaseInfo Messages from the BaseAppMgr informing the BaseApp of the best BaseApp to use for calls
to BigWorld.createBaseAnywhere() and BigWorld.createBaseRemotely().

setSharedData Messages notifying the BaseApp of any changes to shared data which can include
BigWorld.baseAppData and BigWorld.globalData.

teleportOther Messages requesting that an entity (A) is teleported to the same space as an entity (B) that
is owned by this BaseApp.

writeToDB Messages from the cell notifying the base entity to write itself to the database.

The following table outlines some of the BaseApp interfaces that are used primarily to forward messages di-
rectly to the client without performing any processing. These message occur as a result of CellApp witnesses
sending updates to their associated client.

#dest=
#dest=


Profiling

131

Interface Name Description

enterAoI Proxy message forwarded to client.

enterAoIOnVehicle Proxy message forwarded to client.

forcedPosition Proxy message forwarded to client.

leaveAoI Proxy message forwarded to client.

updateEntity Proxy message forwarded to client.

11.5.2. CellApp Interface Summary

Interface Name Description

addCell Messages from a CellAppMgr to add a Cell into a Space.

avatarUpdateExplicit Position updates from a Client connection to their entity.

avatarUpdateImplicit Position updates from a Client connection to their entity.

callBaseMethod Method calls occurring on a BaseViaCell mailbox.

callClientMethod Method calls occurring on a ClientViaCell mailbox.

callWatcher A forwarding watcher request from the corresponding manager process (i.e., CellAppMgr /
BaseAppMgr). For more information see “Forwarding Watchers” on page 234 .

createEntity Requests to create a new entity within a Space.

createEntityNearEntity Requests to create a new entity near to another Entity.

createGhost Messages from other CellApps requesting a ghost entity is created for a new real entity in a
nearby Cell.

forwardedBaseEntityPacket Messages that are forwarded from a ghost entity to the real so that it may be provided to the
base entity. This is used to avoid race conditions when offloading entities between CellApps.

ghostAvatarUpdate Messages from nearby Cells updating ghost entities on the current CellApp of position
changes.

ghostHistoryEvent Messages sent from real entities that are being ghosted on the current CellApp providing
history event updates.

ghostedDataUpdate Messages from real entities updating ghosted properties.

notifyOfCellRemoval Messages sent from the CellAppMgr to notify of a neighbouring cells removal.

onload Messages sent from a nearby cell that is handing responsibility for a real entity over to the
current CellApp.

runExposedMethod Messages from Clients to run an <Exposed> method on an entity.

runScriptMethod Messages from other server components to run a method on an entity.

spaceData Messages from other CellApps notifying us of Space Data changes. For more information
see “Space Data” on page 148 .

writeToDBRequest Messages to entities to stream their information back to their base to be written to the
database.



133

Chapter 12. Proxies and Players

12.1. Proxies

The class BigWorld.Proxy on the BaseApp extends BigWorld.Base to support player-controlled entities.
By deriving an entity from BigWorld.Proxy, you can implement player characters, their accounts, and any
other relevant player-controlled objects on the server.

An entity derived from BigWorld.Proxy is created from the database whenever a client logs in to the server.
For details on how BigWorld determines which Proxy to load, see User Authentication and Billing System
Integration on page 181 . Proxies created in this way (see below for other ways of creating proxies) which
have a property called password, will have the value of that property set to the login password.

An instance of BigWorld.Proxy needs neither a cell entity, nor a client one. A proxy entity can be created
using the method BigWorld.createBase, just like any other entity. For more detail on this method, see
“Entity Instantiation on the BaseApp” on page 89 .

Like other base entities, saving and loading proxy entities from the database is possible. Initially, these reload-
ed proxy entities will be created without an attached client. An existing proxy can later hand its client over
to the reloaded one, in which case the reloaded proxy will be the one handling the client connection.

This allows you to have, for example, an Account entity that people can log in to, and a Character entity
that people can select from a menu in order to use in the game.

To pass the control of a client from one proxy to another, use the method giveClientTo, as in the example
below:

clientControlledProxy.giveClientTo( nonClientControlledProxy )

Whenever a client moves between proxies, or the cell entity of the proxy that a client is attached to is de-
stroyed, the client receives a call on onEntitiesReset to clear out its current knowledge of the world. This
effectively interrupts all game communications, and forces the client to refresh. If only the cell entity has
been destroyed, then the client's knowledge of its proxy is retained.

If giveClientTo does not succeed because of a problem with the destination proxy, onGiveClientTo-
Failure will be called on the origin proxy.



Proxies and Players

134 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

BaseApp managing bases and proxies

12.2. Witnesses

Whenever a proxy with an attached client has a corresponding cell entity, an extra object called witness is
attached to the cell entity.

This object manages the entity's AoI, and sends updates to the proxy, which forwards them on to the client.

The updates consist of the bulk of game-related messages, such as:

• Entity position updates.

• Entity property updates.

• Method calls.

• Space data changes.

• Notifications of entities entering and leaving the AoI.

12.3. Entity Control

By default, every cell entity is considered to be controlled by the server. When an entity incorporates a witness
object, it is considered to be controlled by the client attached to the corresponding proxy.

However, the control of an entity may be explicitly assigned and queried, using the entity attribute .con-
trolledBy. This attribute may be set to None, to indicate server control, or to a BaseEntityMailBox to
indicate control by the client attached to that proxy. Within this context, control implies ownership of and



Proxies and Players

135

responsibility for the entity's position and direction. Clients (and proxies) are informed of changes to the set
of entities that they are allowed to control. Proxies may read this set through their attribute wards.

12.4. Physics Correction

When an entity is controlled by a client, setting the attribute Entity.topSpeed to a value greater than
zero enables the physics checking. By default the topSpeed enables physics checking on all 3 axis, however
this may not always be appropriate. For example, if the gravity of your game environment enables a Y-axis
acceleration that results in a top speed exceeding the maximum allowable X/Z-axis top speed. In order to
accommodate this there is a secondary attribute named Entity.topSpeedY which takes precedence when
set to a value greater than zero. topSpeedY will only be used when both topSpeed and topSpeedY are
greater than zero.

Entity movement is validated in the following ways:

• Speed

The first check is regarding the speed, to ensure that it does not exceed topSpeed and topSpeedY. There
is a small amount of variance allowed in speed to account for up to 150ms of network jitter. Care is taken
so that this latency debt is not exploited by allowing the player to travel faster than the top speed for a brief
period of time.

• Geometry of the scene

The second check is made against the geometry of the scene, to ensure that the entity only leaves its current
chunk through a well-defined portal.

In spite of being very fast, this check does have consequences for level design. Barriers that control char-
acter mobility must be represented at the level of chunks. For example, a chunk with a wall across it, and
a door giving access to the other side, is not protected by this physics checking system. In order to imple-
ment this in a manner to enable physics validation, two chunks should be used one on each side of the
wall, with the door as a portal between them.

• Custom physics validator

If a custom physics validator has been developed, it will then be called between the top speed and the
geometry checks. The custom physics validator is called with the following parameters:

• Pointer to the entity.

• Pointer to the vehicle (NULL if the entity is not on a vehicle).

• The position to which the entity wants to move.

• The time elapsed since the last physics check.

The custom physics validator should return true if the entity is allowed to move to the new position, or
false if it is not allowed.

To install a custom physics validator, a CellApp extension module must be written. During the initiali-
sation of the extension module, the global function pointer g_customPhysicsValidator (declared in
bigworld/src/server/cellapp/entity.hpp) should be set to point to the custom physics validator
function. For more details, see Extending BigWorld Server on page 211 .

Other scenarios in which physics checking is applied include:

• Control of multiple entities by the same client (such as wards).

• Movement between vehicles (the ghost methods onPassengerAlightAttempt and onPassenger-
BoardAttempt are additionally called).



Proxies and Players

136 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Movement to another space.

When a server script directly sets the position or direction of an entity that is controlled by a client, the Cel-
lApp treats that as a physics correction. A new position and direction (sometimes referred to as the pose) are
forced down to the client, and no future position and direction updates are accepted until the correction is ac-
knowledged. This feature can be very useful for teleporting a player in response to some action or event on the
server. Notably, the methods Entity.teleport, Entity.boardVehicle and Entity.alightVehicle
also adhere to this mechanism. Server-side teleports are the only way to move an entity between spaces.

While in most cases movement controllers would also result in downstream-forced positions, their use on
client-controlled entities is neither recommended nor supported, since they continually set the position via
a system intended for one-off adjustments.

12.4.1. Avoiding Y-axis rubber-banding.

Due to the manner in which physics validation occurs, if a top speed has been exceeded, the server will force
a position update to the client with the last known valid position. This however has the unfortunate side
effect of producing an entity which doesn't fall if the top speed has been exceeded in the Y-axis. Setting the
topSpeedY to be higher than topSpeed will help in this situation, but eventually, the Y-velocity will be
greater than topSpeedY due to acceleration due to gravity when falling for long periods.

In order to produce a work around for this, it is recommended to write a custom physics validator while
setting a large value for topSpeedY. The custom physics validator could then perform its own validation and
update the entity position with a decreasing Y-position prior to returning false, and the updated position
would then be forced to the client.



137

Chapter 13. Entities and the Universe
Entities in BigWorld are contained in the game universe. A universe is composed of spaces, which are com-
posed of cells.

Each space can contain:

• Space Data for information that must be available to the entire space.

• Geometry to define where entities can move.

• Time of day, which is used by clients to determine day/night cycles.

13.1. Multiple Spaces

BigWorld supports having multiple separate geometric spaces in a universe. Each space can have a different
set of geometry mapped into it, and a different set of entities existing within it. Each CellApp can handle
multiple cells in different spaces.

Visualisation of spaces and division in cells (cell boundaries marked in dotted lines)

Spaces are usually created by creating an entity in a new space. For this reason, every space needs at least
one entity and as such once a space has no entities, it will cease to exist.

A common design technique to make this management easier is to create an entity Space (usually named
after the space's purpose, e.g., Mission, or Quest). Such an entity will be created in a new space, and then
be responsible for configuring that space for game play to begin. Players can then teleport into the new space
to explore it, play their mission, etc.

The general structure of this kind of entity is the illustrated in the code fragments below:

• Base script:

class Space( BigWorld.Base ):



Entities and the Universe

138 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

  def __init__( self ):
    # create our cell entity in a new space. self.onGetCell() will be
    # called when the cell entity is created.
    self.createInNewSpace()

  def onGetCell( self ):
    # create any predefined entities in the space
    # may want to use ResMgr to load details from an XML file
    
    # we want to make sure that each entity's createCellEntity()
    # method is passed the appropriate cell mailbox (this entity's
    # cell mailbox) so that it is created in the correct space
    # for example:
    BigWorld.createBase( "Monster", arguments, createOnCell=self.cell )

Example file <res>/scripts/base/Space.py

• Cell script:

class Space( BigWorld.Entity ):

  def __init__( self ):
    # Register our mailbox for getting the callback when the space
    # geometry finishes loading. You can choose any arbitrary string 
    # as the key so long you can find this entry again.
    BigWorld.cellAppData[ 'SpaceLoader:' + str(self.spaceID) ] = self

    # Add the geometry mapping. This maps the set of .chunk files we  
    # want into the space. BWPersonality.onAllSpaceGeometryLoaded will
    # be called when BigWorld finished loading the geometry.
    BigWorld.addSpaceGeometryMapping( self.spaceID, None, 
      "geometry/path" )

  def onGeometryLoaded( self ):
    # we can now also teleport in any additional entities that already
    # existed in the world (we'd probably store a mailbox somewhere in
    # the construction sequence to make this possible)
    # see the cell entity teleport() method for details
    playerMB.teleport( self, position, direction )

Example file <res>/scripts/cell/Space.py

• Cell personality script:

def onAllSpaceGeometryLoaded( spaceID, isBootstrap, lastPath ):
  if (isBootstrap):
    # Find the registered loader and tell it to load the entities into
    # the space.
    loaderKey = 'SpaceLoader:' + str(spaceID)
    if BigWorld.cellAppData.has_key( loaderKey ):
      BigWorld.cellAppData[ loaderKey ].onGeometryLoaded();

Example file <res>/scripts/cell/BWPersonality.py

To create this entity, the code below would be written1:

1This entity creation would normally be initiated from a client side action such as a "Create Mission" user interface option, or from a
player entering a dungeon portal.



Entities and the Universe

139

newSpace = BigWorld.createBaseAnywhere( "Space", ... )

Notice that there are four key steps in this piece of code:

1. Create the cell entity in a new space (in the __init__ method).

2. When the cell entity is created, map in any geometry that the space contains.

3. Create any entities that are required to be in the world.

4. When the space geometry is loaded, bring any required players into the space.

It is likely that there will be management code specific to the style of space that is required (this code will
be heavily dependant on your game's requirements). It is also possible to perform various steps between the
cell and the base, depending on entity instantiation requirements.

When all entities in a space are removed, the space will be destroyed. Alternatively, any entity in the space
can call the method Entity.destroySpace to destroy the current space the entity exists in. Each entity in
the space will have its method onSpaceGone called before it is actually destroyed.

13.1.1. Spaces Pool

When your game requires multiple instances of a space (e.g., a mission space), it is advantageous to create
a pool of reusable space instance during game startup.

This mechanism removes the need of later having to load chunks on demand, as when players request to
enter a space, an instance will be chosen from the pool. After players leave the space, you can move the
space back to the pool for later usage. This mechanism can greatly speed up the game loading for players
on the server.

13.2. Navigation System

The sub-sections below describe the features of the Navigation System.

13.2.1. Key Features

The key features of the system are:

• Navigation of both indoor and outdoor chunks.

• Seamless transition between indoor and outdoor regions.

• Dynamic loading of navpoly graphs.

• Path caching, for efficiency.

13.2.2. Navpoly Data Format

The world is broken up into chunks. Each chunk is a convex hull, and is uniquely identified by a chunk ID
string, e.g., 0000ffffo.

For navigation purposes, each chunk is broken up into a set of convex polygonal prisms. Such a prism is
known as navpoly, and is identified by an integer navpoly ID unique to a single chunk. A set of navpoly
regions is called a navmesh.

Each edge on a navpoly can be shared with the edge of an adjacent region. This means that movement
between these two regions is allowed. Alternatively, an edge may be marked as being adjacent to a different
chunk.



Entities and the Universe

140 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Navpoly edge demarcation

A navpoly also has a height associated with it. This is the maximum height of the navpoly region, such that
the client can do a drop test from this Y value, and always end up on the bottom of the navpoly.

Vertices in the navpoly are defined in clockwise order, and have its XZ coordinates stored in the XY fields.

The third coordinate is used to store adjacency information for the edge formed between this vertex and the
next. The value of this third coordinate is either the navpoly ID of the adjacent navpoly, or an encoding of
an obstacle type. Edges on chunk boundaries are indicated by the presence of a separate tag for the adjacent
chunk ID. In this case, the third vertex coordinate is not used.

13.2.3. Script Interface

When an entity wants to navigate to a position, it uses the Python Entity.navigateStep script method,
like the example below:

self.controllerID = self.navigateStep( destination, velocity, maxMoveDistance,
 maxSearchDistance, faceMovement, girth, userData )

The parameters for the navigateStep script method are described below:

• destination  ‐ The destination position.

• velocity  ‐ Movement velocity in metres per second.

• maxMoveDistance  ‐ The maximum distance to move before triggering the onMove callback.

• maxSearchDistance  ‐ The maximum distance to search for a path.

• faceMovement  ‐ Whether the entity should face in the direction of movement.

• girth  ‐ Minimum width of the gap that the entity can squeeze through.

• userData  ‐ Integer value passed to the navigation callback.

If there is no valid path to the destination, then navigateStep will fail, and throw a script exception. Otherwise,
it will return a controller ID. This is a unique ID that can be used to cancel the movement request, like so:

self.cancel( self.controllerID )

At every waypoint on the path, the entity's onMove method will be called, with the controllerID and
userData as arguments. To continue pathing, Entity.navigateStep must be called again to advance



Entities and the Universe

141

the controller to the next step, or the entity will stop. If navigateStep is not called again, or is called again
and fails, all resources related to the controller will be released, and there is no need to free them by calling
Entity.cancel.

def onMove( self, controllerID, userData ):

If the onMove notification method calls Entity.navigateStep more than 100 times without moving the
distance required for a single tick at the velocity specified, then the onMoveFailure notification method
is invoked.

def onMoveFailure( self, controllerID, userData ):

13.2.4. Navigate

When the Entity.navigateStep script method is called, the server performs the following steps:

1. Resolve the ChunkID and WaypointID from the source location.

2. Resolve the ChunkID and WaypointID from the destination location.

3. If the ChunkIDs are different, then perform a graph search on the chunk level. Otherwise, if the Way-
pointIDs are different, then perform a graph search on the navpoly level. If both these tests fail, move
in a straight line to the specified position.

13.2.5. Graph Searches

An A* search is used for both the chunk graph search and the navpoly graph search. The ChunkState and
WaypointState classes both implement the interface required for an A* search, and are used to search the
chunk and navpoly graphs respectively.

For the chunk graph search, distances are calculated based on the approximate points at which the entity
will enter and exit the chunk.

Distances on the navpoly graph are calculated based on the actual path that would be taken through the
navpolys.

Given a source location inside the navpoly, and a destination location outside the navpoly, the algorithm is
as follows:

• Find the point where the direct line from source to destination would intersect the polygon border.

• If this point is on an edge that has an adjacency, move directly to the point of intersection.

• Otherwise, move to a vertex that has an adjacency, such that the angle between this path and the desired
path is minimised.

This is a simple approach, and not always optimal, but works properly in most cases.

The PathCache class is used as a wrapper for performing both chunk and navpoly graph searches. It caches
one path per entity, and also stores the current hop index within that path. Each time a graph search would
take place, the PathCache checks if the goal is the same as the cached goal. If so, then the next state in the
path is returned, and the hop index is incremented, if appropriate.

13.2.6. Auto-Generation of Navpoly Regions

BigWorld provides two different utilities to generate navpoly regions: NavGen (used to generate NavGen
meshes) and Offline Processor (used to generate Recast meshes). Each space will be configured to use one of
these generators. Both generate navmeshes that can be used by the server-side navigation, and are explained
in further detail later in this section.



Entities and the Universe

142 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

These tools generate the convex navpoly polygonal prisms based on terrain and other geometric information
in the chunk files (named <res>/spaces/<space>/<chunk_ID>.chunk2.

They then write the results in the binary .cdata files3.

The file bigworld/res/helpers/girths.xml accounts for different entity profiles, such as their size
and other physical properties. This is represented by the girth value. Multiple girths may be specified, in
which case multiple navigation meshes will be generated and maintained. For each girth, different physical
parameters may be set (e.g., there is a flood fill parameter for the entity's height). A setting of 2.0 metres is
good default for humanoid entities. See “Configuring Girth Information for Navmesh Generation” on page
142  for details.

The method used for navmesh generation is determined by the value of navmeshGenerator in the
space.settings file. Modifying this value will not automatically cause chunks to be dirtied, so if a
navmesh already exists, the next generation will have to be run in overwrite mode.

There are two ways to inspect navmeshes once they are generated. They can be viewed over the terrain
in World Editor, or they can be viewed in Navgen. NavGen can be used to explore any navmeshes, even
those not generated using NavGen. If the space.settings file specifies a non-NavGen navmesh generator
(such as Recast), NavGen will operate in read-only mode. For more details, see the document Content Tools
Reference Guide's chapter NavGen.

13.2.6.1. Configuring Girth Information for Navmesh Generation

Navmesh generation requires girth information, which defines the profile of entities that will use each layer
of the navigation mesh. These settings are stored in a dedicated girth settings file. The location of this file
is determined by the value of editor/girthSettings in resources.xml, which defaults to helpers/
girths.xml4. In each chunk, the specified generator will generates a mesh for each girth specified in the
girth settings file.

<root>
  <girth> 0.5 1

    ?<always>        </always>
    <width>   0.90  </width>
    <height>  1.95  </height>
    <depth>   0.65  </depth>
  </girth>
</root>

Example file bigworld/res/helpers/girths.xml

Using smaller girths allows paths to pass closer to obstacles. A mesh for the default girth of 0.5 metres should
always be defined in the settings file. Additional girths can be also be specified for use by non-human-sized
entities, such as vehicles, which might use a girth of 4.0 metres. Each additional girth defined can significantly
add to the amount of memory needed by the server.

The navmesh used at runtime is the one whose girth matches that given in the call to the navigation function.
The girth must exactly match one that has been generated, or the navigation attempt will fail.

The number of the girth (the default is 0.5) in current versions of NavGen is just a label, but it was originally
the girth (i.e., radius) of the entity. The cell once attempted to dynamically apply the girth of the entity mov-
ing through the navmesh when calculating its movement path, so that entities with a large girth would be
prevented from passing through openings too narrow for them. However, this behaviour has been removed
since no reliable fast algorithm could be found for reusing the navmesh generated by one girth in another.

2For details on this file's grammar, see the document File Grammar Guide's section .chunk.
3For details on the information held by this and other chunk files, see the document Client Programming Guide's section Chunks →

“Implementation files”. For details on .cdata files' grammar, see the document File Grammar Guide's section .cdata.
4For details on this file's grammar, see the document File Grammar Guide's section girths.xml.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


Entities and the Universe

143

Now the navmesh must be generated for each girth independently, and no interpretation of the actual girth
floating-point value ever occurs.

The <girth> section contains the tags <width>, <height> and <depth> of that entity's profile. These
should be the same values as those used to control BigWorld.Physics objects on the client. The optional
tag <always> can also be defined in the <girth> section, to cause it to be always generated.

It is recommended to leave the girth settings at their default values until the actual models that will need to
use them have been tested in the game.

Each additional layer of girth adds to the processing cost to generate it, as well as to the size of its .cdata files
and the RAM they take up when loaded by the server. Navigation mesh information does not affect client
performance at all in a production environment, since it is stripped by the resource packager before .cdata
files are sent to the client.

13.2.6.2. Generating a NavGen Mesh: The NavGen Tool

NavGen generates navmeshes in two phases:

1. It flood fills each chunk, using client physics rules.

2. It uses a BSP to recursively subdivide the space and form convex polygonal prisms.

The NavGen utility handles multiple vertical levels within a chunk (bridges, tunnels, etc...). It uses a mul-
ti-pass algorithm to analyse and describe the connectedness of such scenes.

Navgen is the default navmesh generator for historical reasons.

For more details, see the document Content Tools Reference Guide's chapter NavGen.

13.2.6.3. Generating a Recast Mesh: The Offline Processor Tool

The Offline Processor generates navmeshes using Recast.

The navpoly regions generated by Recast will be complex shapes, compared with the strict geometry of
NavGen. This allows the navmesh to more accurately cover traversible areas with fewer navpoly regions.
The generation of navmeshes using Recast is also significantly faster than generation using Navgen.

For more details, see the document Content Tools Reference Guide's chapter Offline Processor.

13.3. Time

We have seen how entities define how different pieces of a game can behave. Game play involves changing
entities' states over time, and so it is important to have a good understanding of how time is managed in
the BigWorld environment.

It helps to think about different types of time when discussing time in BigWorld. These types are discussed
in the following sub-sections.

13.3.1. Real Time

Real Time is simply the time on a clock in the real world. Real time is used as the basis for defining the other
types of time in BigWorld.

13.3.2. Server Time

On the server, game time is incremented in discrete units, based on the <gameUpdateHertz> configuration
option in <res>/server/bw.xml5.

5For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “General Configuration Options”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


Entities and the Universe

144 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

The server keeps an integer counter that is incremented at this rate and whose initial value at server startup
is 0.

To calculate the server time in seconds, the following formula is used:

serverTime = serverTimestamp / gameUpdateHertz

This is approximately:

serverTime ~= currentRealTime - serverStartRealTime

Each client machine calculates a synchronised version of this time, available via the BigWorld.serverTime
script method.

13.3.3. Game Time

Game Time is the time sensed by the players in the game world.

A massively online persistent game usually has virtual days and months in its virtual world. You might want
to run one game world hour for every hour of Real Time, for example. In order to support this, BigWorld
has a standard piece of space data used to calculate the time of day6.

This space data records the following numbers:

• initialTimeOfDay ‐ Game Time when server started.

• gameSecondsPerSecond ‐ Conversion factor, from Server Time update rate to Real Time.

They are used together to define Game Time as:

gameTimeOfDay = ( serverTime - initialTimeOfDay ) * gameSecondsPerSecond

To modify game time for an entire space a CellApp Python method called BigWorld.setSpaceTimeOfDay
can be used. This method takes three parameters as follows:

• spaceID ‐ The ID of the space which should be effected.

• initialTimeOfDay ‐ The time of day at server startup.

• gameSecondsPerSecond ‐ The number of game seconds that pass for each real time second.

To modify only client side visualisation based on time, refer to the Client Python method
BigWorld.spaceTimeOfDay.

13.4. Initialisation: Personality script, eload, and runscript

By default, when the server is started, a single default space is created, containing no entities and no geometry.
In order to make a game interesting, scripts must populate this space, and possibly create other spaces to
also populate. While the server is running, you might wish to run specialist scripts to change properties of
elements within the world. These tasks can be completed using the personality script, and two server side
tools: eload and runscript.

The personality script can contain a Python function to be executed on every BaseApp right after there is
an available CellApp running. In this way, it is guaranteed that you can create both cell and base entities
from the script.

6For more details on space data, see “Space Data” on page 148 .



Entities and the Universe

145

The script to be executed is specified in the file <res>/server/bw.xml, as in the example below:

<root>
  ...
  <personality> personalityscript </personality>
  ...
</root>

Example file <res>/server/bw.xml ‐ Declaring the personality script

The corresponding file (following the example above would be personalityscript.py) is placed in the
directory <res>/scripts/base, to be executed at the appropriate time.

If a personality script is not defined, then the default filename BWPersonality.py is used.

The method onAppReady in the personality script is called by the BaseApp. The method receives one
Boolean argument, whose values are defined below:

• True ‐ If the BaseApp is the first one ready in the server clusters.

• False ‐ If the BaseApp is not the first ready in the cluster.

The personality script can call any BigWorld module method, and it is the recommended point to perform
the following:

• Add geometry to the space by calling addSpaceGeometryMapping from a cell entity.

• Initialise the game time by calling method setSpaceTimeOfDay from a cell entity. For more details, see
“Game Time” on page 144 .

• Initialise any custom space data. For more details, see “Space Data” on page 148 .

• Populate the world by creating entities.

During the execution of the personality script functions, the BaseApp cannot respond to messages received
from other server components. A time-consuming personality script is likely to timeout the BaseApp from
the server clusters. It is recommended to spread the entity creation in a timely manner for a smooth and
robust startup.

The example is illustrated below, with code on the personality, base, and client scripts.

• In the personality script:

...
def onAppReady( bool isBootStrap ):
  if isBootStrap:
    BigWorld.createBase( "SpaceManager", {}, {} )
    BigWorld.createBase( "EntityLoaderManager", {}, {} )
  # every BaseApp needs an EntityLoader
  BigWorld.createBase( "EntityLoader", {}, {} )
...

Example personality script <res>/scripts/base/<personality_script_name>.py

• On the BaseApp:

class SpaceManager( BigWorld.Base ):
  def __init__( self ):



Entities and the Universe

146 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

    # create the cell entity in a new space
    self.createInNewSpace( (0,0,0), (0,0,0), None )

class EntityLoaderManager( BigWorld.Base ):
  def __init__( self ):
    # register globally under a well-known name (ELM for example)
    # so the EntityLoaders can register with me
    self.registerGlobally( "ELM", onRegister )
    # add a timer that calls back every 1 second.
    # User data is 999 (only for identification purpose)
    self.addTimer( 1, 1, 999 )

  def onRegister( self, succeeded ):
    # callback from registerGlobally(). Argument succeeded should always
    # be True there is only one EntityLoaderManager in whole system
    if not succeeded:
      # should not be possible, try re-register
      self.registerGlobally( "ELM", onRegister )

  def registerLoader( self, entityLoader ):
    # append the mailbox of an entityLoader into our list
    # might have to verify it is not re-registered though
    self.entityLoaderList.append( entityLoader )

  def onTimer( self, timerId, userData ):
    if userData == 999:
      # distribute entity creation tasks to every registered
      # EntityLoader in a load spreading manner
      for i in range( len( self.entityLoaderList ) ):
        # prepare the argument for entity creation
        args = ...
        self.entityLoaderList[i].createEntities( args )
      if allJobFinished:
        # remove the timer if not required any more
        delTimer( timerId )

class EntityLoader( BigWorld.Base ):
  def __init__( self ):
    self.registerWithELM()

  def registerWithELM():
    if BigWorld.globalBases.has_key( "ELM" ):
      # if EntityLoaderManager is available register with it now
      elm = BigWorld.globalBases["ELM"]
      elm.registerLoader( self )
    else:
      # otherwise wait a bit
      self.addTimer( 1 )

  def onTimer( self, timerId, userData ):
    # retry registering
    self.registerWithELM()

  def createEntities( self, args ):
    # create the entities according to the arguments

Example file <res>/scripts/base/SpaceManager.py

• On the CellApp:

class SpaceManager( BigWorld.Entity ):



Entities and the Universe

147

  def __init__( self ):
    # add the geometry mapping
    # this maps the set of .chunk files we want into the space
    BigWorld.addSpaceGeometryMapping( self.spaceID, None, "geometry/path" )

Example file <res>/scripts/cell/SpaceManager.py

For details on eload and runscript, see the document Server Operations Guide's section Cluster Admin-
istration Tools → “Server Command-Line Utilities”.

13.5. Global Data

BigWorld offers several mechanisms for distributing global data to its components. Most of these mechanisms
also offer callbacks when a particular piece of global data is modified, effectively turning them into global
event distribution mechanisms as well.

As with most programming environments, global data should be treated with care, due to the challenges
they pose to code maintenance. In a distributed system like BigWorld, globals should be used even more
sparingly, because of the performance impact of data distribution, as well as the risk of race conditions.

13.5.1. globalData, baseAppData and cellAppData

BigWorld offers three Python dictionaries that are replicated across BigWorld components. They differ in
their scope of replication:

• BigWorld.globalData ‐ Replicated on all BaseApps and CellApps.

• BigWorld.baseAppData ‐ Replicated on all BaseApps.

• BigWorld.cellAppData ‐ Replicated on all CellApps.

The keys and values must be pickle-able Python objects. The value type can be any pickle-able Python object.
If the value is a BigWorld entity, then it is converted to a mailbox on components where the entity does not
currently reside.

The following callbacks are invoked when items in the dictionary are modified:

Global Data Added or modified Deleted

baseAppData BWPersonality.onBaseAppData BWPersonality.onDelBaseAppData

cellAppData BWPersonality.onCellAppData BWPersonality.onDelCellAppData

globalData BWPersonalityonGlobalData BWPersonalityonDelGlobalData

Callbacks invoked by manipulating global data.

BigWorld only detects an item change if it is assigned to a different object, not when part of the object is
changed. For example:

BigWorld.globalData[ "list" ] = [1, 2, 3]   # addition is detected
BigWorld.globalData[ "list" ][1] = 7        # modification not detected
BigWorld.globalData[ "list" ] = [3, 4, 5]   # modification is detected

If the modification is not detected, then the change will not replicated to other components, resulting in
inconsistency between the local and remote copies.

Each value object is pickled individually. This results in the value being a copy of the original. For example:

#dest=
#dest=
#dest=
#dest=


Entities and the Universe

148 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

drinks = [ "juice", "wine" ]
# BigWorld.globalData[ "fridge" ] will have its own copy of [ "juice","wine" ]
BigWorld.globalData[ "fridge" ] = drinks
# BigWorld.globalData[ "cupboard" ] will have its own copy of
 [ "juice","wine" ]
BigWorld.globalData[ "cupboard" ] = drinks

If multiple components concurrently modify the same item in the dictionary, then a central authority will
determine the order of modifications. For globalData and cellAppData, the authority is CellAppMgr;
for baseAppData, the authority is BaseAppMgr.

Callbacks for the modifications will be called in the order determined by the authority. In the components
where the modifications took place, the dictionary item will temporarily have the value of the local modifi-
cation before it is overridden by the value determined by the authority. Therefore, it is recommended that
any actions that should take place after a change to global data be placed in the callback functions instead of
inline with the code that changes the value of global data. For example:

def someFunction( ):
  BigWorld.globalData[ "mode" ] = 3
  # Should not put actions for mode 3 here. Otherwise there is a risk
  # that it will be performed in a different order on different
  # components

# In BWPersonality.py
def onGlobalData( key, value ):
  if ((key == "mode") and (value == 3)):
    # Do actions for mode 3

In addition to the components where globalData, baseAppData and cellAppData are replicated, the
dictionaries are also backed up to the following locations:

Global Data BaseAppMgr CellAppMgr Database

baseAppData ✓ ✗ ✗

cellAppData ✗ ✓ ✗

globalData ✓ ✓ ✗

Locations to which dictionaries are backed up.

The backup copies are used in the case of a component failure. However, since the dictionaries are never
backed up to the database, in the event of entire server failure, these dictionaries will be empty after disaster
recovery has completed.

13.6. Space Data

Space data is a means to distribute global data across the cell and client. It can be used for data that should be
transmitted to the client, but does not fit in the entity structure. Such examples, which are built into BigWorld
itself, include:

• Time of day ‐ Two floats containing data that allows BigWorld to translate Server Time to Game Time.

• Space geometry ‐ String describing which geometries are mapped into a space.

Space data consists of a 16-bit integer index, and a string. By packing various types into a string, it can
represent any application-defined data type.



Entities and the Universe

149

A piece of space data can be set by calling the method BigWorld.setSpaceData on the cell.

The function takes the parameters described below:

Parameter Description

spaceID The space in which to set the space data.

Each space has its own unique set of space data, which is never shared between spaces.

key A 16-bit integer index identifying which piece of space data to set.

All indices less than 256 are reserved for internal BigWorld usage, so games developers must choose values
greater than or equal to 256 (SPACE_DATA_FIRST_USER_KEY).

For keys less than 16,384 (SPACE_DATA_FIRST_CELL_ONLY_KEY), space data is automatically sent to
clients.

value A string to set as the current space data value for this key.

BigWorld.setSpaceData parameters.

When space data is set, a space data entry ID is returned. The entry ID and the key can be used to retrieve the
space data using the BigWorld.getSpaceData method. Entry ID is required because BigWorld supports
having multiple space data entries with the same key using the method BigWorld.addSpaceData. All
entries for a particular key can be retrieved using BigWorld.getSpaceDataForKey.

For keys that should never have more than one entry, the method BigWorld.getSpaceDataFirstForKey
can be used to retrieve a space data entry with only the key. The method returns the first entry with the
specified key. The ordering of entries is guaranteed to be the same across all CellApps.

When multiple CellApps simultaneously call BigWorld.setSpaceData with the same key, there is a small
possibility that both entries are kept by BigWorld. In this case, BigWorld.getSpaceDataForKey() would
return many entries. But since BigWorld.getSpaceDataFirstForKey() is more commonly used for keys
that should have only one entry, the situation is usually resolved automatically.

Whenever a new space data value is added, onSpaceData is called on the personality script. For more de-
tails, see the CellApp Python API's entry Main Page → Cell → BW Personality → Functions →  onSpace-
Data.

Space data is backed up to the CellAppMgr as well as the database. Space data is preserved in all failure
scenarios handled by the BigWorld server.

13.7. Global Bases

BigWorld provides a registry of base entity mailboxes that is replicated on all BaseApps. Base entities rep-
resented in this registry are referred to as global bases, and their mailbox can be retrieved by name on all
BaseApps.

In order to give a name in the global registry to a base entity, you can call its method registerGlobally7.
This method takes the following parameters:

• A name for the base entity to register as.

• A callback function to be called when the registration is complete or has failed. The callback function is
called with a single Boolean parameter indicating if the registration was successful.

The method registerGlobally can be called multiple times on a single entity with different names. It is
not allowed to register two different entities (or the same entity twice) with the same name.

7You can remove an entity from the global bases registry with its method deregisterGlobally.

api_python/cellapp/index.html#dest=CellApp_Python_API


Entities and the Universe

150 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

The BaseApp contains the object BigWorld.globalBases, which emulates a read-only Python dictionary
that provides information on global bases.

The object BigWorld.globalBases can be used as illustrated below:

print "The main mission entity is", BigWorld.globalBases["MainMission"]
print "There are", len( BigWorld.globalBases ), "global bases."

Using the BaseApp's object BigWorld.globalBases to retrieve information on global bases

Things to consider when using global bases include:

• Remember that global bases are not actually distributed themselves, only their mailboxes are. You may
not want these entities to be accessed frequently by many different entities, as it could affect the scalability
as more players log in.

• Often the game design will require an interaction to locate many entities that might otherwise be consid-
ered global. For example, perhaps a conversation with a faction leader is required to join that faction, and
as such might remove the need to declare that an entity is global.



151

Chapter 14. XML Data File Access
14.1. ResMgr.DataSection

Server component scripting can access custom data stored in XML files. These would typically be used to
store game data resources, for example, anything from gameplay tables to configuration data. The data is
stored in an XML hierarchy, accessible by traversing the tree defined in the each XML file.

14.2. Accessing Data

Suppose that a data file is defined as in the example below:

<root>
   <character>     Sir Manfred
      <description> White knight                       </description>
      <modelName>   sets/main/characters/knight.model  </modelName>
      <race>        human                              </race>
      <gender>      0                                  </gender>
   </character>

   <character>     Sofia
      <description> Evil queen                         </description>
      <modelName>   sets/main/characters/queen.model   </modelName>
      <race>        undead                             </race>
      <gender>      1                                  </gender>

      <slaves>
         <character>     Underling
           <description> Hapless underling                   </description>
           <modelName>   sets/main/characters/guard.model    </modelName>
           <race>        undead                              </race>
           <gender>      1                                    </gender>
         </character>

         <character>      Servant
            <description> Unpaid slave                       </description>
            <modelName>   sets/main/characters/servant.model </modelName>
            <race>        undead                             </race>
            <gender>      1                                  </gender>
         </character>
      </slaves>
   </character>
</root>

Example XML file ‐ <res>/scripts/data/Characters.xml

You can access this data by creating a new DataSection using the ResMgr.openSection method. The
path argument used is relative to the resources path. This is illustrated in the example below:

ds = ResMgr.openSection( 'scripts/data/Characters.xml' )

# this will retrieve "Sir Manfred"
ds.child( 0 ).asString

# this will retrieve "White knight"
ds.child( 0 )['description'].asString

# this will retrieve 1



XML Data File Access

152 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

ds.child( 0 )['gender'].asInt

Reading an XML data file

14.2.1. Opening a Section Within an XML File

You can access a section within the XML file by adding the name of the section to the end of the path given
to ResMgr.openSection:

dsChild = ResMgr.openSection(
  'scripts/data/Characters.xml/character' )

Reading an XML data file ‐ Accessing a specific section

If there are multiple elements with the same under the root element, then the first one is returned.

14.3. Data Types

The available data types are:

Data type Accessed by

64-bit floating-point numbers .asDouble

64-bit integers .asInt64

Data blob .asBlob

Floating-point numbers .asFloat

Integers .asInt

Matrix .asMatrix

Raw binary representation
of the XML node

.asBinary

String .asString

Vector2 .asVector2

Vector3 .asVector3

Vector4 .asVector4

Wide strings .asWideString

Available data types in XML

For more details, see the Client Python API's entry Class List → DataSection.

14.4. Writing Data

You can write to properties by referencing the appropriate .as<data type> property, then saving the XML
file.

Note

This feature is for use only on server tools, and you should avoid using it in game
scripts.

api_python/client/index.html#dest=Client_Python_API


XML Data File Access

153

An important limitation to be aware of is that it is only possible to save a DataSection that has been opened
by reference to an XML document. It is not possible to directly save a section that is retrieved by a path to
a sub-element within a file.

For example, the code below will not work:

# this will not work, throws IOError
dsChild = ResMgr.openSection( 'scripts/data/Characters.xml/character' )
dsChild.asString = "Sir Lancelot"
dsChild.save()

Example of incorrect procedure for writing to XML

The code excerpt below, on the other, will work:

# this will work
dsRoot = ResMgr.openSection( 'scripts/data/Characters.xml' )
dsChild = dsRoot.child( 0 )
dsChild.asString = "Sir Lancelot"
dsRoot.save()

Example of correct procedure for writing to XML

You can also add or remove child elements from each data section:

# get the document data section
dsRoot = ResMgr.openSection( 'scripts/data/Characters.xml' )

# this will delete the first character
dsRoot.deleteSection( 'character' )

# create a new character, which is appended to the top-level
newChild = dsRoot.createSection( 'character' )
newChild.asString = "King Arthur"

newChild.createSection( 'description' )
newChild.createSection( 'modelName' )
newChild.createSection( 'race' )
newChild.createSection( 'gender' )
newChild.createSection( 'slaves' )

newChild['description'].asString = "The King of Camelot"
newChild['modelName'].asString = 'sets/main/character/knight.model'
newChild['race'].asString = 'human'
newChild['gender'].asInt = 0
dsRoot.save()

Deleting sections and adding new ones

Running the code excerpt below, and assuming a Characters.xml as described in “Accessing Da-
ta” on page 151 , the result will be the file below:

<root>
   <character>      Sofia
      <description> Evil queen                       </description>
      <modelName>   sets/main/characters/queen.model </modelName>
      <race>        undead                           </race>



XML Data File Access

154 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

      <gender>      1                                </gender>

      <slaves>
         <character>      Underling
            <description> Hapless underling                  </description>
            <modelName>   sets/main/characters/guard.model   </modelName>
            <race>        undead                             </race>
            <gender>      1                                  </gender>
         </character>

         <character>      Servant
            <description> Unpaid slave                       </description>
            <modelName>   sets/main/characters/servant.model </modelName>
            <race>        undead                             </race>
            <gender>      1                                  </gender>
         </character>
      </slaves>
   </character>

   <character>       King Arthur
      <description>  The King of Camelot              </description>
      <modelName>    sets/main/character/knight.model </modelName>
      <race>         human                            </race>
      <gender>       0                                </gender>
      <slaves>                                        </slaves>
   </character>

</root>

Resulting <res>/scripts/data/Characters.xml

14.5. Performance Issues

Accessing the XML files on disk can potentially halt game processing. This can occur from disk I/O and
parsing of the resulting data. This halt to processing can occur for both reading as well as writing of XML
files and should be avoided as much as possible.

Due to the adverse impact this can cause to game development and resulting behaviour, a separate document
has been written to address these issues. For more details please refer to the document How To Avoid Files
Being Loaded in the Main Thread.

14.6. API Reference

ResMgr documents the DataSection's methods, and can be found in the BaseApp Python API, CellApp
Python API, and Client Python API.

#dest=
#dest=
api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/client/index.html#dest=Client_Python_API


155

Chapter 15. External Services
From your game script you may want to access external services such as a billing or shopping system. When
doing so, it is important not to block on I/O as a process that pauses for too long may be considered as dead
by other server components. To avoid blocking on I/O you can either:

1. Use non-blocking methods and handle notifications (the reactor pattern).

2. Call blocking methods from a background thread (the thread pool pattern).

When available, non-blocking methods is preferred over background threads.

Note

Due to the Python interpreter's implementation, the main thread could still be blocked
if a background thread does not release the Global Interpreter Lock (GIL) frequent-
ly enough. By default a thread automatically releases the GIL every 100 bytecode in-
structions. The GIL is not automatically released when C code is called, the C code has
the responsibility of periodically releasing the GIL. Please be aware that some Python
modules are simply C API bindings.

15.1. Non-blocking Methods

The easiest way to avoid blocking on I/O is to use non-blocking methods and handle notifications.
You can register a callback to be invoked once a file descriptor has characters to be read with the
BigWorld.registerFileDescriptor method. Similarly, you can register a callback to be invoked
once a file descriptor becomes writable with the BigWorld.registerWriteFileDescriptor method.
Both methods are respectively complemented with the BigWorld.deregisterFileDescriptor and
BigWorld.deregisterWriteFileDescriptor methods. For more information please see the BaseApp
and CellApp API documentation.

15.2. Background Threads

To call a blocking method in a background thread you need to use the BackgroundTask module (this
module is available from the file BackgroundTask.py in the import path bigworld/res/scripts/
server_common). This module is available to both BaseApp and CellApp script. Below is a summary of
usage:

1. Create a BackgroundTask.Manager.

2. Use the BackgroundTask.Manager to start background threads.

3. Wrap blocking calls into a BackgroundTask subclass.

4. Add BackgroundTasks to the BackgroundTask.Manager.

5. Use the BackgroundTask.Manager to stop background threads.

BigWorld ships with an example to illustrate the usage of this background thread behaviour in the NoteData-
Store example located in the FantasyDemo resource tree. This example can be found in the directory fanta-
sydemo/res/server/examples/note_data_store. This example connects with an external database
(ie: external to the DBMgr entity database), in order to store abitrary notes from a client.

The remainder of this section describes how to add a row to an external database in a BackgroundTask as
illustrated through the NoteDataStore example.



External Services

156 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

import BackgroundTask
import sqlalchemy

bgTaskMgr = None

def init( config_file ):
  ...
  bgTaskMgr = BackgroundTask.BgTaskManager()
  bgTaskMgr.startThreads( 5 ) # Can optionally pass a functor to create thread
 data per thread.
  
def fini():
  ...
  bgTaskMgr.stopAll()
  
class Note( sqlalchemy.SQLAlchemyBase ):
  ... 

fantasydemo/res/scripts/base/NoteDataStore.py

In the code above, the init method creates a BackgroundTask.Manager (step 1) and start background
threads (step 2) while the fini method stops all background threads (step 5).

class AddNoteTask( BackgroundTask ):
  def __init__( self, noteReporter, description ):
    self.noteReporter = noteReporter
    self.note = NoteDataStore.Note( description )

  def doBackgroundTask( self, bgTaskMgr, threadData ):
    session = create_session()
    session.add( self.note )
    session.flush()                          # Blocking method

    bgTaskMgr.addMainThreadTask( self )      # Re-add ourself to invoke the
 callback in the main thread

  def doMainThreadTask( self, bgTaskMgr ):   # Invoke the callback
    ...
    self.noteReporter.onAddNote( id )

class NoteReporter( object ):
  def addNote( self, description ):
    ...
    task = AddNoteTask( self, description )
    NoteDataStore.bgTaskMgr.addBackgroundTask( task )

  def onAddNote( self, id ):                   # AddNoteTask's callback
    ...

fantasydemo/res/scripts/base/NoteReporter.py

In the code above, the AddNoteTask subclass wraps the blocking method session.flush
(step 3). The method NoteReporter.addNote creates an AddNoteTask instance and adds
it to the BackgroundTask.Manager as a background thread task (step 4). The AddNote-
Task instance will invoke the callback NoteReporter.onAddNote after it finishes its back-
ground thread work. To invoke a callback, overload the BackgroundTask.doMainThreadTask
method and inside BackgroundTask.doBackgroundTask make the subclass re-add itself to the
BackgroundTask.Manager as a main thread task.



External Services

157

Note

The BackgroundTask module is a Python port of the C++ version located at big-
world/src/lib/cstdmf/bgtask_manager.hpp

15.2.1. Caveats

Due to Python's thread implementation and the way that BigWorld incorporates Python, it is unsafe to per-
form any modifications on entities from within a background thread. For example, the following code would
be considered unsafe:

class DatabaseTask( BackgroundTask ):

  ...

  def doBackgroundTask( self, bgTaskMgr, threadData ):
    # Interact with DB to fetch data
    
    self.entity.cell.applyData( dataFromDB )

It is unsafe to call the cell.applyData() method as the Python thread context may switch back to the
main thread and send a corrupt network packet.

A safe / correct approach to avoid these kind of issues would be the following:

class DatabaseTask( BackgroundTask ):

  ...

  def doBackgroundTask( self, bgTaskMgr, threadData ):
    # Interact with DB to fetch data
    self.dataFromDB = dataFromDB
    bgTaskMgr.addMainThreadTask( self )

  def doMainThreadTask( self, bgTaskMgr ):
    self.entity.cell.applyData( self.dataFromDB )



159

Chapter 16. Fault Tolerance

16.1. CellApp Fault Tolerance

16.1.1. Overview

Periodically, a complete copy of each cell entity is backed up on the base entity. Only cell entities with an
associated base entity are fault tolerant. The CellApp backup period specifies how often cell entities are
backed up to their base entities, and is specified in the bw.xml option <cellApp/backupPeriod>.

Should a CellApp process become unavailable, the real entities located on the cells residing on that process
will be restored by their corresponding base entities to other CellApps. The state of the cell data of the restored
cell entities is the same state as was given from the most recent backup from the cell entity to the base entity.

16.1.2. Restoration process

The CellApp restoration process typically follows these steps:

1. A CellApp process becomes unavailable.

2. Base entities that have cell entities on the now unavailable CellApp process restore their corresponding
real entities to other CellApps.

3. Restored cell entities have the onRestore() callback called on them. Because the restored cell data is
taken from the last time the cell entity backed up to the base, this copy can be up to twice the backup
period. This callback should check that the entity's properties are in a consistent state.

4. For player cell entities, their corresponding client-side player entities have the onRestore() callback
called on them.

The callback onRestore() is invoked on the cell entity to inform it that it is being restored.

The code fragment below illustrates its implementation on the cell entity:

class SomeEntity( BigWorld.Entity ):
  ...
  def __init__( self ):
    # set up initial property values
  ...
  def onRestore( self ):
    # check that property values are consistent, and
    # perform any cleanups that need to occur
  ...

Example file <res>/scripts/cell/SomeEntity.py



Fault Tolerance

160 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

16.1.3. Example

Figure . CellApp Fault Tolerance Example

4

3 8

4156

CellApp 4

Machine A

BaseApp 1

Machine B

BaseApp 2

Machine C

5712

2114

4156

5712

2114

4156 2114

The above diagram shows a space divided into three cells, the top cell residing on CellApp 4, the bottom-left
cell residing on CellApp 3 (not shown) and the bottom-right cell residing on CellApp 8 (not shown). In the
cell that CellApp 4 has in this space, it has the cell entities with IDs 4156, 5712 and 2114, all within the same
spatial region. The entities 4156 and 2114 have corresponding base entities that reside on BaseApp 1 and 2
respectively. Entity 5712 does not have a base entity, and is a cell-only entity.

Cell entities back up their data to their corresponding base entities. So in this example, entities 4156 and
2114 send a copy of themselves to their corresponding base entities. The rate at which they do this can be
configured by changing the backup period, using the bw.xml option <cellApp/backupPeriod> (see the
“CellApp Configuration Options” for more details). When a single CellApp goes down, cell entities are re-
stored from the backup data sent to their base entities. Any cell entities that do not have corresponding base
entities will not have been backed up, and so will not be restored.

If CellApp 4 was to go down, the cell entities for 4156 and 2114 will be restored onto other CellApps from
their base entities. Entity 5712 will not be restored, as it has no corresponding base entity.

It is important to note that when restoring cell entities, the cell data that is used will be whatever data was
present at the time of the last cell entity backup. Thus, any modification to the cell entity data since the last
backup is lost, and the state of that cell entity may be inconsistent when it is restored. For example, a backup of
a cell entity may be made in the middle of a multi-step transaction. The script callback Entity.onRestore()
can be used to check the state of outstanding transactions, and the decision to either roll them back or continue
them can be made in script.

#dest=


Fault Tolerance

161

16.2. BaseApp Fault Tolerance

With BaseApp fault tolerance, BaseApps back up the base entity data and cell backup data of all their base
entities to other BaseApp processes periodically.

Should the primary BaseApp become unavailable, then all its entities are restored from the backup process.
In this case, the BaseApp invokes the callback onRestore on the base or proxy entity, in a process similar
to the one for CellApp restoration. This callback should ensure that all properties on the entity are in a
consistent state.

It should be noted that when a BaseApp fails unexpectedly, entities that were on that BaseApp before the
death might be restored to different BaseApps. Care should be taken when writing scripts, to avoid assump-
tions that a Base entity is local. When performing an entity backup, Base entity properties are streamed using
their description in the definition file (if there is one). For properties that are not specified in the definition
file, these are pickled. Each entity is backed up individually, so if two entities refer to the same object, on
restoration they will likely each have a copy of that object. An option is available to prevent properties not
specified in the definition file from being backed up. To disable backing up undefined properties set the
bw.xml option <baseApp/backUpUndefinedProperties> to false. For more information on this op-
tion refer to the Server Operations Guide section “BaseApp Configuration Options”.

For more details regarding Fault Tolerance, see the document Server Operations Guide's chapter Fault Toler-
ance, and the document Server Overview's section Server Components → “BaseApp” → “Fault Tolerance”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


163

Chapter 17. Disaster Recovery
BigWorld's fault tolerance ensures that the server continues to operate if a single process is lost. The server
also provides a second level of fault tolerance known as disaster recovery. The server's state can be written
periodically to the database. In the event of entire server failure, the server can be restarted using this infor-
mation.

The rate of this archiving is specified in the file <res>/server/bw.xml by the configuration options
<baseApp/archivePeriod> and <cellAppMgr/archivePeriod>. For more details on these options,
see the document Server Operations Guide's chapter Server Configuration with bw.xml's sections “BaseApp
Configuration Options” and “CellAppMgr Configuration Options”.

The CellAppMgr process is responsible for writing the space data and the game time to the database

Entities with a valid database entry are also periodically archived (indicated by a non-zero databaseID on
the base entity). To write an entity to the database, thus enabling its archiving, call the method writeToDB()
on the base or cell entity.

Each time an entity is archived, its callback onWriteToDB() is invoked.

Starting a server with this archived information is the same as starting the server after a controlled shutdown.
For more details, see Controlled Startup and Shutdown on page 165 .

For more details regarding Disaster Recovery, see the document Server Operations Guide's chapter “Disaster
Recovery”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


165

Chapter 18. Controlled Startup and Shutdown
There may be times when the server needs to be shut down and later restarted in a similar state. This chapter
describes the script-related details of this scenario.

For more details, see the document Server Operations Guide's chapter Controlled Startup and Shutdown.

18.1. Controlled Shutdown

The process of controlled shutdown is described in the list below:

1. USR1 signal is received by LoginApp processes.

2. The LoginApp processes shut down immediately.

3. The CellAppMgr receives a message to schedule the shutdown (in game time).

4. The CellAppMgr sends a message to the other processes informing them when the shutdown is scheduled
for.

5. The callback onAppShuttingDown on the CellApp personality script is invoked.

The personality scripts on this step and the next should perform the appropriate finishing tasks, like
ending long running tasks such as combats or trades, informing the players, and stopping new long
running tasks from starting.

6. The callback onAppShuttingDown on the BaseApp personality script is invoked.

7. Once these callbacks have been executed, calls to method BigWorld.isShuttingDown will return
True.

8. The other server processes (CellApps, BaseAppMgr, BaseApps, Backup BaseApps, DBMgr, Reviver) do
not stop immediately, instead performing any finishing tasks.

This delay can be specified in the file res/server/bw.xml by using the configuration option <shut-
tingDownDelay>. For more details on this option, see the document Server Operations Guide.

9. Shutdown game time is reached.

10. Game stops running, but the processes do not shut down.

This means that the game time is no longer incremented, and no game object is ticked.

11. When ready to shut down, CellAppMgr writes the game time to the database. If configured for archiving1,
the CellAppMgr also writes space data to the database.

12. This step takes place in parallel with step 11.

Each BaseApp performs the following steps:

• Receives a message to disconnect any connected clients.

• Invokes the callback onAppShutDown with an argument of 0 before disconnecting the clients.

For each disconnected client, the proxy's callback onClientDeath is invoked.
1For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “CellAppMgr Configuration

Options”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


Controlled Startup and Shutdown

166 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Invokes the callback onAppShutDown with an argument of 1, before writing to the database each
entity with a database entry.

• Invokes the callback onAppShutDown with an argument of 2.

13. All server process shut down.

18.2. Controlled Startup

When starting up, the DBMgr initially waits until all components are ready. A minimum number of BaseApp
and CellApp processes can be specified in bw.xml via the options <desiredBaseApps> and <desired-
CellApps>2. Once ready, the DBMgr loads space data back into the system if it was archived3 by the Cel-
lAppMgr.

Auto-loaded entities are then loaded into the system by creating the base entities.

It is up to the script to create the cell entity, if desired. Creating a cell entity during startup is often different
from doing so during other times. Usually the method Base.createCellEntity is called with a cell entity
mailbox to indicate the entity's space. But during startup, the entity's space ID is restored and set in the
Base.cellData map. The base entity script may use this by calling the method Base.createCellEntity
with no arguments.

Once the server is ready to start running, the onAppReady callback from the personality script is called on
the BaseApps and CellApps.

2For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “General Configuration Options”.
3For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “CellAppMgr Configuration

Options”.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


167

Chapter 19. Transactions and Handling Fault
Tolerance and Disaster Recovery

We illustrate the previous chapters' guidelines with respect to handling fault tolerance and disaster recovery
mechanisms in BigWorld by providing an example involving the use of transactions and how to make them
work with fault tolerance and disaster recovery mechanisms.

19.1. Transaction logic

We give here an example of a trading transaction for transferring an item between two player entities.



Transactions and Handling Fault Tolerance and Disas-
ter Recovery

168 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Figure . Transaction sequence diagram

DBMgrBobAlice

1

2

3

4

5

6

7

8

9

self.transactions.append( 
  Transaction( BEGIN, "Bob", 345, 
    Sword ) )

writeToDB()

giveItemBegin( "Alice", 
  aliceBaseMB, 
  345, Sword )

lookUpBaseByName( "Bob" )

bobBaseMB

self.transactions.append( 
  Transaction( REMOVE, "Bob", 345, 
    Sword ) )

writeToDB()

giveItemRemove( bobBaseMB, 345 )

writeToDB()

self.removeItem( item )

giveItemComplete( 345 )

self.removeTransaction( 345 )

self.removeTransaction( 345 )

The transaction logic between the two player entities Alice and Bob is as follows:

1. Alice and Bob are within each other's Area of Interest (AoI). Alice's client informs her base entity that
she would like to give Bob a Sword item.

Alice's base entity is passed the player name of Bob as part of the request from the client, along with the
representation of the Sword item within Alice's inventory.



Transactions and Handling Fault Tolerance and Disas-
ter Recovery

169

Alice's base entity adds an entry into her transaction list. This entry contains a unique transaction ID that
identifies this transaction, Bob's player name, the state of the transaction (set to a symbolic constant called
BEGIN), and the item in Alice's inventory.

Alice's base entity removes the Sword from Alice's inventory.

Alice requests a write to the database.

2. When the write to the database calls back, it indicates whether the write was successful or not.

If it was not successful, then there is a problem with the database, and the transaction is aborted (a mes-
sage is sent back to the client informing Alice of this situation), and the Sword is added back to Alice's
inventory.

Otherwise, if the write to the database was successful, the transaction action starts with Alice's
base entity requesting an entity base mailbox lookup based on the player name, via the
BigWorld.lookUpBaseByName() method, and registers a callback to a functor containing the transac-
tion ID.

3. Alice's base entity gets notification with the base mailbox of Bob.

If Bob's base entity can't be found, the transaction is aborted by removing the transaction entry from the
transaction list, adding the Sword back to Alice's inventory, informing Alice's client and calling another
writeToDB().

Otherwise, Alice's base entity calls a method on Bob's base mailbox and requesting that it add the Sword
item to his inventory. We pass the item, transaction ID, Alice's player name and a mailbox back to Alice's
base entity.

4. Bob's base entity adds the Sword item to its inventory (but marks it as unusable by Bob's client for the
moment).

Bob's base entity adds an entry into its transaction list, with Alice's player name, the state of the transac-
tion set to the symbolic constant REMOVE, and the same transaction ID that was passed in from Alice.

Bob's base entity then starts a write to the database, registering a callback to a functor object that holds
Alice's base entity mailbox and the transaction ID.

5. Bob's base entity is called back with the result of the database write.

If it was unsuccessful, Bob should remove the sword from his inventory as well as the transaction entry
in the transaction list (the transaction ID is stored in the functor callback).

If the write was successful, the item should be marked as usable for Bob's client.

Whether or not the database write was successful, Bob's base entity informs Alice of the success of the
database write through her base mailbox that is supplied through the functor callback. Bob passes in the
success flag, a mailbox to Bob's base entity and the transaction ID.

6. Alice's base entity receives the result of the transaction from Bob's side.

Alice removes the transaction entry from her transaction list.

If Bob indicated that the transaction was unsuccessful, Alice re-adds the item back to her inventory in-
forms the client of the trading failure.

Alice writes to the database, and registers a callback to a functor that holds Bob's base mailbox and the
transaction ID.



Transactions and Handling Fault Tolerance and Disas-
ter Recovery

170 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Alice notifies Bob that the transaction on her side is complete, by passing in the transaction ID.

7. Bob receives this notification, and removes the transaction entry with the given transaction ID.

19.2. Fault Tolerance Behaviour

19.2.1. CellApp Fault Tolerance

If the CellApp that Alice's and/or Bob's cell entity resides on exits, all cell entities that have base entities will
be restored to another CellApp. With this example scenario and transaction as described, there is not much
of concern with regards to behaviour of restored cell entities as the transaction only involves BaseApps.

However, suppose the inventory system implementation was such that the player cell entities required
knowledge of items, for example, what item a player was holding in its hands, which would need to be
a OTHER_CLIENTS or ALL_CLIENTS cell entity property so that other players could view the item that a
player was holding. If the cell entity was restored from an older version of its cell entity data when it was
last backed up to the base entity, there could be inconsistencies in the cell entity state with respect to the
base entity state.

For example, if Alice was restored to another CellApp, her cell entity could check with her base entity whether
she still owned the item that she was holding, and if not, her cell entity should remove that item.

Cell entities that are restored do not have their __init__() method called, instead, after they are restored
with the cell backup data from their base entity, they have their onRestore() method called, and checks
such as these can be done in this method to make sure the state is consistent with the base entity state.

19.2.2. BaseApp Fault Tolerance

If the BaseApp that Alice's and/or Bob's base entity resides on exits, those base entities will be restored to
other BaseApps if they exist (if there is only one BaseApp, they cannot be restored).

As with cell entities, restored base entities do not have __init__() called on them, instead, they have on-
Restore() called on them when they are each restored from their most recent base entity backup data. This
is a good place to do checks on uncompleted transactions.

For example, if the BaseApp that contained Alice exited, and Alice was restored onto another BaseApp (and
perhaps Bob was too, and it could be a different BaseApp to where he was), then we need to replay any
transactions that may have been underway.

For each transaction entry in Alice's transaction list, the entity needs to replay each transaction depending
on the state that it's in.

For example, if it is in the BEGIN state, we resume the transaction from step 3 by looking up Bob's base entity,
and continuing on.

If we are Bob, we may have transactions in the REMOVE state, and so we resume the transaction from step
6, and we tell Alice (or whoever the transactions' player name refers to) that they should complete the trans-
action on their end.

19.3. Disaster Recovery Behaviour

When we are starting the server and restoring from the database, the base entities will be restored, and
each of these will have __init__() called on them. The variable BigWorld.hasStarted will be False for
restored base entities, so we can do similar checks to what we have in the BaseApp fault tolerance section.

It is also the responsibility of the base entities to recreate the cell entities, usually via createCellEntity().
The space ID is archived with the entity when it is written to the database, and this is present in the base
entity's cellData dictionary.



171

Chapter 20. Implementing Common Systems
This chapter discusses some general issues that programmers implementing game systems should keep in
mind, and also provides some example design and implementation of common systems used in MMOGs.

20.1. General Scalability

In general, server processing load, internal network bandwidth and external network bandwidth scales lin-
early to the number of players if player and entity density remain constant. There is a small extra cost as
density increases.

Capacity can be added by:

• Adding more BaseApps for more external connection points and connection processing capacity

• Adding more CellApps for more spatial processing capacity

• Adding a combination of both more BaseApps and more CellApps to increase game script processing
capacity

CellAppMgr, BaseAppMgr and DBMgr are single instances and are theoretically scaling bottlenecks. Cel-
lAppMgr and BaseAppMgr are only concerned with managing CellApps and BaseApps and have very low
load. They can scale to handling thousands of BaseApps and CellApps. Although BigWorld's design does
not make heavy use of the database, the main concern for scaling is DBMgr. This is addressed below in Big-
World Database Scalability.

20.2. Internal inter-component communication

The number of BaseApps and CellApps required to sufficiently service an entity population should generally
scale linearly with the number of entities. Most communication between entities is with those that are nearby.
This is handled by keeping those entities together on CellApps as much as possible. Other communication
involves point-to-point communication using remote method calls. The main issue here is to try to minimise
situations where entities need to be looked up globally.

The DBMgr functionality for writing out entity state is distributed across the secondary databases for each
BaseApp and consolidated when the entity is retired. See BigWorld Database Scalability below.

The general strategy to combating bottlenecks in game script is to avoid global game systems where possible,
such as having singleton entities that control some operation of the game, for example, trading. In general,
these bottlenecks can be avoided by restructuring game script and using distributed object methods to im-
plement such global sub-systems, rather than entrusting the request handling to a single entity. An example
of this is presented below (see AoI-based trading below).

20.3. Player AoI Updates

Updates to some of the entities in a player's AoI are propagated to the player's client every game tick (by
default, gameUpdateHertz is 10Hz). The amount of update data sent to the player's client is constrained to
a downstream bit rate (by default, bitsPerSecondToClient is 20kbps).

These updates consist of property changes and method calls. Every cell entity keeps a history of these
changes, and for each entity in a player's AoI, the player is updated incrementally about that entity period-
ically. The position and direction data of an entity is specially treated so that only the most recent value of
these properties (so called volatile properties) is sent to the client, instead of the full history of the property.

Internally, entities in an AoI are in a priority queue. The priority of an entity in a player's AoI determines how
long it will be before the next update about that entity occurs to the player. Generally speaking, entities closer



Implementing Common Systems

172 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

to the player are updated more frequently than those that are towards the edge of a player's AoI. Properties
can have Level of Detail (LoD) rules applied so that these properties will only be updated if the entity is close
enough to the player. See the chapter “LOD (Level of Detail) on Properties” on page 52 .

In general, many game operations are localised to the specific area that a player inhabits. Load balance parti-
tioning is done across each space depending on the load being generated per cell. As entity densities increase,
the partitioning scheme changes in response to equalise the load amongst the cells servicing a space. The
amount of data per entity that is sent to the client is also reduced as the density of entities increases. This
reduces a lot of the extra cost due to density and also makes good use of the client's bandwidth.

However, very high entity densities can cause problems by causing each periodic update to a player client to
be overrun with excessive amounts of entity event data. Recall that the amount of downstream bandwidth
is a configurable constant. Due to the prioritising of change events of entities in a player's AoI, this can cause
updates of entities further away to be starved if there are many more entities that are closer to the player.

Increasing the downstream bandwidth can improve on this situation, but eventually, it is usually the client
that becomes the limiting factor. There is a per-entity cost of processing on game clients, for example:

• processing notifications for each entity's position and direction

• processing notifications for each entity's property changes

• processing notifications for each entity's method calls

• applying physics rules to each entity

• rendering of each entity

There is also a limit to the amount of information that a player can comprehend. With large numbers of
entities nearby, less information tends to be needed for distant entities.

Extreme entity densities that can negatively affect the end-user experience can be avoided with good game
design.

20.4. BigWorld Database Scalability

A brief discussion of the operation of DBMgr and implications for scalability follow.

When entities are checked out of the database, they are assigned to the least-loaded BaseApp. Once entities
are loaded onto a BaseApp they do not generally migrate away from that BaseApp unless that BaseApp
process terminates, in which case they are restored on other BaseApps in the system. See the chapter Fault
Tolerance on page 159 .

For each entity that resides on it, the BaseApp is responsible for collecting all the explicit script writes (from
calls to BigWorld.writeToDB()) for that entity over its checked-out lifetime, as well as the periodic back-
ups for that entity. These writes are performed on a secondary database stored on the BaseApp machine.
There can be arbitrarily many BaseApps in a cluster, and entities are statically load-balanced across them
when they are instantiated. That is, they are assigned to the least-loaded BaseApp.

When the entity is destroyed, it is checked back into the primary database, this results in the sum of the
database writes in the BaseApp secondary database for that entity being consolidated back into the primary
database on the DBMgr.

This consolidation can be a bottleneck, and there are future features planned to reduce this so as to not
overload the DBMgr. In general, writing back to the primary database is not a time-critical operation, so that
checking entities back into the database is a fire-and-forget operation. No data loss is possible as the data is
persisted on the secondary database, and not removed until the consolidation for that entity is done.



Implementing Common Systems

173

On server shutdown, all checked-out entities have their database writes consolidated back into the primary
database. If an unexpected failure occurs (e.g. power failure), this consolidation can take place on the next
server startup.

The following operations on the DBMgr can still be a bottleneck:

• checking login credentials

• handling lookup requests for entities by name or database ID

• loading entities from the persistent storage

• writing entity state when entities are checked back into persistent storage

In practice, looking up which BaseApp an entity is checked out to (by name or database ID) is a read opera-
tion and comparatively inexpensive due to the underlying MySQL query cache. However, schemes such as
the PlayerRegistry entity (see Player Lookup below) can be implemented which can offload the task of
handling lookup requests from the DBMgr to game script running on arbitrarily many BaseApps.

However, the global DBMgr process will still place an implicit limit on how quickly entities can be loaded
from, and saved to, persistent storage. Future improvements being considered include sharding the database
to spread this load over many external databases.

20.5. Player Look-up

20.5.1. Requirements

Each player must be able to query the status of another player by name:

• whether or not they are logged in

• if they are logged in, get their player mailbox

20.5.2. Design

Using BigWorld.lookUpBaseByName() causes a query to DBMgr (which causes a read on the primary
database), while sufficient for many scenarios (and empirically works in many released BigWorld-based
games), introduces a potential bottleneck. The discussion below outlines a design for a distributed mapping
of player names to player mailboxes which effectively offloads this load to BaseApp game script, which can
be scaled up by adding more BaseApps.

The idea is to have multiple PlayerRegistry Base entities that contain a distributed mapping of player
names to player mailboxes. These PlayerRegistry entities have no geospatial representation, they exist
only as a system service, and so generate no load with respect to AoI updates.

Each BaseApp has a corresponding PlayerRegistry entity - this spreads the PlayerRegistry entities
out and protects against BaseApp failures. Having more than one PlayerRegistry entity per BaseApp
does not add any additional redundancy benefit.

PlayerRegistry entity instances register themselves globally. Globally registered bases have their mail-
boxes registered under a string key in a global bases mapping that is synchronised across every BaseApp.
Player names are hashed against the known number of player registries, and a particular PlayerRegistry
instance is located via the Global Bases mechanism (see “Global Bases” on page 149 ).

When player entities are created, they add themselves to the distributed registry by hashing their own name
to the appropriate PlayerRegistry entity, and registering their base mailbox with that PlayerRegistry
entity. On logout, they contact that same PlayerRegistry to notify it of the logout, and this results in
the removal of the mapping between that player name and that player mailbox. A scheme for rebalancing
the player registry entries can be implemented which re-balances the entries across the PlayerRegistry
entities when a new PlayerRegistry is added or removed, such that the hash scheme remains consistent.



Implementing Common Systems

174 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Queries for a particular player name are done by first hashing the player name to be looked up to the appro-
priate PlayerRegistry, and then querying one of the multiple PlayerRegistry entities via a remote
method, and a callback remote method with a mailbox. Requests for player lookup are asynchronous, and
caller entities implement a callback method that is called back when the lookup is complete.

Each PlayerRegistry needs a persistent mailbox list for fault tolerance purposes, so that the registry is
restored to another BaseApp along with the PlayerRegistry entity if the BaseApp it formerly resides on
fails. In this case, it is likely that it will be restored to another BaseApp which already has its own Player-
Registry, so re-balancing should be done and then the restored PlayerRegistry should be destroyed.

This system can be scaled up by increasing the number of BaseApps to handle queries. Tiered request
schemes could also be used to avoid large numbers of globally registered base entities becoming a bottleneck.

20.6. Friends lists

20.6.1. Requirements

Each player maintains a list of other players that they can use for the following purposes:

• to contact a friend

• send private messages to friends

• presence updates

20.6.2. Design

Assume that friendship relation is symmetric, so that if A is on the friend list of B, then B is on the friend list
of A. A friends list can be implemented as an ARRAY of FIXED_DICT consisting of a STRING name property,
and the MAILBOX of the player (or None if offline), and a UINT8 Boolean flag hasResponded indicating
that this player has responded to our request to add that player as a friend.

20.6.2.1. Adding new friends

Let the player adding the friend be called Player A, and the friend being added to Player A's list be called
Player B.

1. Player A checks that Player B is not already in A's friends list. Player A uses Player B's name to look up
B's status and mailbox (if online) via the Player Look-up mechanism.

2. If B is not online, then we fail the operation. A scheme could be implemented that accommodated this
situation, but for the sake of simplicity, it will not be discussed here.

If Player B is online, then Player A adds Player B to its friend list, setting the hasResponded flag to
False, and writes itself to the database using Base.writeToDB(), registering a callback when the
database write completes.

3. If the write fails, then we rollback the friends list by removing Player B's FIXED_DICT element, and abort
this process, and inform Player A's client of system error.

Otherwise, the write is completed successfully, and so Player A informs Player B via remote method call
to add Player A to Player B's list, passing along Player A's name and mailbox.

Periodically, Player A resends any such outstanding requests (indicated by hasResponded being False
in the friends list), every, say, 3 seconds. The mailbox for each of these resends should be looked up each
time, in case Player B has been restored to another BaseApp or if Player B has logged off and/or back on
again. If Player B is not online during a retry, then the operation fails and Player A's client is informed
that Player B is not online.



Implementing Common Systems

175

4. Typically, Player B won't already have Player A as a friend, and so Player B adds to its local friends list
by creating a FIXED_DICT element for Player A containing Player A's name and mailbox, and sets the
hasResponded flag to True. A write to the database is requested with a callback.

Player B may already have an entry for Player A in its friends list. This can happen if Player A and Player B
both simultaneously attempt to add each other as friends (in which case hasResponded will be False).
It can also happen if Player B is restored to another BaseApp or is destroyed and re-created during the
wait for the database write, or the database write takes so long that Player A has resent the request, and
in these cases, hasResponded will be True.

If the hasResponded flag is True, then it signals to Player A that the operation succeeded straight away.
If the hasResponded flag is False, then it should be set to True, and the database written to and called
back from before signalling success to Player A.

5. Typically, the write succeeds, and so Player B calls back on Player A to indicate that the request was
successful.

In the exceptional case, the write can fail. Player B removes Player A's FIXED_DICT entry in its friends
list, and calls back on Player A to indicate that the operation failed.

In this scenario, Player A should try to remove Player B's FIXED_DICT element, and this should be made
persistent by writing Player A to the database. However, there's a chance that Player A fails this second
database write while its earlier database write succeeded, making Player A's friends list inconsistent in
the database. There are some ways of handling this situation:

• Do not remove Player B's FIXED_DICT entry in Player A's list, and instead have Player A retry the
request to Player B periodically until Player B responds with success.

• Do remove Player B's FIXED_DICT entry in Player A's write to database periodically.

Both of these approaches assume that the database write failures are a temporary phenomenon. It could
be caused by, the BaseApp secondary databases not having enough disk space, which is cleared up
when the system administrator makes more space. A retry count could be kept that would remove the
FIXED_DICT entry from the friends list after the retry count exceeded some threshold, and Player A's
client should be informed of failure.

6. On a successful callback from Player B, Player A sets the hasResponded flag to True. A database write
is not necessary at this point, as the periodic backup and archival systems can be relied on to save this
out eventually. In the event that the system is restarted or Player A is restored to another BaseApp, the
periodic retry of FIXED_DICT entries with hasResponded set to False will get a second successful
callback, and will eventually be written out.

Adding to friends lists is not expected to be a frequent operation on average over the entire player population,
and players are typically spread out across the available BaseApps.

Removing a player from a friends list can be done in a similar fashion.

20.6.2.2. Private messages to friends

See the section on Chat below. Once you have a player mailbox, a chat message can be sent to them using
a simple remote method call.

20.6.2.3. Presence information

Presence notifications can be implemented simply by calling a method on each player in that player's friends
list indicating that they have logged in or logged out (which signals that the mailbox is invalidated, and
should be set to None in the corresponding FIXED_DICT in the ARRAY).

Player status notifications (e.g. away from keyboard) can be done in a similar way. Player base entities inform
their clients of any change in the status of any friends, so they can update a user interface to the friends list.



Implementing Common Systems

176 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

20.6.2.4. Cache of friend player mailboxes

The friends list can be used as a cache of player mailboxes while those friends are logged in, and do not
need to use the general Player Look-up mechanism in order to communicate with their friend player entities.
Friend mailboxes are set to None when the friends log out.

Caches are not required to be persistent, and so do not add any additional processing cost to the database.

20.6.2.5. Fault tolerance handling

When a player is restored, some of the friends may have come online or offline (or come offline, and then
online) in the time since the player and the friends list was last backed up. At restore or initialisation time,
player entities should perform look-ups on all the players in its friends list. It should also notify all online
friends of its new mailbox when restoring.

20.7. Chat

• P2P chat

• AoI-based chat

• Channel-based chat (includes guid chat, world chat)

20.7.1. P2P

20.7.1.1. Requirements

Players need to be able to send messages to other players. Players are identified by name.

20.7.1.2. Design

See the section on Player Look-up above. Chatting from one player to another player involves the following:

• the mailbox of the destination player needs to be acquired. This can be done in one of the following ways:

• supplied by the player cell entity as the destination entity is in the player's AoI

• a local look-up in your friends list mailbox cache

• a look-up of their mailbox using the Player Look-up mechanism described above

• calling chat remote method on that mailbox with the chat message contents.

To save the remote method cost of look-ups, player mailboxes can be cached on the player entities as a non-
persistent entity property. For example, private messages to non-friend players tend to result in conversa-
tions, and so having a local cache of player name mapped to player mailboxes will save on a look-up each
time a further chat message is sent.

20.7.2. AoI-based broadcast chat

20.7.2.1. Requirements

Players need to be able to broadcast messages to players in their immediate spatial vicinity.

20.7.2.2. Design

AoI-based chat can be implemented as a broadcast remote method call to all player entities that have the
speaking player in their AoI. This does not require looping through all entities in script, and is implemented



Implementing Common Systems

177

efficiently on the CellApp. The chat method call is broadcast to client entities using the same mechanism as
any other broadcast method call, or when an ALL_CLIENTS or OTHER_CLIENTS property changes.

Volatile distance constraints can be specified for that chat method call so that only players within a certain
radius of the originating player receive the method call message.

20.7.3. Non-AoI-based broadcast chat

20.7.3.1. Requirements

Non-AoI-based chat channels are chat channels of entities that are not necessarily in the same spatial location.
This could be used for guild-scope chat and world-scope chat.

20.7.3.2. Design

A non-AoI-based channel can be implemented as a ChatChannel entity that contains a list of player mail-
boxes of the players that are connected to that chat channel.

When a player wants to connect to a channel, a channel look-up is performed for the particular ChatChannel
entity. This could be done via a similar scheme to the Player Look-up scheme described above. Once a mailbox
to the channel is found, the player registers its base mailbox with the ChatChannel entity, which adds it
to the list of connected player mailboxes.

A connected player broadcasts to that channel via a remote method call with the contents of that channel.
The ChatChannel entity is responsible for broadcasting that message to each of its connected player base
mailboxes.

20.8. Mail

20.8.1. Requirements

Each player must have the ability to send mail to other players. This mail includes some text and optionally
in-game items.

20.8.2. Design

The scalability of SMTP/IMAP mail servers can be leveraged here. Note that these game mail servers are
completely internal to the game - no public access would be allowed (though this would be up to the game
design).

Each player has an associated email address. BaseApps can query IMAP servers asynchronously using a TCP
socket registered with BigWorld, without blocking game script. Python has good support for communication
with IMAP over a socket (see the chapter Non-Blocking Socket I/O Using Mercury on page 241 )

Items can be gifted using special attachments or special email headers, depending on the item system used.
Item data would never be directly sent via email, instead, gifted items over email would be held in escrow,
as with AoI-based player item trading. See Inventory and Item trading below.

20.9. Inventory System

20.9.1. Requirements

Assume a game inventory system with the following features:

• Items are instances of a finite set of item archetypes

• Each item instance has associated with it customisations that differentiate it between other instances of
the same item archetype. These customisations may be visual customisations, different attributes (e.g.
durability, bonus to strength, etc.)



Implementing Common Systems

178 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

20.9.2. Design

Store a fixed amount of inventory item slots per-player on the player entity to limit the amount of inventory
data that is associated with player inventory.

Some popular MMOs have the concept of banks where players must be in a specific area to access items
stored at the bank. This could be a separate entity that is loaded on request when a player is accessing their
bank, and then destroyed once they leave the bank. The capacity of the on-player inventory and the bank
inventory could be tuned to optimise database load.

With the on-player inventory, this can be stored as a BigWorld ARRAY of item descriptors. Item descriptors
themselves would be persisted as a BigWorld FIXED_DICT, but could be class-customised when loaded from
the database so that items are represented in script as an arbitrary object type.

Player inventory changes are expected to be frequent. Per-element changes in a BigWorld ARRAY are prop-
agated to the client with a description of the change path to that element and the new element value (i.e. the
entire array is not sent from the server to the client each time an element is changed).

If each time the inventory is changed, the entity wrote its state out to the secondary database, then a bottleneck
can occur, as this operation is expected to be frequent.

In this case, we rely on the fault tolerance mechanism for ensuring against data loss. This works by periodi-
cally saving out the state of the entity to another process. That other process is responsible for restoring the
entity in the event of a process failure. For example, cell entity data is backed up to the corresponding base
entity's BaseApp, and base entities are backed up to other BaseApps. This is the first level of fault tolerance,
and the frequency of backups can be configured.

There is also a second level of fault tolerance, which is the periodic archiving of the base and cell entity state
to the secondary databases. The frequency of this can similarly tuned to achieve optimum BaseApp load.

However, for important changes to the item inventory, for example, a quest item, game script can request
a write to the secondary database and have that confirmed via an onWriteToDB() callback. For trading
transactions between two players, see below.

20.10. AoI-based Trading

20.10.1. Requirements

Player entities in the same spatial vicinity must be able to negotiate trade of items that they own.

Each player makes an offer to each other, placing their offered items in escrow. Once both players accept
the opposing player's offer, the trade succeeds and the items are traded. If one player cancels the trade, all
offered items are returned to their respective players.

Item trading transactions must not result in duplicate items or item loss.

20.10.2. Design

BigWorld can readily supply the base mailboxes of any player entity in a player's AoI. Otherwise, if trading
with a specific person not in the player AoI, a player look-up is required.

Escrow entities are created for the lifetime of a transaction, and hold mailboxes to the two entities bartering.
Escrow entities persist to the database. Trading consists of two stages, the negotiation stage and the transfer
stage. Escrow entities are created on the least loaded BaseApp.

The negotiation stage is a series of offer operations made from a player entity to an Escrow entity, each of
which is then forwarded to the opposing player entity.



Implementing Common Systems

179

If the server stops in the middle of a transaction, the Escrow entity has enough persistent information to
cancel itself on restore and return items back to their owning player entities.

Player entities on the server offer items to the other player (in response to GUI interactions from their player
client) in the form of remote method requests to the Escrow entity. In doing so, they transfer these items
from their inventory to a special holding area on the player entity on the server. This holding area is not
accessible for any other purpose by the player's client, other than to remove the item from the current offer,
which moves that item back into their inventory.

Each transfer to/from their player inventory to the trade holding area results in:

• notification of a change in items being offered to the Escrow entity via remote method call

• a database write on the Escrow entity

• an acknowledgement remote method call from the Escrow entity back to the originating player entity

• removal of the items from the holding area, and a database write on the player entity

If, for some reason (temporary or otherwise), the database write fails, the entire trade is cancelled, and the
items are returned to the players via remote method calls, which are acknowledged via a remote method call
by the players back to the Escrow entity. When the Escrow entity receives acknowledgements from the two
players that the trade has been cancelled, it deletes itself from the database.

Each player can signal to the Escrow entity that it is willing to accept the trade as it stands. Once the Escrow
entity receives positive notification for both parties, it transfers ownership of the items to the corresponding
opposing players by signalling to the player the item data that they have traded.

• The Escrow entity transfers ownership to each player their corresponding traded items

• On receipt of the items, each player initiates a write to the database. When this is confirmed to be OK, the
player entity acknowledges that they have the items by calling back on the Escrow entity.

• The Escrow entity waits for both acknowledgements to return, and then destroys itself and deletes itself
from the database.

Total database writes: 2 for each offer made, and at least 2 offers are made. 3 writes for the transfer stage.

This illustrates that trading can potentially be an expensive operation in terms of writes to disk. However,
all the writes are distributed amongst the entities involved, and most would be written to the secondary
database. Only one of the database writes, when the Escrow entity is destroyed, results in the primary
database being utilised, in order to remove that Escrow entity from persistent storage.

Note that each participating entity in a trading transaction is not required to be on the same process. This
scales well because there can be an arbitrary number of BaseApps, and players and Escrow entities would
be uniformly distributed amongst the BaseApps. Recall that while CellApps have player distributions that
map to where they are spatially, base entities on BaseApps do not have this spatial relation.

There is a cost to the primary database associated with the creation and destruction of each Escrow entity.
This design can be improved by consolidating the escrow operations to target a pre-existing EscrowMan-
ager entity rather than creating and destroying Escrow entities. A similar scheme could be implemented to
the PlayerRegistry entities by having an EscrowManager entity per BaseApp. Trading entities would
nominate and agree on a random EscrowManager to use for their trading transaction.



181

Chapter 21. User Authentication and Billing
System Integration

In the document Server Overview's section Design Introduction → “Use Cases” → “Logging In”, an overview
of the login process is given. This chapter details the part of that process concerned with authenticate the
login details and loading the initial entity.

21.1. Authentication by DBMgr

By default, authentication of the player's username and password is done by the DBMgr. It also handles the
mapping of that username to the initial entity the player will use. There are a number of different ways this
can be done. This section discusses these different approaches.

21.1.1. Default Authentication via MySQL

When using the MySQL database, DBMgr uses the bigworldLogOnMapping table (for details, see “Entity
Tables” on page 243 ) to check login's validity and which entity to load for the user. It contains the following
columns:

• logOnName

Username used to log in to BigWorld. This corresponds to the username argument passed to the
BigWorld.connect() call on the client.

This is the primary key.

• password

User's password. This corresponds to the password argument passed to the BigWorld.connect() call
on the client.

If bw.xml file's billingSystem/isPasswordHashed setting is true, the password will be hashed. The
following SQL is used to perform the hashing:

MD5( CONCAT( password, logOnName ) )

• entityType

Type ID of the entity to create. To map the type ID to its name, bigworldEntityTypes table (for details,
see “Entity Tables” on page 243 .) is used. This can be queried with the following MySQL query.

SELECT typeID FROM bigworldEntityTypes WHERE name='MyEntityType';

• entityID

The database id of the associated entity.

To determine whether a login is valid and which entity to load, DBMgr executes the following steps:

1. Find a row in the bigworldLogOnMapping table where the logOnName column matches the username.

2. Check that the user's password matches the password of the found row.

3. Load the entity identified by typeID and recordName.

#dest=
#dest=
#dest=
#dest=


User Authentication and Billing System Integration

182 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

For this step to succeed, the entity must already exist in the database. For information on how to create an
entity and write it to the database, see “Reading and Writing Entities” on page 100 .

This table is usually populated using MySQL tools. An example script, bigworld/tools/server/misc/
add_account.py, implements a command line utility that can be used to create accounts.

For information on how BigWorld can automatically populate this table, see “Accepting All Users” on page
184 .

21.1.2. Default Authentication via XML

Note

It is highly recommended to use the MySQL database back-end for production envi-
ronments. You should consider moving away from the XML database before imple-
menting user authentication.

The XML database implements the equivalent of the bigworldLogOnMapping table in the section _Big-
WorldInfo/LogOnMapping. Each row is specified using a separate sub-section, as illustrated below:

<root>
  <_BigWorldInfo>
    <LogOnMapping>
      <item>
        <logOnName>  John      </logOnName>
        <password>   acde1234  </password>
        <type>       Account   </type>
        <entityID>   7231  </entityID>
      </item>
      <item>
        <logOnName>  Peter     </logOnName>
        <password>   zyxw9876  </password>
        <type>       Avatar    </type>
        <entityID>   7232  </entityID>
      </item>
    </LogOnMapping>
  </_BigWorldInfo>
...
</root>

bigworldLogOnMapping table in XML

In the example above, two rows are specified. The tags correspond to the table columns as described below:

• logOnName ‐ Corresponds to column: logOnName

• password ‐ Corresponds to column: password

• type ‐ Corresponds to column: typeID

• entityID ‐ Corresponds to column: entityID

When specifying the type of the entity, the type name is used instead of the type ID used by the MySQL
database.

Please note that <res>/scripts/db.xml is only read and written to during startup and shutdown, re-
spectively. Therefore, it is not possible to update the _BigWorldInfo/LogOnMapping section and have
the changes take effect while DBMgr is running.



User Authentication and Billing System Integration

183

21.1.3. Custom Authentication and Billing System Integration

It is often the case that user accounts are stored in an external system. This section describes how to bypass
the bigworldLogOnMapping table and use your own system.

21.1.3.1. Billing System Integration using Python

The easiest way to achieve this is via Python. When the DBMgr checks whether to use Python by attempting
to call BWPersonality.connectToBillingSystem(). If this exists and returns a Python object, this
object is used to perform user authentication. The object should implement a getEntityKeyForAccount
and optionally setEntityKeyForAccount.

class BillingSystem( object ):
    def getEntityKeyForAccount( username, password, clientAddr, response ):
        ...

    def setEntityKeyForAccount( username, password, entityType, entityID ):
        ...

def connectToBillingSystem():
    return BillingSystem()

Example excerpt from res/scripts/db/BWPersonality.py

The getEntityKeyForAccount method accepts username, password, client address and response object
as arguments. The username and password should be used for authentication and an appropriate response
should be returned by calling one of the methods of the handler object.

The response argument has the following methods:

• loadEntity( entityType, entityDatabaseID ) ‐ This should be called on successful authenti-
cation. It accepts two arguments, the type and database id of the entity to be loaded from the database
and used by this user.

• loadEntityByName( entityType, entityName, shouldCreateUnknown ) ‐ This is like load-
Entity but takes the name (identifier string) of the entity instead of the database id. It also takes a boolean
argument indicating whether to create a new entity if one with this name does not exist.

• createNewEntity( entityType, shouldRemember ) ‐ This should be called when logging in
should proceed but a new entity should be created instead of loading one from the database. It accepts
two argument, the type of the entity to create and a boolean indicating whether this new entity should
be saved in the database and in the billing system.

• failureInvalidPassword() ‐ This should be called when authentication fails because of an invalid
password.

• failureNoSuchUser() ‐ This should be called when authentication fails because no such user exists.

You may not want to differentiate between receiving an invalid password or non-existent user. If so, you
should just consistently return either failureNoSuchUser or failureInvalidPassword on failure.

The setEntityKeyForAccount is only required if createNewEntity is ever called with shouldRemem-
ber as True. If so, this is called with the username and password of the account and the entity type and
entity id of the entity to associate with that account.

FantasyDemo has a simple example where account information is stored in an sqlite database. This is lo-
cated in fantasydemo/res/scripts/db/FantasyDemo.py and fantasydemo/res/scripts/db/
sqlite_billing.py.



User Authentication and Billing System Integration

184 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

21.1.3.2. Billing System Integration using C++

Billing system integration can also be done via C++. A skeleton billing system case is implemented in big-
world/src/server/dbmgr/custom_billing_system.cpp. Integration should be done by filling out
this class. To make use of this class, USE_CUSTOM_BILLING_SYSTEM needs to be set to 1 in bigworld/src/
server/dbmgr/Makefile.

The support for Python billing system integration is implemented in bigworld/src/server/dbm-
gr/py_billing_system.cpp. This can be used as an example.

21.1.4. Accepting All Users

During development, it is often convenient to grant all users access to the server, without having to set up
a bigworldLogOnMapping table.

This can be achieved by setting bw.xml file's billingSystem/shouldAcceptUnknownUsers1 config-
uration option to true. With this configuration, a default entity is created for the user if there is no row
matching the username in bigworldLogOnMapping.

The type of the entity created is controlled by the bw.xml file's billingSystem/entityTypeForUnk-
nownUsers option. Additionally, if billingSystem/shouldRememberUnknownUsers is set to true,
then the entity created for the unknown user is saved in the database, and an entry is added in bigworld-
LogOnMapping. This effectively adds a new user into the system, and subsequent logins by the same user
will be processed via the normal login process.

If a custom billing system is being used, it is up to its implementation whether these options are respected.

21.2. Authentication via a Base entity
An alternative method for performing user authentication, and entity selection is to delegate to an account
entity and perform the logic in its base entity script. An account entity is just another BigWorld entity that
is implemented using Python script. The DBMgr can be configured to bypass its usual login processing and
pass control over to the account entity.

To use this method, the following configuration options must be set:

• billingSystem/entityTypeForUnknownUsersA ‐ Required value: Your account entity type

Reason for required value:

Type of the entity that will handle the login process.

For details on how to implement entities, see Directory Structure for Entity Scripting on page 19 .

• billingSystem/authenticateViaBaseEntityA ‐ Required value: true

Reason for required value:

This bypasses the DBMgr authentication and always creates a Proxy entity of the type indicated above. If
this entity already exists in the database with its identifier equal to the current username, that data will be
loaded otherwise a new entity will be created. New entities are not immediately added to the database. It
is up to the base entity script to write only the appropriate entities with a call to Base.writeToDB().

Note

The name of an entity is a property tagged with the <Identifier> tag. For details,
see “The Identifier Tag” on page 99 .

1For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “DBMgr Configuration Options”.

#dest=
#dest=
#dest=


User Authentication and Billing System Integration

185

A ‐ For details, see the document Server Operations Guide's section Server Configuration with bw.xml → “DBMgr
Configuration Options”.

After a successful login:

• On the client ‐ The account's __init__ method is called.

• On the BaseApp ‐ The account's onEntitiesEnabled method is called.

There are a couple of approaches to retrieving the user's password:

• On the BaseApp, if the account entity has a property called password, it is automatically set to the user's
login password. And, of course, the account's name property will try to match the username.

• Since the login password sent by the client using BigWorld.connect method is usually sent in clear text, it
may be preferable to use an empty password for normal login processing. Then, after the account entity
has been created, the client can send an encrypted password to the Proxy.

It is up to the account entity's implementation to verify the user's password. This is usually done by commu-
nicating with a third-party billing system. For details on how to communicate with a non-BigWorld process,
see Non-Blocking Socket I/O Using Mercury on page 241 . If the user's password is invalid, then the Proxy
entity can destroy itself to disconnect the client.

#dest=
#dest=
#dest=
#dest=


187

Chapter 22. Security
Any MMOG needs to implement robust solutions to safeguard its environment from exploits. This chapter
describes the measures adopted by BigWorld to provide safety for your data.

22.1. Client/Server Communications

The list below describes the measures taken to guarantee the security of client/server communications:

• Security measure: Login authentication

Opportunity thwarted: Unknown user using a player's account.

When a player logs in to a BigWorld server, he sends a username and a password. These are compared to
a server-side database, to make sure that the user is subscribed.

The source code is available to the login procedure, so this method can be customised as desired.

• Security measure: Packet authentication

Opportunity thwarted: Player pretending to be someone else, by spoofing another player's data.

When a player logs in to a BigWorld server, the server sends a 32-bit session key back to the client. The
client must use this key in all further packets sent to the server, or the packet will be rejected.

Optionally, the server can also send to the client an authentication key with every packet. This makes it
very hard for an attacker to successfully masquerade as the server.

Also, every command called on the server has the client's ID added to the arguments. This is done by the
BaseApp before the command is transmitted, so the client cannot fake the ID.

• Security measure: Encryption

Opportunity thwarted: Attacker sniffing data to gain privileged information, or injecting new packets
into client-server streams.

All traffic between the client and server is encrypted. The credentials sent to the server during login are
RSA-encrypted and all client-server traffic after this point is encrypted with 128-bit modal Blowfish. This
makes it very difficult for an attacker to inject new packets into either the upstream or downstream traffic;
without knowing the Blowfish key, the probability of generating a packet that will parse correctly and not
be discarded is extremely low.

It would still be possible for a player to hack its own binary and sniff the data stream from the server after
it has been decrypted.

• Security measure: Data hiding

Opportunity thwarted: Player accessing privileged information.

All properties of entities are tagged with propagation specifiers. These allow the server to control where
information is sent.

For example, you may want to hide the actual health of NPC players, to prevent players from cheating
by sniffing the data stream.

This is a common problem on MMOGs that receive data that is not always displayed to the user.

For more details, see “Data Distribution” on page 40 .



Security

188 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Security measure: Sequence numbers

Opportunity thwarted: User spoofing and replaying captured stream.

All packets are stamped with a sequence number, and packets are rejected if the sequence number is re-
peated.

This makes it much harder for a hacker to capture a data stream and replay it, or inject packets to fake
game operations.

• Security measure: IP address masking

Opportunity thwarted: User doing DOS attacks on clients.

A player's IP address is not shared between clients, making it impossible for hackers to sniff it and then
perform a Denial Of Service attack on that client.

• Security measure: Privilege checks on RPCs

Opportunity thwarted: Player calling server-only functions.

Both client and server entities call functions (Remote Procedure Calls) on Python objects.

The developer tags all methods with accessibility flags. This enables the server to check all calls to make
sure that they are legal.

22.2. Server-Side Network

Security for the internal server-side network is provided by a simple proxy mechanism ‐ the only ma-
chines exposed to the Internet are the LoginApps and BaseApps (for more details, see the document Server
Overviews section Server Components → “BaseApp”).

As such, internal server traffic between BigWorld components (e.g., CellApp to BaseApp traffic, CellApp to
CellAppMgr traffic) cannot be sniffed.

Additionally, each server component is only required to listen for all external communications on a single
UDP port. This way, all other network services can be disabled, including TCP, which is the target of many
known attacks. Listening on a single UDP port for communications with all clients (as opposed to a distinct
port for each) also has the following advantages:

• It becomes impossible for one client to guess another's port, and thereby impersonate it.

• A single recv() is used for all incoming messages on the server side, instead of a select() across a
large number of per-player sockets. This results in a more efficient message handling implementation.

22.3. Client Side

The list below describes the measures taken to guarantee the security of the client side:

• Security measure: CD Key

Opportunity thwarted: Stealing of CD images

BigWorld Technology does not cover distribution issues.

But since an MMOG client must connect to a server to play the game, this problem can be solved by
modifying the login process so that, in addition to the username and password, the CD key is also sent to
the server and checked against a database.

#dest=
#dest=
#dest=
#dest=


Security

189

22.4. Client Cheating

As a developer, you need to watch out for hacked clients, and third party apps (often called 'trainers'). It is
also important to realise that it is very hard to prevent all forms of cheating. You should decide what forms
of cheating will impact you and/or your customers, and work on those issues, and do not let minor cheating
distract you.

The most important rule is to always be careful with data sent from the client. If possible, everything that the
client does should be checked for validity on the server. Simple rules, like ensuring that a switch can only be
activated when the player is close enough to throw the lever, are easy to enforce. To simplify these checks,
an extra 'source' argument is added to the parameter list for every method exposed to the client. The client
does not send it up ‐ it is added by the BaseApp automatically. Also, to make it harder for clients to cheat,
methods not exposed to the client are excised from the address space that it sees.

Generalised physics checking on more frequent interactions, such as movement, is not so easy, since running
the physics of every player on the server would be quite expensive. One solution is to use the high-level
geometry of the world as the expression of the important physical rules. The world is built up of polyhedral
chunks connected by portals. A chunk equates to one room in inside areas. Whenever the player moves
between chunks, we check that the movement passes through a portal, and that the player has not moved
too fast. This means that we are not concerned about petty violations of physical rules, like standing in the
middle of a table, but we do catch violations that influence the game, like moving through walls or locked
doors, and moving too quickly.

22.4.1. General Rules for Managing Entity Data

The general rule is to send data to the client only if it is necessary. This saves bandwidth, as well as helping
reduce hacking. There are three techniques you can use with BigWorld Technology:

• Level of Detail

Instead of constantly sending entity information, you might want to send it only when it is within range.
For example, a player might be able to see a monster from 500 metres away, but its level does not have to
be sent to the client until it is within 20 metres.

• Data hiding

Some information should never be sent to the client. For example, NPC health could be kept local to the
server, and the client can just call functions that affect it (e.g., doDamage(10)). The server sends the results
to the client (e.g., monster limping because health is below 50%).

• Data on request

The client should call server functions to request data only when needed. For example, your game could be
designed such that the client must physically 'con' a monster by calling a server-side function that returns
level and health. To detect potential cheating the server could then flag clients that con more than one
monster per second, or con monsters further than 20 metres away.

22.4.2. Writing Secure Game Script

As mentioned in other places, the responsibility for security in a BigWorld-based game is shared between the
engine itself and the game script running on top of it. In particular, script writers must be very careful in the
design and implementation of <Exposed/> methods. Please see “Exposed Methods ‐ Client-to-Server Com-
munication” on page 67  for more details on the specifics of the security requirements for exposed methods.



Security

190 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note

Please be aware that at this point in time, the FantasyDemo game that ships with each
BigWorld package has not been bulletproofed against the actions of malicious clients
and in all likelihood contains security vulnerabilities in its exposed methods. We are
working on improving this and offering a FantasyDemo to customers that serves as
both a good feature demonstration as well as a good example of secure script.

22.4.3. Balancing Security vs. Latency

As much as security is important, as a developer you have to be careful so that it does not impact too much
the player's experience of the game.

The game has to be responsive, but the game play may feel very lagged if the client passed all movement and
combat commands to the server for validation before showing results. Therefore, you are best off handling
movement on the client side, or simultaneously on the client and the server. For example, to have a fast-paced
shooting game, you would need to perform client-side tests for impact, and show the result immediately
(monster recoils when hit, etc...). Simultaneously, you would send the shoot command to the server, and let
the server send down any changes of health if the monster is really hit. This means that the client cannot
cheat with shooting, but still gets lag-free results.

22.4.4. Balancing Security vs. Server CPU Cost

This is one of the biggest issues in controlling hacking. For example, it may be too expensive to check all
player physics on the server. The developer has to pick the most common forms of cheating, and check for
those.

It is sensible to allow checks to be turned on and off per player, or only check 10% of the players at any one
time. Statistical checking can be useful, for example by monitoring how many XP are gained over time by
players, to check if they are accumulating points at an unfeasible rate. If the player becomes a suspect of
cheating, then more checks can be turned on for him.



191

Chapter 23. Debugging
23.1. General Debugging

23.1.1. Information and Error Messages

When running the server using control_cluster.py, for example, there may not be a console associated
with an application. In order to view process messages when not running from the console the server tools
MessageLogger1, and WebConsole2 should be used for collecting process output and viewing log messages
respectively.

23.1.2. Testing Scripts Using the Python Server

In order to test Python scripts and behaviour on a live server a telnet server can be connected to on both
the BaseApp and CellApp processes to run script. The telnet server by default is run on port 40001 for a
BaseApp, and 50001 for a CellApp, but both can be configured in the file <res>/server/bw.xml using
the <pythonPort> configuration option.

If the desired port is already used on the application's machine, then a random port is chosen. You can find
out the assigned port by looking at the log output of the particular BaseApp or CellApp for a line such as
the following:

INFO: Python server is running on port 33225

This value can also be found in the watcher value pythonServerPort.

Note

This is intended primarily as a development time only utility and should be used spar-
ingly in a production environment. Performing CPU intensive Python operations such
as listing all entities may adversely affect game behaviour for your clients.

Telnet can be used to connect to the Python server of each BaseApp and CellApp, which provides a Python
console that can be used for

There are currently three methods of connecting to the Python telnet server:

1. Connecting via WebConsole

2. Connecting via control_cluster.py

3. Connecting via the commandline using telnet

Connecting to the Python server via WebConsole is the recommended method of interacting with the Python
server as it allows access to the other server debugging tools as required. To connect through WebConsole
simply select the Python Console module from the menu on the left hand side of the main WebConsole page.

To connect using control_cluster.py, simply use the pyconsole3 option. For example, to connect to
the second CellApp in a cluster:

$ ./control_cluster.py pyconsole cellapp02

1For details on MessageLogger, see the document Server Operations Guide's section Cluster Administration Tools → “Message Logger”.
2For details on WebConsole, see the document Server Operations Guide's section Cluster Administration Tools → “WebConsole”.
3For more information regarding this option see the control_cluster.py program help using the --help flag.

#dest=
#dest=
#dest=
#dest=
#dest=
#dest=


Debugging

192 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

To connect using telnet, after determining the port the process has an active python server on simply provide
telnet with the hostname and port. For example, to connect to a machine called cluster01 running a BaseApp
with a Python server running on port 40001 the following command would be used:

$ telnet cluster01 40001

Once connected to the Python console server it is possible to call script methods. For example, in FantasyDe-
mo, the player entity is called Avatar, and it is possible to access its cell or base parts after a player logs in:

$ telnet cluster02 50001
Trying 10.40.3.4...
Connected to cluster02.
Escape character is '^]'.
Welcome to Cell App 1
Build: 13:34:56 Apr 12 2005
> BigWorld.entities.keys()
[4848, 4849]
> BigWorld.entities[4848]
Avatar at 0x08533FDC
> avatar = _
> avatar.playerName
'Trogdor the Burninator'
> avatar.beginTrade()

Accessing an avatar via the Python console on the cell

23.2. Performance Profiling

Python has helpful modules that can be used to profile your script. BigWorld exposes the method _hotshot
through the watcher interface, to help with profiling BigWorld script.

To start profiling, set the watcher pythonProfile/running to true. The profiler outputs its log to a file
with the filename specified by the watcher pythonProfile/filename, the file name being relative to
the current working directory, most likely to be bigworld/bin/Hybrid. Setting the watcher pythonPro-
file/running to false ends the profiling session, and closes the profile log.

To inspect the log, use the module hotshot.stats.

For example,

$ python
> import hotshot.stats
> stats = hotshot.stats.load( "cell.prof" )
> stats.sort_stats( "time", "calls" )
> stats.print_stats( 20 )

Please note that there may be problems inspecting the profiling log, if the call stack depth gets smaller than
when the session was started, or the session is stopped at a different call stack depth. Due to that, care must
be taken when starting and stopping profiling from script.

It is also possible to use the module _hotshot in script. This may be helpful if you only want to profile specific
parts of the script. A profiler object can be created, and then started and stopped over a specific method call.

For example, the following could be added to file fantasydemo/res/scripts/cell/Creature.py to
profile the method Creature.onTime:



Debugging

193

import _hotshot
profiler = None

def startProfiling():
  global profiler
  profiler = _hotshot.profiler( "creature.prof" )

def stopProfiling():
  global profiler
  profiler.close()
  profiler = None

class Creature( BigWorld.Entity ):
  def onTimer( self, timerId, userId ):
    if profiler:
        profiler.start()

    # Normal function body

    if profiler:
        profiler.stop()

This can be started and stopped with something like the following.

$ telnet bgserver 50001
Trying 10.40.3.4...
Connected to bgserver.
Escape character is '^]'.
Welcome to Cell App 1
Build: 13:34:56 Apr 12 2005
> import Creature
> Creature.startProfiling()
> Creature.stopProfiling()

For more details on the hotshot module, see the Python documentation at http://docs.python.org/lib/mod-
ule-hotshot.html.

23.3. Common Mistakes

23.3.1. Definition Files Inconsistent Between the Server and Client

To ensure that the client can understand the data sent by the server, the definition files must be kept consistent
between them.

A client will not be able to log in if it has inconsistent definition files. The LoginApp and the DBMgr produce
the following error:

INFO: LoginApp::sendFailure: LogOn for 10.40.3.17:2254 failed 'Bad digest'

23.3.2. Implementation (.py) Does Not Match Definition (.def)

For each entity type, its Python script must implement the methods described in its .def file. The server
will report an error if this does not occur.

For example:



Debugging

194 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

ERROR: EntityDescription::checkMethods: class Avatar does not have method
 sendMessageToFriends
ERROR: EntityType::Type: Script for Avatar is missing a method.

23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Defini-
tion File

It is possible to access a property of another entity when it is on the same process as the calling entity. This
is true for both base and cell entities.

This works during initial testing, when only one BaseApp and one CellApp are used, but is likely to not
work when more BaseApps and CellApps are used.

Properties of remote entities cannot be written to directly (i.e. they are read-only), regardless of whether
those properties are declared in the .def file. Also, only methods declared in the .def file can be called
when the entity is on another application.

23.3.4. Trying to Update the Properties of a Ghost Entity

Sometimes the game design might have two entities moving through the world close to each other, as
would be the case of an Avatar and a Bodyguard, or a Pet. Due to their proximity, developers might assume
that they will always be located in the same cell as each other, and thus have one of the entities try to update
a property on the other (e.g., self.bodyguard.armour=true, or self.pet.state=Alert).

Though this will not cause problems most of the time, it might happen that the two entities are separated
by a cell boundary, and thus will only have access to the other one's ghost, which will cause the properties
to be read-only.

To test for the existence of this kind of problem, CellApp has the configuration option treatAllOther-
EntitiesAsGhosts. This option causes the CellApp to treat only its own entity as real, and all others as
ghosts. For more details, see “Data Distribution” on page 40 .

This debugging mode allows script writers to catch these errors immediately instead of leaving them lurking
in the background to only appear on rare occasions.

23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base
part

As noted in the Python API documentation, the writeToDB() method can only be called on entities that have
a Base part. That means you cannot persist entities that do not have a Base part.

The server's first-level fault tolerance (which restores entities when a CellApp dies) also relies on those enti-
ties having a Base part. The state of the entity is backed up from the Cell to the Base part over time and if
the CellApp that is hosting an entity's Cell part disappears, the Base entity will restore it to another CellApp.
This does not work unless you create each entity type with a Base and Cell part.

This means that you may need to declare more-or-less empty Base entity definitions for entities that don't
have any Base methods, just so that they can be written to the database and so that they will be restored in
the event of a CellApp crash.

23.4. Fixed Cell Boundaries

To help the testing and debugging of the transitioning of entities between CellApps, it can be helpful to have
fixed cell boundaries.

Typical things that could be tested this way include:



Debugging

195

• Controllers and entity extras implemented in extensions.

• Script interaction of entities on different CellApps.

• Streaming of entity properties.

To configure fixed cell boundaries in BigWorld, follow the steps below:

• Start the server including at least two CellApps.

• Make sure that cells are created on all CellApps by setting the configuration options cellAppM-
gr/cellAppLoadLowerBound and cellAppMgr/cellAppLoadUpperBound to 0.0 in file <res>/
server/bw.xml. These options can also be changed with the watcher values cellAppLoad/ bal-
anceLowerBound and cellAppLoad/balanceUpperBound of CellAppMgr.

• Disable load balancing by setting the CellAppMgr watcher value debugging/shouldLoadBalance to
false.

• It can also be convenient to set the exact position of a partition. Currently, only the root partition of a
space can have its position set. This can be set with the CellAppMgr watcher value spaces/<spaceID>/
rootPartition, where <spaceID> is the space ID.

23.5. Message Reliability And Ordering

BigWorld is a networked, distributed system, and as such, script writers need to be aware of the reliability
and ordering issues that can arise in such a system. All non-volatile messages are reliably delivered. BigWorld
guarantees not only the reliable delivery but also the in-order delivery of some messages. These are:

• Messages sent between Proxy and Client

• Messages sent between the Base and Cell part of the same entity

• Messages sent between two Base entities

• Messages sent between any pair of server processes

• Updates sent from a real entity to its ghosts

The offloading of Cell entities from one CellApp to another can cause some messages to be delivered slightly
out-of-order. This means your game script may need to cope with method calls and property updates being
slightly out-of-order if they are triggered by any of the following message types:

• Messages sent between two different Cell entities

• Messages sent between the Cell part of one entity and the Base part of another

• Messages sent between the Cell part of one entity and the Client part of another

It is important to note that the probability of out-of-order delivery of these messages is directly proportional
to the amount of packet loss on the network the server processes are running, i.e. this re-ordering cannot
happen unless you are getting some degree of packet loss. We cannot emphasise enough the importance
of using good quality hardware (both computers and network hardware) in your production deployment
clusters, and having enough hardware in your clusters that you can run your game servers with an ample
amount of CPU and network capacity to spare. BigWorld's experience with customer deployments has shown
that inferior and/or insufficient hardware is likely to cause critical (i.e showstopping) problems at runtime.



197

Chapter 24. Shared Development Environments
As the workflow of creating a game requires a large number of people working on a numerous components
simultaneously within a variety of environments it is nescessary to ensure that everybody can work together
in as seamless a manner as possible. This chapter aims to outline the key areas in which interaction is required
and the recommended methods to avoid conflicts.

Currently there are three areas that have been identified that may cause potential interaction conflict for an
unprepared development team:

1. Windows and Linux cross platform development.

2. Using BigWorld with a Version Control System.

3. DBMgr database conflicts.

24.1. Windows and Linux cross platform development

For anyone not familiar with both Windows and Linux, running a BigWorld server on a Linux box to test
game scripts and assets can be intimidating and error prone. Since designers and artists typically do most
of their work on Windows, the process of synchronising files between Windows and Linux machines can
be tedious.

The solution outlined below aims to simplify this task by having all assets and game scripts reside on a
Windows machine, with a Linux machine (which can be shared among multiple users) hosting and running
a BigWorld server for each user that requires their own development environment.

Sharing game resources between Windows and Linux

This solution can be summarised as follows:

1. A game developer on a Windows machine creates a network share of the root BigWorld directory (i.e.,
the directory containing bigworld, fantasydemo, and src folders).

2. On the Linux machine, the Windows share from Step 1 is mapped to a directory and the relevant <res>
directories and used when a BigWorld server is started.

Cross-mounting development resources has been found within the BigWorld offices to be the most effective
method for Windows based developers and artists to work, as all editable files reside on the machine they
are working on.



Shared Development Environments

198 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Note

This solution intentionally keeps the server binaries on the Linux box.

Running server executables that exist on Samba mounted filesystems can cause unex-
pected problems, and is not recommended.

Running server binaries from NFS mounted filesystems works correctly and is a rec-
ommended alternative.

24.1.1. Sharing resources from Windows

For the purposes of this example we assume that all the game resources have been checked out into a direc-
tory called C:\BigWorld.

To share the C:\BigWorld directory on the Windows machine, follow the steps below for your version of
Windows.

24.1.1.1. Windows XP

1. Browse to the C:\ drive in Explorer.

2. Select the BigWorld directory and right-click it.

3. In the context menu, select the Sharing and Security... menu item.

4. On the mf Properties dialog box, select the Share This Folder option button.

5. In the Share Name field, type the name to share the folder by (in our example, mf-win).

6. Click the Permissions button.

7. In the Permission For mf dialog box's Group or User Names list box, select the Everyone item.

8. In the Permissions For Everyone list box's Full Control entry, select the Allow check box.

24.1.1.2. Windows 7

1. Browse to the C:\ drive in Explorer.

2. Select the BigWorld directory and right-click it.

3. In the context menu, select the Properties menu item.

4. Select the Sharing tab.

5. Click the Advanced Sharing... button.

6. In the Advanced Sharing dialog box, select the Share this folder check box.

7. If necessary, click the Permissions button to enable all users access privileges to this share.

8. Click OK when finished.

24.1.2. Accessing Windows share from Linux

To assist the process of mounting the Windows share, BigWorld provides the script setup_win_dev. The
location of this script may differ depending on your edition.



Shared Development Environments

199

Indie Edition For customers using the Indie edition, setup_win_dev will be installed into /
opt/bigworld/current/server/bin by the server RPM package. This di-
rectory has also been placed into your $PATH so you can run setup_win_dev
from any directory.

Commercial Edition Customers using the Commercial edition can find the setup_win_dev script lo-
cated in bigworld/tools/server/install/setup_win_dev.py.

Please note, however, that it was designed for developers working at BigWorld, and hence it uses default val-
ues appropriate for BigWorld as well. Before artists and game programmers use it, a sysadmin or program-
mer should edit this file to change the defaults to values appropriate for your development environment.

24.1.2.1. Assumptions and Requirements

This setup_win_dev script has following assumptions:

• The server binaries can be accessed on the Windows share.

• Your username on the Windows box is the same as your username on the Linux box.

• You are using CentOS 5 or later.

• Linux kernel with CIFS module. This should be contained within the default CentOS kernel.

The script will display a list of prerequisites upon startup, which are reproduced here for convenience:

• The user running the script has been entered into the /etc/sudoers file on the Linux machine.

For details see the system manual page with the command 'man sudoers'.

• You know the location of your home directory on the Linux machine.

This can generally be discovered by running the following command:

$ echo $HOME
/home/alice

• You have shared the top level BigWorld directory from your Windows machine.

For details on how to achieve this see “Sharing resources from Windows” on page 198 .

• You may also require the Samba client programs. To install the Samba client, run the following command
as the root user:

# yum install samba-client

24.1.2.2. Mapping a Windows share onto Linux

Once the requirements outlined above have been met, or any necessary modifications have been made to
your environment, running the setup_win_dev script will guide you through mounting a Windows share
using Samba onto the Linux machine.

Outlined below is a simple run through of the setup_win_dev program discussing each step.

When the program is first run, it attempts to establish root user privileges using the sudo command. This
enables the program to interact with the system devices nescessary to provide access to your Windows share.
This step may not be nescessary if you have recently performed another command using sudo. Enter the
password for the account you are currently logged in as.



Shared Development Environments

200 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

$ setup_win_dev
NOTE: If you are immediately prompted for a password, enter your *own*
      password not that of the root user.

* Validating user has 'sudo' privileges
Password: 

Next we see that the program is preparing a destination directory for the Windows share to be placed under.
This directory defaults to $HOME/bigworld_windows_share.

* Setting up destination location for Windows resources

The next step involves entering information regarding the location of the Windows machine and the name of
the shared resources. If you are uncertain about any of the details attempt to access your Windows machine
from another machine in the network to establish the machine name and share name.

* Querying location of remote resources

Enter the hostname of your Windows machine: mywindowsmachine
Enter the share name of the shared BigWorld directory: BigWorld_indie

You now need to input the username and password required to access the Windows machine. The username
will default to the username of your unix account, however if your Windows login is different simply enter
that here.

We now need the username and password required to connect to the Windows share
Username [alice]: bob
Password: 
Confirm password: 

The setup_win_dev program now outputs the resource name to be used when accessing the Windows
share. This resource name can be used by other Samba tools such as smbclient if you are having troubles
connecting.

Using remote location: '//mywindowsmachine/BigWorld_indie'

Finally you will be asked if you wish to have the Windows share always available on the Linux machine.
This allows you to reboot or shutdown the Linux machine whenever you need to without having to re-
mount the Windows share. If you choose 'yes' a new file that is only readable by your user will be created in
$HOME/.bw_share_credentials containing your username and password.

Do you want to automount your Windows share each time this Linux box boots?
This will place a file in your home directory containing a clear-text copy
of your password that is only readable by your user. [yes]

The setup_win_dev program will now attempt to make the Windows shared resources available for you.

Patched /etc/fstab successfully
//mywindowsmachine/BigWorld_indie is mounted at /home/alice/
bigworld_windows_share
* Windows directory successfully mounted



Shared Development Environments

201

24.2. Using BigWorld with a Version Control System

It is strongly recommended that a version control system such as CVS, SVN or Perforce is used while de-
veloping a game using BigWorld. In doing so you allow numerous people within your development team
to remain up to date with changes and enable access to all parts of the project resources regardless of the
development platform of an individual.

24.2.1. Customers using the Commercial Edition

Most recipients of an SVN distribution should place the entire release received from BigWorld into their
version control system. This ensures that any changes to the BigWorld source code and resources are prop-
agated to all the game developers at once.

Some files should not be committed into the version control system. Please review the section “Files to ex-
clude from version control” on page 201  for further details.

24.2.2. Customers using the Indie Edition

24.2.2.1. Creating a project repository

Customers using the Indie edition should only commit their own project directories into version control.

Indie customers should only commit their own project directories into version control.

For example in the case of a new game called “my_game” it is recommended to commit the directory C:
\BigWorld\my_game into your version control system.

Some files should not be committed into the version control system. Please review the section “Files to ex-
clude from version control” on page 201  for further details.

24.2.2.2. Checking out an existing project

When setting up a new client machine run the installation procedures outlined in the Client Installation
Guide and then checkout your project into the new installation.

When setting up a new server machine run the installation procedures outlined in the Server Installation
Guide. You will then need to checkout your project into the home directory of the user running the server,
or follow the instructions outlined in “Windows and Linux cross platform development” on page 197  to
use resources mounted from a Windows machined. After preparing the server and the game resources for
use you will also need to ensure that the .bwmachined.conf file has been updated accordingly. Details on
the .bwmachined.conf file can be found in the Server Installation Guide.

24.2.3. Files to exclude from version control

There are numerous files that are automatically generated while running a the BigWorld Technology Suite
which are only relevant to the user currently running a program. These files should be excluded from
your version control system to avoid conflicts with other users. Each version control system provides its
own mechanism to ignore or exclude files. For example Subversion allows you to set a directory property
svn:ignore to a list of file match patterns for that directory.

Below is listed a set of files and directories that should be considered for adding exclusion rules to your
version control repository and configuration files.

24.2.3.1. General exclusion rules

Application log files such as python.log or worldeditor.log should not be committed into your repos-
itory.

#dest=
#dest=
#dest=
#dest=
#dest=


Shared Development Environments

202 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

*.log

When you run the game client or the tools, some resources will be created on-disk as 'processed' or 'compiled'
versions of source files. These files are regenerated on demand based on comparing the timestamp of the
source with the timestamp of the automatically generated file. These files should not be committed into your
repository.

*.dds        # Compressed texture map files
*.anca       # Compressed animation files
*.font       # Processed font files
font/*.dds   # Generated font bitmaps

Python scripts used for client and server game logic will generate a compiled byte-code file when they are first
run or updated. As these files will be changing frequently during development they should not be included
in the repository to help reduce clutter with each changeset.

*.pyc

24.2.3.2. Tools specific exclusion rules

The art pipeline tools automatically generate user preference files when they are run. As these will differ
between artists they should be excluded from the repository.

bigworld/tools/worldeditor/options.xml
bigworld/tools/worldeditor/resources/graphics_preferences.xml

bigworld/tools/particleeditor/options.xml

bigworld/tools/modeleditor/options.xml

The art tools Asset Browser also generates history files as it is being used.

bigworld/tools/modeleditor/resources/ual/history.xml
bigworld/tools/modeleditor/resources/ual/favourites.xml

bigworld/tools/particleeditor/resources/ual/history.xml
bigworld/tools/particleeditor/resources/ual/favourites.xml

bigworld/tools/worldeditor/resources/ual/history.xml
bigworld/tools/worldeditor/resources/ual/favourites.xml

World Editor will create a space.localsettings file when creating a new space.

<your_game>/res/spaces/<your_new_space>/space.localsettings

World Editor will also create two files containing a space map. Both these files must be committed to revision
control or neither.

<your_game>/res/spaces/<your_space>/space.thumbnail.dds
<your_game>/res/spaces/<your_space>/space.thumbnail.timestamps



Shared Development Environments

203

The BigWorld game client will also generate a preferences file in the directory it is run from.

# Substitute 'fantasydemo' for your game name
fantasydemo/game/preferences.xml

24.3. DBMgr database conflicts

For customers using a MySQL database to store persistent data, shared development environments can
present an issue with multiple servers contending for the same database.

The database used by DBMgr is exclusive per server cluster instance so it is nessecary for multiple users
running a server on the same machine to use different databases. To do this requires adding or modifying the
the <res>/server/bw.xml configuration file entries for dbMgr/host and dbMgr/databaseName. Specifically
the databaseName should be unique per user. For more information on these options refer to the Server
Operations Guide section “DBMgr Configuration Options”.

#dest=
#dest=
#dest=


Part II. Server C++ Programming Guide



207

Table of Contents
25. Overview .................................................................................................................................  209

25.1. Compilation ...................................................................................................................  209
25.1.1. Output Directories ...............................................................................................  209

26. Extending BigWorld Server ....................................................................................................... 211
27. Entity Extras and Controllers ....................................................................................................  213

27.1. Implementing Entity Extras ............................................................................................  213
27.2. Implementing Controllers ..............................................................................................  216

27.2.1. Configuring Portal's Permissivity ......................................................................... 219
27.3. Integrating Entity Extras and Controllers ........................................................................  220

27.3.1. Restricting the Number of Controllers Per Entity .................................................  221
28. Updatable Objects ....................................................................................................................  223
29. Encrypting Client-Server Traffic ...............................................................................................  225

29.1. Generating your own RSA keypair ................................................................................  225
29.2. Working with multiple keys ..........................................................................................  225
29.3. Customising the symmetric encryption algorithm ...........................................................  225
29.4. How PacketFilters work .................................................................................................  226

29.4.1. High-level requirements ......................................................................................  226
29.4.2. Filtering mechanics and requirements ..................................................................  226
29.4.3. Extra space for filtering .......................................................................................  227

30. Mercury Packet Structure .........................................................................................................  229
30.1. Header ...........................................................................................................................  230
30.2. Messages .......................................................................................................................  230

30.2.1. Fixed-Length Messages ........................................................................................  231
30.2.2. Variable-Length Messages ...................................................................................  231

30.3. Footers ...........................................................................................................................  231
30.3.1. Fragment Numbers ..............................................................................................  231
30.3.2. Sequence Number ...............................................................................................  231
30.3.3. ACKs ..................................................................................................................  232
30.3.4. Indexed Channel ID ............................................................................................  232
30.3.5. First Request Offset and replyID .......................................................................  232

31. The Watcher Interface ............................................................................................................... 233
31.1. Callable Function Watchers ............................................................................................  233

31.1.1. Forwarding Watchers ...........................................................................................  234
31.1.2. Implementing Function Watchers .........................................................................  234

32. Debug Message Macros ............................................................................................................  237
32.1. Centralised Logging .......................................................................................................  238
32.2. Filtering by Priority .......................................................................................................  238
32.3. Message Priority ............................................................................................................  238

33. Non-Blocking Socket I/O Using Mercury ..................................................................................  241
33.1. Getting Callbacks From Mercury::EventDispatcher .........................................................  241

34. MySQL Database Schema ......................................................................................................... 243
34.1. Entity Tables ..................................................................................................................  243
34.2. Non-Entity Tables ..........................................................................................................  243



209

Chapter 25. Overview
This part of the document contains technical information for extending and customising the BigWorld Server.
It is part of a larger set of documentation describing the whole BigWorld system.

The intended audience is technical-MMOG developers with game-specific needs that require the efficiency
of C++ extensions.

For API-level information, please refer to the API reference documentation.

25.1. Compilation

BigWorld uses Linux makefiles in order to compile C++ source code on Linux machines. Most source code
directories will have a file called Makefile in the directory if they support compilation from Linux. Common
build scripts are placed under the directory bigworld/src/build so they can be used by multiple projects.

To perform a compilation of all supported Linux components, perform the following from a command
prompt:

$ cd bigworld/src
$ make

This will run the make process using the Makefile in each source directory to compile and generate the
Linux binaries.

25.1.1. Output Directories

There are a number of locations where programs may be compiled to under Linux depending on their func-
tion. The following list outlines directories according to their contents.

• bigworld/bin

Server process binaries that are used for running a BigWorld server.

• bigworld/bin/web

This directory only contains the dynamic library used for Apache integration with the BigWorld server.

• bigworld/src/lib/bin

The location of statically compiled libraries generated from the source code located in bigworld/src/
lib. These libraries are used to link into server processes.

• bigworld/tools/server/bin

All server tool binaries generated from C++ source are placed into this directory.



211

Chapter 26. Extending BigWorld Server
The best way of extending BigWorld is to take advantage of its extension loading mechanism. When a Cel-
lApp, BaseApp or ServiceApp component of the system is loaded, it checks for executable objects in its ex-
tensions directory, and dynamically loads each one separately, in alphabetical order.

The extensions directory is located in the same folder as the component executable, and is named after it,
with the -extensions suffix.

For example, the CellApp's extensions directory is cellapp-extensions, and is normally located under
folder bigworld/bin/$MF_CONFIG.

We recommend making serviceapp-extensions a symbolic link to the baseapp-extensions direc-
tory, so that both BaseApps and ServiceApps load the same extensions. These directories should only be
different if you want the two components to load different extensions.

The file bigworld/src/build/common.mak contains Makefile rules to ease the compilation of server
extensions, and it is recommended that you make use of it.

The format of a Makefile for an extension is described below (italics indicate placeholders):

SO = extension_name
COMPONENT = component_name
SRCS = source files

include $(MF_ROOT)/bigworld/src/build/common.mak

all::

The list below describes the Makefile entries:

• SO

Name chosen for the extension.

• COMPONENT

Name of the BigWorld component to extend (CellApp, BaseApp or ServiceApp).

• SRCS

List of sources files to compile, separated by white spaces (excluding the suffix '.cpp').

There is no blueprint for what an extension must do, and there is no API that is called by the host component.
In general, any functionality that does not damage the operation of the host component may be compiled
into an extension, including launching threads, and sending network messages. However, extensions must
take great care not to block the main thread of the component while running in the game.

Since an extension is a dynamic library, it does not have any standard entry point such as main(). Usually,
an extension must have static initialisers that call back into its host component to hook in somewhere, or
else the extension will have no way of being executed. Most BigWorld systems have macros that create such
static initialisers automatically, such as IMPLEMENT_CHUNK_ITEM for a chunk item type.

The BigWorld infrastructure is modular, and there are many ways to hook into it without changing the
underlying code (which is fixed in the component binary).

Some examples of places to hook in are:



Extending BigWorld Server

212 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• New chunk item types.

• New ResMgr file systems.

• Entity extras.

• Controllers.

• Loading thread jobs.

• Network packet filters.

• Game tick (and higher resolution) timer queues.

• New Python functions or object types.

• New basic entity data types.

These are all ideal candidates for compiling into extensions.

The following sections describe some of the most useful and sophisticated extensions.



213

Chapter 27. Entity Extras and Controllers
BigWorld provides two mechanisms for extending Entity and server functionality. These are known as Entity
Extras and Controllers.

Entity extras provide a mechanism for adding additional methods to all BigWorld cell entities. They are
created on the spot when accessed by an entity, and are otherwise stateless. They are lost when the entity
changes cells. There is at most one instance of EntityExtra per entity, and it may be easily retrieved from an
Entity reference.

Controllers provide a standard method to perform CPU-intensive work on entities in C++. They are instan-
tiated by, and attached to a cell entity, and travel with it between cells. They are useful for performing actions
that are either unfeasible or inefficient to implement in Python. There may be multiple Controller instances
per entity, each with its own ID, which the entity script (or another Controller) may use to cancel or access
the entity.

Thus, it is not possible to retrieve a Controller instance by type from an entity reference, since it would not
be possible to determine the instance retrieved. Of course, a friendly EntityExtra could store a pointer to it,
if this were desired.

BigWorld comes packaged with a selection of proven useful entity extras and Controllers, including facilities
for performing the following functions:

• Movement and navigation.

• Vehicle management.

• Entity vision and visibility.

• Timed events.

Depending on game design, however, additional facilities may be needed. Game design may also dictate
the need for different implementations of one or more of the supplied facilities. Custom entity extras and
Controllers are often useful for implementing these game-specific features.

27.1. Implementing Entity Extras

Entity extras attach additional methods to the BigWorld.Entity Python class on the cell. All entities have
access to all methods of entity extras. However, the class implementing an entity extra is not instantiated
until one of those methods is used, thus saving memory.

While entity extras are useful for extending entities in ways that can only be done via C++, it is worth re-
membering that for many things a simple Python base class will suffice.

Entity extras should not contain any state for an entity, as they are not streamed from one cell to another
during the cell's ghosting process.

A minimal entity extra consists of the following header file (replacing any references to EgExtra with the
appropriate name):

#ifndef EGEXTRA_HPP
#define EGEXTRA_HPP

#include "cellapp/entity_extra.hpp"

/**
 * Simple example entity extra... can print a message to the screen
 */



Entity Extras and Controllers

214 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#undef PY_METHOD_ATTRIBUTE_WITH_DOC
#define PY_METHOD_ATTRIBUTE_WITH_DOC PY_METHOD_ATTRIBUTE_ENTITY_EXTRA_WITH_DOC

class EgExtra : public EntityExtra
{
  Py_EntityExtraHeader( EgExtra );

public:
  EgExtra( Entity& e );
  ~EgExtra();

  PyObject * pyGetAttribute( const char * attr );
  int pySetAttribute( const char * attr, PyObject * value );

  static const Instance<EgExtra> instance;
};

#undef PY_METHOD_ATTRIBUTE_WITH_DOC
#define PY_METHOD_ATTRIBUTE_WITH_DOC PY_METHOD_ATTRIBUTE_BASE_WITH_DOC

#endif

EgExtra header file bigworld/src/examples/cellapp_extension/egextra.hpp ‐ Minimal definition

The code above contains the declarations necessary to integrate an entity extra into any entity in the BigWorld
system.

After the header guards, bigworld/src/server/cellapp/entity_extra.hpp is included which de-
fines the EntityExtra class.

It also overrides the macro PY_METHOD_ATTRIBUTE, in order to make automatically declared Python at-
tributes in EntityExtras work1. This allows BigWorld to search through and automatically instantiate ex-
tras by using only the name of the method that has been called.

In the EgExtra class, we derive from EntityExtra, and use the macro Py_EntityExtraHeader to de-
clare some additional methods and properties that are used to keep track of these classes.

We provide the methods pyGetAttribute and pySetAttribute so that we can act like a Python object.

A static specialisation EntityExtra::instance member is also declared to access the entity extras. With
it, we can get a reference to the EgExtra for any Entity& ent using the code:

EgExtra& eg = EgExtra instance( ent );

If the extra does not exist, it will be instantiated and returned. If we wanted to check first whether the extra
exists, we can query it with the following code:

bool hasEgExtra = EgExtra instance.exists( ent );

We implement the outline of the EgExtra class as follows:

#include "egextra.hpp"

DECLARE_DEBUG_COMPONENT(0);

1Note that this is undone at the end of the file.



Entity Extras and Controllers

215

PY_TYPEOBJECT( EgExtra )

PY_BEGIN_METHODS( EgExtra )
PY_END_METHODS()

PY_BEGIN_ATTRIBUTES( EgExtra )
PY_END_ATTRIBUTES()

const EgExtra::Instance<EgExtra> 
  EgExtra::instance( &EgExtra::s_attributes_.di_ );

EgExtra::EgExtra( Entity& e ) : EntityExtra( e )
{
}

EgExtra::~EgExtra()
{
}

PyObject * EgExtra::pyGetAttribute( const char * attr )
{
  PY_GETATTR_STD();
  return this->EntityExtra::pyGetAttribute( attr );
}

int EgExtra::pySetAttribute( const char * attr, PyObject * value )
{
  PY_SETATTR_STD();
  return this->EntityExtra::pySetAttribute( attr, value );
}

EgExtra implementation file bigworld/src/examples/cellapp_extension/egextra.cpp ‐ Class outline

These two files together constitute the framework that we will use to implement any entity extra. These files
can be found in BigWorld distribution, in the directory bigworld/src/examples/cellapp_extension.

We can now add methods to this entity extra. We do this by declaring the method in the class declaration,
and exposing it to Python with the BigWorld Python macros.

As a simple example, to implement a method that prints the message 'hello world' to the server debug
log, we add the following code to the class declaration:

// ...

class EgExtra : public EntityExtra
{
  Py_EntityExtraHeader( EgExtra );

public:
  // ...

  void helloWorld();
  PY_AUTO_METHOD_DECLARE( RETVOID, helloWorld, END );
};

// ...

EgExtra header file ‐ Declaration of method helloWorld

And in the implementation file, we add a simple 'stub' implementation:



Entity Extras and Controllers

216 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

// ...

PY_TYPE_OBJECT( EgExtra )

PY_BEGIN_METHODS( EgExtra )
  PY_METHOD( helloWorld )
PY_END_METHODS()

// ...

void EgExtra::helloWorld()
{
  DEBUG_MSG( "egextra: hello world\n" );
}

EgExtra implementation file ‐ Definition of method helloWorld

After compiling this module, then for any entity in the world you can call:

self.helloWorld()

The call above outputs the text 'egextra: hello world' to the server debug log.

Entity extras have an entity() function, which returns a reference to the entity they have been attached to.

27.2. Implementing Controllers

Controllers enable us to dynamically add stateful C++ objects to entities on the CellApp. They can be used
for property updates that need to be continuous, or for extensions that need to interact with the server at a
level lower than the one exposed via the scripted entity model.

To implement a Controller, inherit from the CellApp class named Controller. The Controller declaration
has to include the special macro DECLARE_CONTROLLER_TYPE, which includes definitions required to reg-
ister the Controller in the BigWorld system.

The stub declaration file contains the following code:

#ifndef EGCONTROLLER_HPP
#define EGCONTROLLER_HPP

#include "cellapp/controller.hpp"

class EgController : public Controller
{
  DECLARE_CONTROLLER_TYPE( EgController );

public:
};

#endif

Controller header file ‐ bigworld/src/examples/cellapp_extension/egcontroller.hpp

A Controller may be a member of the real domain (denoted by DOMAIN_REAL), or the ghost domain (denoted
by DOMAIN_GHOST).

• A Controller member of DOMAIN_REAL works with reals.



Entity Extras and Controllers

217

An example would be a movement Controller. Positional data is already sent via the entity (due to the
necessity of placing the ghost in the right position), but other clients are unlikely to need to know the
entity's final destination. Consequently, there is no need to send ghost information for this entity. Therefore,
the Controller needs to operate only in the real domain.

• A Controller member of DOMAIN_GHOST works with ghosts.

One such controller is BigWorld's VisibilityController, which simply publishes information for
other entities to query. Other entities need to query this Controller (through an entity extra) to determine
whether they can see that entity, even when the entity is a ghost.

BigWorld directs Controllers by calling various virtual methods on the Controller class. There are two
types of such methods:

1. Communication methods

These methods serialise data onto a stream between cells, so that the Controller representation can be
moved from one machine to another.

There are four of these, one each for reading/writing to the real/ghost domains, as described below:

• Method: Read

• DOMAIN_REAL: bool readRealFromStream( BinaryIStream& )

Returns TRUE on success. Default implementation: return TRUE.

• DOMAIN_GHOST: bool readGhostFromStream( BinaryIStream& )

Returns TRUE on success. Default implementation: return TRUE.

• Method: Write

• DOMAIN_REAL: void writeRealToStream( BinaryOStream& )

Default implementation: Do nothing

• DOMAIN_GHOST: bool void writeGhostToStream( BinaryOStream& )

Default implementation: Do nothing.

2. Start/stop methods

Controllers often request to be called back from the BigWorld code. However, a real Controller should
not be executed when it is attached to a ghost entity, and a ghost Controller should not be executed when
it is attached to a real entity.

To allow this, BigWorld uses four Controller methods to notify a controller when it should change its
processing strategy ‐ start methods should request the callbacks, and stop methods should cancel them,
as described below:

• Method: Start

• DOMAIN_REAL: void startReal( bool isInitialStart )

Default implementation: Do nothing.

• DOMAIN_GHOST: void startGhost( )

Default implementation: Do nothing.



Entity Extras and Controllers

218 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Method: Stop

• DOMAIN_REAL: void stopReal( bool isFinalStop )

Default implementation: Do nothing.

• DOMAIN_GHOST: void stopGhost( )

Default implementation: Do nothing.

A Controller can be a member of both domains (DOMAIN_REAL, and DOMAIN_GHOST) if it has the (uncom-
mon) need to present aspects of itself as a ghost Controller, and aspects of itself as a real Controller.

Once an initial decision has been made as to which domains a controller belongs to, a stub implementation
file needs to be set up. At first, it does not have to declare the domain, as illustrated below:

#include "egcontroller.hpp"
#include "cellapp/cellapp.hpp"

DECLARE_DEBUG_COMPONENT(0);

// controller type declaration needs to go here

Controller stub implementation file ‐ bigworld/src/examples/cellapp_extension/egcontroller.cpp

Next, a macro needs to be placed to implement the controller integration. There are two possible macros
for that:

1. IMPLEMENT_CONTROLLER_TYPE( CLASS_NAME, DOMAIN )

This macro declares a standard Controller type, which will be instantiated using an EntityExtra. See
below for more details.

2. IMPLEMENT_CONTROLLER_TYPE_WITH_PY_FACTORY( CLASS_NAME, DOMAIN )

This macro declares that the controller will be instantiated using an automatically generated addCon-
trollerClassName method in Python. The ControllerClassName used omits the trailing word
'Controller' if it is present (e.g., TimerController becomes addTimer).

A factory method has to be created to use this feature. Its declaration goes into the class declaration, and
its name is New:

public:
  static FactoryFnRet New( int userArg );
  PY_AUTO_CONTROLLER_FACTORY_DECLARE( EgController, ARG( int, END ) )

This method is implemented in the .cpp file:

Controller::FactoryFnRet EgController::New( int userArg )
{
  return FactoryFnRet( new EgController(), userArg );
}

When implementing a controller, the Controller class exposes the following useful methods:

• entity()



Entity Extras and Controllers

219

Returns an Entity& object, referring to the entity that owns this Controller.

For more details on methods exposed by the Entity class, see the CellApp C API and Client C API.

• cancel()

Cancels this controller. Call this method only on real entities.

• ghost()

Informs the cell to update the ghosted portion of this (real entity) controller.

• standardCallback ( methodName )

Calls the 'standard' Controller Python notification method on the associated entity. Standard notification
methods have the following Python signature: def methodName( self, controllerID, userDa-
ta ).

27.2.1. Configuring Portal's Permissivity

A PortalConfigController configures the portal that its owning entity straddles. It is added with the
entity method addPortalConfig, and takes the following arguments:

• permissive

Boolean value indicating whether the portal allows objects in the collision scene to pass through it.

• triFlags

uint32 value for the triangle flags that should be returned on collision tests that intersect the portal when
it is not permissive.

• navigable

Boolean value not currently used, and which should be set to the same value as the permissive argument.

In the future, this argument may be used to indicate whether the navigation system should consider the
portal to be passable. For now however, the navigation system uses the same flag as the collision scene
(permissive). For details, on the navigation system, see “Navigation System” on page 139 .

The controller is cancelled with the Entity method cancel, as with other controllers. It is a ghost controller,
and therefore the portal configuration is correctly replicated across cells when more than one can see it. It is
not however propagated to the client, if required it must be done via script properties or messages.

The direction of the entity to which the PortalConfigController is attached must be the same as the
normal of the portal that is to be configured, i.e., if the portal runs east-west between two chunks, then the
entity must face either south or north, otherwise the portal will probably not be found.

Note

An entity should not be moved while it has a PortalConfigController attached,
or there may be undesirable results across cells.

If the entity needs to be moved, then cancel PortalConfigController, move the
entity, and recreate the controller.

To the extent that portals are uni-directional and come in pairs, PortalConfigController configures only
the portal whose normal faces approximately the same direction as the entity, i.e., the portal in the chunk that

api_cpp/cellapp/index.html#dest=CellApp_C_API
api_cpp/client/index.html#dest=Client_C_API


Entity Extras and Controllers

220 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

is found just in front (10 cm) of the entity's position. Another entity with opposite direction may be created if
a separate configuration is desired for the opposing portal. For most purposes however (i.e., navigation and
collision) it is only necessary to configure one portal differently to the default permissive state.

Note

The method configureConnection has been deprecated, since it does not work
across cells.

27.3. Integrating Entity Extras and Controllers

Entity extras are commonly used to provide a more sophisticated means of instantiating Controllers. They
might provide a factory that selects one of several types of Controller to instantiate, or provide a means of
limiting the number of Controllers that are instantiated.

To begin exploring this, we implement something similar to the automatic instantiation provided by the
macro IMPLEMENT_CONTROLLER_TYPE_WITH_PY_FACTORY.

We add an instantiation method called addEgController to EgExtra, taking an integer user argument:

class EgExtra : public EntityExtra
{
  Py_EntityExtraHeader( EgExtra );

public:
  // ...

  PY_AUTO_METHOD_DECLARE( RETOWN, addEgController, ARG( int, END ) );
  PyObject * addEgController( int userArg );

  static const Instance<EgExtra> instance;
};

EgExtra header file bigworld/src/examples/cellapp_extension/egextra.hpp ‐ Declaration of instantiation method ad-

dEgController

The next step is to implement the method addEgController. To do so, we need to:

1. Add a macro PY_METHOD to declare the Python/C++ binding code.

2. Ensure that the method is being called on a real entity.

3. Instantiate an EgController.

4. Add the new Controller to the entity.

5. Return the controller ID.

Note

Most Controllers do not need any more functionality than the built-in Python factory
method supplies.

Creating unnecessary EntityExtra instances should be avoided, since every de-
clared EntityExtra type uses 4 bytes per entity (including ghost entities), even when
it is not instantiated.



Entity Extras and Controllers

221

This will mean the following changes to EgExtra:

#include "egextra.hpp"
#include "egcontroller.hpp"

DECLARE_DEBUG_COMPONENT(0);

PY_TYPEOBJECT( EgExtra )

PY_BEGIN_METHODS( EgExtra )
  PY_METHOD( helloWorld )
  PY_METHOD( addEgController )
PY_END_METHODS()

// ...

PyObject * EgExtra::addEgController( int userArg )
{
  if (!entity_.isReal())
  {
    PyErr_SetString( PyExc_TypeError,
      "Entity.addEgController() may only be called on real entities" );
    return NULL;
  }

  ControllerPtr pController = new EgController();
  ControllerID controllerID = 
    entity_.addController( pController, userArg );
  return Script::getData( controllerID );
}

EgExtra implementation file bigworld/src/examples/cellapp_extension/egextra.cpp ‐ Definition of instantiation method

addEgController

27.3.1. Restricting the Number of Controllers Per Entity

If you want to restrict the entities to have only one Controller each, then the class EgExtra may be changed
so that it maintains a pointer to the current Controller, and the method addEgController should ensure
that the pointer is NULL before allowing a new one to be added.

The class EgController would then, in its method startReal, send its pointer to the class EgExtra, and
communicate to it that it has been cancelled in its method stopReal. The pointer must not be directly set
in the method addEgController, as it would break the symmetry of the Controller 'owning' that pointer
in the EntityExtra.

Setting the pointer in the mentioned methods in the Controller works correctly when the entity is offloaded
to another cell.

The line to add to method startReal would be similar to the line below:

EgExtra::instance( *this->entity() ).setEgControllerPtr( this )

Note that the object EgExtra will be instantiated if it does not already exist.

Keeping a pointer to a related Controller can also be useful for an entity extra to maintain states across cell
transitions.

For example, to calculate the age of an entity extra, it might provide a method getEgAge, and the Controller
might store the game time when it is created. The entity extra can then calculate its age by subtracting the



Entity Extras and Controllers

222 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

current game time from the Controller's stored game time (after checking that the Controller pointer is not
NULL).



223

Chapter 28. Updatable Objects
One of the main reasons for using Controllers is to implement in C++ actions that need to occur frequently,
thus reducing the execution time in the Python virtual machine on the server. In order to do this, the CellApp
has a mechanism to call back certain classes every game tick.

The relationship between the CellApp and its Controllers is depicted below:

CellApp and Controllers

The first step is to add the class Updatable to the list of the Controller's base classes:

#include "../cellapp/updatable.hpp"

class EgController : public Controller, public Updatable

Updates on a Controller are usually run only on the real copy of the entity, and for this reason the class
Controller exposes the methods startReal and stopReal (which can be overridden).

In these methods, the CellApp is requested to start or stop calling back the Controllers. The implementation
would look as follows:

void EgController::startReal( bool /*isInitialStart*/ )
{
  CellApp::instance().registerForUpdate( this );
}

void EgController::stopReal( bool /*isFinalStop*/ )
{
  MF_VERIFY( CellApp::instance().deregisterForUpdate( this ) );
}

We use the macro MF_VERIFY in stopReal to ensure that an error message is printed on failure ‐ this is an
easy place to check for bugs in the Controller.

Now the update method can be implemented to perform any action required on the entity at each game tick.



225

Chapter 29. Encrypting Client-Server Traffic
BigWorld guarantees the security of the client-server session in two important ways:

• The login handshake is RSA-encrypted using a public key stored in the client resources.

• The client-proxy channel is symmetrically encrypted using Blowfish.

As a result, it is impossible for an attacker to:

• Steal a player's password

• Hijack a player's session

• Inject upstream packets into the player's traffic to disrupt his/her session

29.1. Generating your own RSA keypair

This security framework is provided to work out-of-the-box, and BigWorld ships with an RSA keypair
that we have pre-generated for you (bigworld/res/server/loginapp.privkey and bigworld/res/
loginapp.pubkey).

Before making any kind of public game release, it is critical to replace this keypair with a new keypair gener-
ated by your own company. As all BigWorld clients receive the same default keypair BigWorld cannot guar-
antee that this keypair is secure. Generating a new keypair with the openssl command-line utility (which
should be available in all modern Linux distributions) is simple:

1. Generate a new RSA keypair as follows:

$ openssl genrsa [numbits] > loginapp.privkey

BigWorld recommends using a 2048-bit key.

2. Strip out the public part of your keypair as follows:

$ openssl rsa -pubout < loginapp.privkey > loginapp.pubkey

The private key should be placed into your server game resources, and the public part should be placed in
your client game resources.

Note

Ensure your private key is never shipped with your game client resources.

29.2. Working with multiple keys

You may want to ship multiple public keys with your game client (for instance, you may want to have a
different key for each shard of your game world). The BigWorld.connect() function in the Client API
allows you to specify which public key to use when logging into the server using the publicKeyPath
attribute of the loginParams object. Please see the Client API documentation for more details.

29.3. Customising the symmetric encryption algorithm

The Client-Proxy Channel is encrypted using 128-bit Blowfish by default. This encryption method was se-
lected as it was the most secure, high-performance symmetric cipher offered in the standard OpenSSL dis-



Encrypting Client-Server Traffic

226 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

tribution. Should you wish to use a different encryption algorithm, you should be able to edit src/lib/
network/encryption_filter.cpp to change the encryption algorithm without needing to modify any
header files.

You will probably want to leave the stream-padding operations in EncryptionFilter::send()
and EncryptionFilter::recv() as they are; all you should need to edit is the ini-
tialisation method (EncryptionFilter::initKey()) and the encryption/decryption methods
(EncryptionFilter::encrypt() and EncryptionFilter::decrypt()).

29.4. How PacketFilters work

In previous versions of BigWorld, encryption support was not automatically provided, and the task of im-
plementing it was left to each individual customer. In recognition of the importance of online security and the
sensitivity of game data in today's online games, a standard implementation is now included with BigWorld.

This documentation used to describe the specifics of how to implement your own
Mercury::PacketFilter to provide end-to-end encryption for a Client-Proxy Channel. A lot of this doc-
umentation is now irrelevant, however the description of how PacketFilters work is still accurate and is re-
tained for completeness.

29.4.1. High-level requirements

Packet filters do not allow arbitrary encryption algorithms to be used ‐ the algorithm implemented must work
within the mechanics of Mercury. Mercury processes each data packet individually, and has mechanisms for
coping with packet loss and similar problems. Since packet filters are called as the last stage of sending a
packet, and as the first stage of receiving a packet, algorithms implemented within a packet filter should
work under the normal constraints of UDP, which are:

• Packets may be delivered out of order.

• Packets may be delivered more than once.

For this reason, encryption algorithms that assume a continuous transport byte stream are not appropriate.
The appropriate encryption algorithms are the ones that work on a single block (packet) at a time within a
window, and include algorithms like DES block encryption (as used in the secure PPP protocol), Blowfish,
TwoFish, or similar protocols used in wireless Ethernet technology (SSL is not appropriate, since it assumes a
continuous stream). The previously mentioned block algorithms can support packet loss and prevent packet
replayability, among other features.

Mercury takes care of the particulars of a UDP environment ‐ the packet filter only has to perform its filtering
function. It uses sequence numbers of its own to discard duplicate packets (assuming that the packet filter
itself has not discarded the packet). It also detects dropped packets, and resends them if they contained
reliable information (so the packet filter should not do this). When Mercury needs to resend messages, it will
sometimes resend the whole packet unmodified, and at other times (if there is space) it will piggyback just
the reliable messages of the dropped packet into the body of the next new packet. Packet filters must be able
to cope with both of these types of resending.

Packet filters are always associated with channels, like the ones between a proxy and a client.

29.4.2. Filtering mechanics and requirements

For every sent packet associated with a Channel object, the send method of the associated PacketFilter
is called, with the packet as one of the parameters. This happens after all other processing on the packet.
Similarly, the recv method of the PacketFilter instance is called for every packet that is received over the
channel by the Nub, before any other processing occurs on it. This method should undo any modifications
made to the packet by the send method, and then call the base class PacketFilter::recv method.

Since packets may be received out of order, the PacketFilter instance must be able to reconstruct any
packet received within the Channel's window. Duplicate packets may also be received, and these must also



Encrypting Client-Server Traffic

227

be reconstructed when within the window, so that they can be acknowledged (in case the ACK for the original
packet was lost).

Note that a PacketFilter must not modify a packet to be sent ‐ or at least if it does so, it then must undo
the modifications afterwards. If it were to leave a packet modified, and that packet needed to be resent (or
partially resent), then it would be filtering the data twice. Depending on the nature of the modifications
being made to the Packet's data, it may make sense to do the desired changes, or it may make more sense
to simply grab a new Packet from the PacketPool, write the filtered data to that packet, and then send it.
This notice does not apply to packets that are received ‐ the PacketFilter may modify received packets
in-place if it so chooses, especially if it is efficient to do so.

The PacketFilter base class' send implementation sends the packets over the Nub's socket with the usual
accounting, error checking, and retries.

Do not use the Nub's socket directly. The PacketFilter base class' recv implementation submits the pack-
et for normal internal processing. If you do not call it, then you must give the packet back to the PacketPool
(with PacketPool::give), or the packet will be leaked.

New packets may be obtained and old ones returned at any time via the PacketPool object. PacketFilter
instances may use and store packets for any purpose that they see fit. Also, the PacketFilter base class'
methods send and recv may be called as many times as desired from the corresponding derived methods
send and recv, if that is what the filter needs to do.

29.4.3. Extra space for filtering

Normally, when messages are added to a bundle, the full size of the packet may be used. This would deny
many potential filtering uses, which might want to add data to packets after this. The virtual method maxS-
pareSize may be implemented in this case to specify the minimum amount of space to leave spare in each
packet (i.e., the maximum amount of space required by the PacketFilter).



229

Chapter 30. Mercury Packet Structure
The API for network communications that Mercury exposes is based on a message/bundle paradigm, which
masks the true nature of the actual UDP packets being sent and received.

From the programmer's point of view, messages are created and streamed onto Bundles (see src/lib/
network/bundle.hpp). At some point a Bundle will be sent, at which point Mercury will convert the
messages on the Bundle into one or more contiguous sequences of bytes, and send them as a regular UDP
packets. This section details the format of those packets.

Broadly speaking, the structure of a Mercury packet is composed of the following:

• A single-byte header.

• Zero or more messages.

• The footers specified by the flags in the header.

Broad structure

Message structure

Specific message types



Mercury Packet Structure

230 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Footers

How first request offset/reply ‐ IDs work

30.1. Header

The first byte of a Mercury packet is always a header, which essentially details which footers should be
expected on the packet.

It is a bitwise combination of the FLAG* constants defined inside Bundle in src/lib/net-
work/packet.hpp.

30.2. Messages

The first byte of a message is always its ID.

Looking up that message ID in whichever Mercury interface is currently in effect will reveal what type of
message it is and how the subsequent bytes on the packet should be interpreted. For example, LoginApp
processes all packets on its external interface according to LoginInterface, defined in bigworld/src/
common/login_interface.hpp.

The ID of a message is the index of its MERCURY_*_MESSAGE declaration in the
BEGIN_MERCURY_INTERFACE() / END_MERCURY_INTERFACE() block for that Mercury interface. For ex-
ample, in bigworld/src/common/login_interface.hpp, a login message has ID 0, because it is the
first message type declared in the MERCURY_INTERFACE block.

There are three basic types of Mercury messages:

• Fixed-length messages

• Variable-length messages

• Multiple-length messages

These types are described in the sub-sections below.



Mercury Packet Structure

231

30.2.1. Fixed-Length Messages

A fixed-length message has its precise length determined at compile time. Specifically, it is the second argu-
ment to the MERCURY_FIXED_MESSAGE macro that declares it.

Therefore, the header of a fixed-length message is simply its message ID. The message payload immediately
follows the header, and must have the exact length given in the interface definition.

Although all fixed-length messages are treated equally during low-level Mercury processing, there are dif-
ferent macros that can declare them, which result in different handling in the callbacks that receive the un-
packed messages.

The most common example of this is the MERCURY_STRUCT_MESSAGE declaration. A message type declared
in this way is simply a fixed-length message whose length is equal to the sum of the sizes of the fields of
the struct.

The advantage of using a struct message instead of a vanilla fixed-length one is that the object passed to the
callback registered for this message type will be an object whose fields match those of the struct. The callback
can therefore access them by name, and with the correct types, instead of having to extract bytes at particular
offsets and lengths inside the binary data blob, and then cast them to the desired types.

30.2.2. Variable-Length Messages

The header for a variable-length message is the message ID, followed by a short field that specifies the exact
size of the message payload.

The length of the field specifying the payload size is the second argument to the
MERCURY_VARIABLE_MESSAGE macro that declares the message type.

For example, from bigworld/src/common/login_interface.hpp:

MERCURY_VARIABLE_MESSAGE( login, 2, &gLoginHandler )

The length field in a login message header will therefore be 2 bytes long.

30.3. Footers
The footers that are present on Mercury packet are specified by the field header, which is the first byte of
the packet, and must appear in a specific order.

They are listed in the following sub-sections in reverse order, i.e., from the end of the packet towards the
messages.

30.3.1. Fragment Numbers

If a packet has the header FLAG_IS_FRAGMENT, then it is part of a chain of packets where messages span
the packet boundaries.

Typically, this will occur when trying to send messages larger than the maximum allowable UDP packet size
(e.g., large writes to the database).

The sequence numbers for the first and last packet in the sequence of fragments are written to the footer
of every packet in the sequence. Therefore, the footer consists of two 4-byte integers specifying the relevant
sequence numbers.

30.3.2. Sequence Number

Given by FLAG_HAS_SEQUENCE_NUMBER, this is a single 4-byte sequence number that is streamed onto
reliable packets so that they can be acknowledged.



Mercury Packet Structure

232 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

30.3.3. ACKs

Given by FLAG_HAS_ACKS, these are acknowledgement messages corresponding to sequence numbers from
previous outgoing packets.

This is a sequence of 4-byte sequence numbers, followed by a single byte indicating the number of ACKs on
the packet.

30.3.4. Indexed Channel ID

Given by FLAG_INDEXED_CHANNEL, this is the channel ID of a packet on an indexed channel, as opposed
to a normal channel that is identified by the source address of the packet.

30.3.5. First Request Offset and replyID

When a request is sent to a server component (for example, the LoginInterface 'probe' message, which
the server replies to with information about itself) the requester will attach a replyID to the message. The
server will attach the same ID to the reply so that the requester can correlate the reply to its original request.

If a message is a request, then an extra field will be added to the packet between the header and the message
payload. This extra field is not accounted for by any variable-length fields. The field will contain the 4-
byte replyID, followed by the 2-byte offset (from the start of the packet) of the next replyID in the same
packet. The reason that the address of the next replyID needs to be specified is so that the replyIDs can be
distinguished from regular message payloads and parsed correctly.

If any of the messages on a packet have replyIDs, the header will have FLAG_HAS_REQUESTS set, and the
footer will contain the 2-byte offset of the first replyID on the packet. The last request on a packet will have
a next-request-offset of 0.



233

Chapter 31. The Watcher Interface
Watcher is a mechanism that exposes internal operational parameters of a running BigWorld Server so that
a developer or administrator can view and change these parameters.

All BigWorld components use the Watcher interface. You can easily extend your own processes to use this
interface. To enable this, the targeted server component code needs to be modified-one needs to first register
a watcher interface instance, and then specify the internal parameters to be exposed through watchers.

There are a number of watcher types, such as DataWatcher, DirectoryWatcher, and FunctionWatch-
er, among others. You can build a tree of different type of watchers logically linked together. To do this,
you need to first create a new DirectoryWatcher, and then add to the tree using the function add-
Child() of the parent watcher. The root of the watcher tree can be obtained by calling the static function
Watcher::rootWatcher().

In the case where watchers are attached to the root only, the macro MF_WATCH is provided to simplify the
process. For more details on adding new watchers, check the existing examples in the server source code
and the C++ API documentation.

Once watchers are enabled, the running server process grants access to its internal statistics and debug in-
formation.

Background Watcher processes can collect watcher data and republish it through WebConsole's ClusterCon-
trol module. WebConsole's StatGrapher module can poll and graph watcher data. For details on WebCon-
sole, see the document Server Operations Guide's section Cluster Administration Tools → “WebConsole”.

31.1. Callable Function Watchers

Both Python and C++ functions can be exposed as BigWorld Watchers which enables them to be 'called' via
the watcher protocol.

When a function watcher has been invoked, three pieces of data will be returned to the invoker:

• Call success status

This is a boolean True / False representing whether or not the callable watcher successfully completed
running.

A situation that may generate a status of False would be a Python function that throws an exception that
is not caught. Such status should be rare, and we suggest that it should only happen during development
of the callable functions.

• Function return data

This is recommended to be a human-readable string, indicating the resulting state/information pertaining
to the operation of the called watcher.

For example, a callable watcher that changes the position of a specific entity number may return 'Entity
<id> moved to (x,y,z).' on success, or 'No entity with id <id> found.' if the entity did not exist at the time
of calling the watcher.

• Console output (stdout/stderr)

This is intended to provide a mechanism for developers writing callable watchers to catch error states and
have access to debugging information while development is occurring.

Any exception thrown in Python scripts will be be in this segment of the return data. Console output may
however also be useful for providing more detailed information about a callable watcher operation.

#dest=
#dest=
#dest=


The Watcher Interface

234 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

For example, a callable watcher may be defined to display all entities of type PlayerAvatar. The Function
Return Data piece of data may output 'Found <count> entities of type PlayerAvatar', while the console
output may display summary information for each of the entities.

Callable function watchers can be defined in two ways:

• Via Python code, such as the ones in your game's base or cell entities' resource directories.

For details on how to implement Python function watchers, see “Implementing Function Watch-
ers” on page 234 .

• Via C++ in server components.

Currently, C++ support for callable watchers is limited ‐ if you wish to use C++ callable watchers, then
please contact BigWorld support for further information on how to use and implement these watchers.

Note

In order to enable any callable function watchers to be exposed on the WebConsole's
Commands → My Commands page, it is necessary to place the watcher under the
command watcher path.

31.1.1. Forwarding Watchers

The concept of watcher forwarding was introduced because quite often the knowledge of how best to run a
callable function watcher is not known by the person using it ‐ i.e., decisions such as if should all CellApps
run the watcher to generate a comprehensive report, or should it be run on the first available CellApp to
perform an action.

Watcher forwarding allows a component manager (e.g., CellAppMgr, BaseAppMgr) to forward a callable
watcher request to any of its owned components, thus allowing the developer of the callable watcher to
determine how best to expose the watchers functionality for general use.

The decision regarding how best to run a callable watcher is encoded by the developer via an exposure hint.
Currently there are 2 forms of expose hints:

• Least Loaded:

Run the callable watcher on the component with the least load of all known components owned by the
manager.

• All

Run the callable watcher on all components owned by the manager.

31.1.2. Implementing Function Watchers

Python function watchers can be added either via a component PyConsole for development pur-
poses, or via game script for a persistent callable watcher. Adding a watcher requires using the
BigWorld.addFunctionWatcher method (for details, see BaseApp Python API, CellApp Python API, or
Client Python API).

Generally function watchers are added to pre-existing Python functions which functionality would be useful
to expose to a wider audience. Below is a brief example of a function being exposed via a watcher.

def addGuardReturnMessage( num ): 1

api_python/baseapp/index.html#dest=BaseApp_Python_API
api_python/cellapp/index.html#dest=CellApp_Python_API
api_python/client/index.html#dest=Client_Python_API


The Watcher Interface

235

   count = 0
   resultStr = ""
   try:
      count = util.addGuards( num )
      resultStr = "Added %s guards." % count
   except Exception, e:
      print e
      resultStr = "Unable to add %s guards." % num

   return resultStr

BigWorld.addFunctionWatcher(
   "command/addGuards",  2

   addGuardReturnMessage,  3

   [("Number of guards to add", int)],  4

   BigWorld.EXPOSE_LEAST_LOADED,  5

   "Add an arbitrary number of patrolling guards into the world.")  6

1 addGuardReturnMessage acts as a wrapper function for util.addGuards, to provide more mean-
ingful output for WebConsole display.

2 command/addGuards is the watcher path the function watcher will be exposed at.
3 addGuardReturnMessage is the function name the watcher should call when a request is received at

the watcher path.
4 The argument list is defined as a list of tuples, with each tuple containing argument name and the type

of the value to be expected.
5 BigWorld.EXPOSE_LEAST_LOADED indicates to the component manager to run the watcher request on

the component with the lowest load.
6 This is a longer description of the function watcher, which can be useful in outlining any peculiarities or

caveats with the function watcher.

More examples can be found in fantasydemo/res/scripts/base/Watchers.py and fantasyde-
mo/res/scripts/cell/Watchers.py.



237

Chapter 32. Debug Message Macros
Debug message macros (defined in header file src/lib/cstdmf/debug.hpp) are designed to be used in
place of printf() for outputting debug information.

The use of debug message macros instead of printf() allows for more systematic treatment of debug
messages. For example, BigWorld server supports centralised logging and filtering for debug messages.

Before being able to use a debug message macro, you must include one of the following declarations in
your .cpp file:

• DECLARE_DEBUG_COMPONENT( modulePriority ), or

• DECLARE_DEBUG_COMPONENT2( watcherLocation, modulePriority )

The argument modulePriority is a number (usually 0) used for filtering debug messages. For more details,
see “Filtering by Priority” on page 238 .

These macros also create a watcher entry allowing the modulePriority to be modified. The watcher entry is
one of the following:

• logger/cppThresholds/<source_filename>, or

• logger/cppThresholds/watcherLocation/<source_filename>

Debug output macros accept the same parameters as printf(). The printf() function has the syntax
below:

int printf( const char * format [argument]... )

An example usage of a debug output macro:

TRACE_MSG( "%s is %d", someString, someInteger );

There are several debug message macros, named in the form <priority>_MSG, as described below:

• TRACE_MSG ‐ Priority: 0

Tracing program flow, e.g., entering a method.

• DEBUG_MSG ‐ Priority: 1

Displaying debugging information, e.g., showing the value of a variable.

• INFO_MSG ‐ Priority: 2

Displaying general information, e.g., the start of a process.

• NOTICE_MSG ‐ Priority: 3

Displaying information that is more important than INFO, but definitely not an error.

• WARNING_MSG ‐ Priority: 4

Displaying potential errors.

• ERROR_MSG ‐ Priority: 5



Debug Message Macros

238 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Displaying definite errors.

• CRITICAL_MSG ‐ Priority: 6

Displaying critical errors (i.e., errors that cause the program to stop running).

• HACK_MSG ‐ Priority: 7

Temporary messages used during development. Reserved for BigWorld internal use only.

• SCRIPT_MSG ‐ Priority: 8

Messages printed from a Python script. Reserved for BigWorld internal use only.

Debug messages are output to the console on Linux and to the debugger on Windows. For components with
access to the game time (such as BaseApp and CellApp), it is automatically added to the start of the message.

32.1. Centralised Logging

In addition to outputting to the console (or debugger), the debug messages are also sent to all MessageLogger
processes on the network.

Apart from the filtering options available in MessageLogger, logging (i.e., the sending of messages) to a
particular MessageLogger can be disabled by specifying the IP address of the MessageLogger machine in
the watcher value logger/del. For details on MessageLogger, see the document Server Operations Guide's
section Cluster Administration Tools → “Message Logger”.

32.2. Filtering by Priority

The amount of debug output generated by a server component can be controlled through a combination of
module priority and filter threshold. A debug message is discarded if its priority is less than the value of
variable filterThreshold added to modulePriority.

The variable modulePriority is initialised by the macro DECLARE_DEBUG_COMPONENT, but can be later
changed using the watcher value logger/cppThresholds/<source_filename>.

The variable filterThreshold is initialised to zero, but can be changed using the watcher value log-
ger/filterThreshold.

32.3. Message Priority

All log messages have an explicit priority value. The DebugMessagePriority enumeration in header file
src/lib/cstdmf/debug.hpp defines these values as below:

• 0 ‐ MESSAGE_PRIORITY_TRACE

• 1 ‐ MESSAGE_PRIORITY_DEBUG

• 2 ‐ MESSAGE_PRIORITY_INFO

• 3 ‐ MESSAGE_PRIORITY_NOTICE

• 4 ‐ MESSAGE_PRIORITY_WARNING

• 5 ‐ MESSAGE_PRIORITY_ERROR

• 6 ‐ MESSAGE_PRIORITY_CRITICAL

#dest=
#dest=
#dest=


Debug Message Macros

239

• 7 ‐ MESSAGE_PRIORITY_HACK

• 8 ‐ MESSAGE_PRIORITY_SCRIPT

This value is used to filter the messages that are printed and sent to the logger. If the message priority is
greater than, or equal to the filter threshold value, then the message is allowed. For example, a threshold of
MESSAGE_PRIORITY_INFO only allows INFO messages, and higher ‐ which means that TRACE and DEBUG
messages will be filtered out.



241

Chapter 33. Non-Blocking Socket I/O Using
Mercury

TCP/IP is commonly used to communicate with third party products, like billing systems, for example. How-
ever, care must be taken to avoid blocking the main thread of the program.

One option is to spawn separate threads to handle the I/O, but the recommended option is to use non-block-
ing I/O. Mercury uses non-blocking I/O by default, and provides callbacks on I/O events to enable the pro-
gram to wait for something without blocking the main thread.

33.1. Getting Callbacks From Mercury::EventDispatcher

The Mercury::EventDispatcher class contains the main loop of almost all the server executables:
Mercury::EventDispatcher::processContinuously().

This function effectively time slices the main thread by waiting for events to happen on sockets, and then
calling handlers to process those events. It is vital that all event handler does not to block or take a significant
amount of processing time, otherwise the others will be starved.

The following Mercury::EventDispatcher methods allow event handlers to be registered:

• registerFileDescriptor

bool registerFileDescriptor( int fd, InputNotificationHandler * handler );

• deregisterFileDescriptor

bool deregisterFileDescriptor( int fd );

• registerWriteFileDescriptor

bool registerWriteFileDescriptor( int fd, InputNotificationHandler * handler );

• deregisterWriteFileDescriptor

bool deregisterWriteFileDescriptor( int fd );

The handleInputNotification method of an InputNotificationHandler object registered via
registerFileDescriptor will be called when the specified file descriptor (usually a socket) has data
available for reading.

The handleInputNotification method of an InputNotificationHandler object registered via
registerWriteFileDescriptor will be called when the specified file descriptor (usually a socket) is
ready for writing. This is useful when writing a large amount of data. A non-blocking write operation will
only write an amount of data equal to, or less than, its internal buffers can hold. Then the program must
wait until the socket is again ready to be written to. Waiting for a socket to become writable is also useful
during the TCP connection process, as the socket will not be ready for writing until the connection is fully
established.

All registered handlers must be de-registered using the corresponding function. They are not automatically
de-registered when the file descriptor is closed.

For more details, see the example file bigworld/src/server/baseapp/eg_tcpecho.cpp.



243

Chapter 34. MySQL Database Schema
34.1. Entity Tables

Entity tables store the persistent entity data. The name of all entity tables if prefixed by tbl_.

Every entity type has one main table and zero or more sub-tables. An entity type's main table is named
tbl_<entity_type_name>. The main table name is the prefix for the names any sub-tables of that entity
type.

For details, see “Mapping BigWorld Properties Into SQL” on page 102 .

34.2. Non-Entity Tables

BigWorld uses a number of tables to keep track of various internal states ‐ these tables' names are prefixed
by bigworld. Accessing or modifying these tables is strongly discouraged.

BigWorld non-entity tables are described below:

• bigworldEntityTypes

Maps entity names to internal entity type numbers.

• name - The name of the entity type.

• typeID - An id that is maintained over changes to entities.xml.

• bigworldID - An id that indicates this type's position in entities.xml.

• bigworldGameTime

Stores the current game time.

This information is used during crash recovery.

• bigworldInfo

Stores the version number of the schema.

This number is incremented if a new version of BigWorld uses an incompatible schema that will require
migration of data.

• bigworldLogOnMapping

Used during the login process to determine whether to allow access to a user.

For details, see “Authentication via a Base entity” on page 184 .

• bigworldLogOns

Stores information about entities that are currently active.

This information is used to construct mailboxes to active entities ‐ every active entity with a non-zero
databaseID (including non-Proxy entities ‐ will have an entry in this table.

• bigworldNewID

Together with bigWorldUserIDs, this table is used to keep track of the object IDs currently in use by
the system.



MySQL Database Schema

244 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

This information is used during crash recovery to prevent allocation of duplicate object IDs.

• bigworldSecondaryDatabases

Each row in this table represents an unconsolidated secondary database. When the server is shutdown this
information will be used by the data consolidation process to retrieve the secondary databases. When the
data consolidation completes, this table will be cleared.

For more details about secondary databases, see “Secondary Databases” on page 114 .

• bigworldSpaceData

Together with bigworldSpaces, this table contains a backup of the space data.

This information is used during crash recovery.

• bigworldSpaces

See bigworldSpaceData

• bigworldTableMetadata

Stores meta information about the database schema.

This table is a candidate for obsolescence, since MySQL already provides APIs for retrieving database
meta data.

• bigworldUsedIDs

See bigworldNewID.



Part III. Extending WebConsole



247

Table of Contents
35. Web Console ............................................................................................................................  249

35.1. Adding a Page to a Module ............................................................................................ 249
35.1.1. Create a Template KID File .................................................................................  250
35.1.2. Edit controllers.py ........................................................................................  250

35.2. Adding a Module ..........................................................................................................  251
35.3. Add an Action Item to ClusterControl ............................................................................  252

35.3.1. Adding a Menu Item for an Existing Component Type .........................................  252
35.3.2. Adding a Menu Item for a New Component Type ................................................  253



249

Chapter 35. Web Console
Although WebConsole provides numerous features to control and monitor a server cluster, there many times
when you want to extend its functionality. This part of the document describes how to do that.

WebConsole is built upon an existing web development framework (TurboGears). The list below describes
TurboGears' components of interest:

• TurboGears

Rapid web application development framework.

Component can be found at http://www.turbogears.org/.

Documentation can be found at http://docs.turbogears.org/1.0.

• MochiKit

A set of JavaScript libraries to enhance existing JavaScript functionality and provide simple mechanisms
of performing common JavaScript operations.

Component can be found at http://mochikit.com/.

Documentation can be found at http://mochikit.com/doc/html/MochiKit/index.html.

• KID Templates

Template language that provides the ability to integrate Python code into HTML to generate dynamic web
pages.

Component can be found at http://kid-templating.org/.

• CherryPy

Web server component of TurboGears.

Component can be found at http://www.cherrypy.org/.

Documentation can be found at http://docs.cherrypy.org/.

• SQLObject

Relational database Python wrapper that abstracts database concepts (such as tables, rows and columns)
into object-oriented concepts (such as classes, instances and attributes).

Component can be found at http://www.sqlobject.org/.

Documentation can be found at http://www.sqlobject.org/SQLObject.html.

The referenced documentation will differ based on the kind of functionality that you are trying to achieve
within WebConsole. The sections below outline some common modifications that you might wish to make
to WebConsole, and a brief description of what is required. The also include references to the appropriate
component documentation that would be used while modifying the tool.

35.1. Adding a Page to a Module

This is possibly the easiest modification that you might want to make to WebConsole.

There are roughly two steps to add a new page:

http://www.turbogears.org/
http://docs.turbogears.org/1.0
http://mochikit.com/
http://mochikit.com/doc/html/MochiKit/index.html
http://kid-templating.org/
http://www.cherrypy.org/
http://docs.cherrypy.org/
http://www.sqlobject.org/
http://www.sqlobject.org/SQLObject.html


Web Console

250 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

• Create a template KID file.

This file displays the dynamic content generated in whatever format we choose. The content is generated
by the method created in the step below.

• Add a method to controllers.py.

The method will be called when the page is accessed, and generates the content to be passed to the template
file.

35.1.1. Create a Template KID File

Below is a simple stub template file that is enough to test if the code is hooked up correctly, before writing
the template layout code.

For our example, this template file will be saved as web_console/log_viewer/ tem-
plates/delete.kid.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
  
<?python
  layout_params[ "moduleHeader" ] = "Log Viewer"
?>
  
<html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:py="http://purl.org/kid/ns#"
      py:layout="'../../common/templates/layout.kid'"
      py:extends="'../../common/templates/common.kid'">
  
<div py:def="moduleContent()"> 1

  
    <script type="text/javascript">
        PAGE_TITLE = 'Delete a Log';
    </script>
  
    This page will be able to delete logs.

`<p>Page accessed: ${accessTime}</p>
</div>
</html>

Example KID template file ‐ web_console/log_viewer/templates/delete.kid

1 This tag is necessary because the template inherits its layout from web_console/common/tem-
plates/layout.kid, which displays the module list in the left hand side of the page, and then fills the
main portion of the page by calling moduleContent().

If you remove the <div> element and access the page, an exception should be produced, stating that
"name 'moduleContent' is not defined".

35.1.2. Edit controllers.py

The method created in controllers.py joins the act of accessing a web page in the browser to processing the
data and passing it to the template KID file.

An @expose decorator must be specified for the method that will tie the template KID file to the new method,
with the forward slashes replaced by periods.

Add the excerpt below to the LogViewer class:



Web Console

251

# This will only allow users who have logged in to access the page
@identity.require( identity.not_anonymous() )
@expose( template = "log_viewer.templates.delete" )
def delete( self, **kw ):
  return dict( accessTime=time.ctime() )

Note that the name of the added method can be accessed directly, since it has been exposed. To access the
page, try to connect to http://<machinename>:8080/log/delete.

Finally, if you wish to add the page as a link in the left-hand navigation links, under the module heading,
then add the line below in the __init__ method of controllers.py:

self.addPage( "Delete Logs", "delete" )

Example controllers.py ‐ Addition to the __init__ method

35.2. Adding a Module

Creating a basic module is a relatively straightforward procedure. Outlined below are the steps required to
get a new module working within WebConsole. However, to extend its functionality, it is strongly recom-
mended that you refer to the TurboGears documentation website, and the existing WebConsole modules'
documentation.

The Python Console module is the simplest one in WebConsole, and thus the best starting point for grasping
how you might extend a module once the basic framework is operational.

The steps below create a module called Devel:

1. Create the directory web_console/devel and web_console/devel/templates.

2. In each of the directories above, create an empty file __init__.py.

3. Add the module to controllers.py.

To make the module accessible from WebConsole, the root controller has to be notified of its existence.
To do this, at the end of the __init__ method of web_console/ root/controllers.py, add the
excerpt below (you should see similar lines for the other modules above it):

import web_console.devel.controllers
self.devel = web_console.devel.controllers.Devel(self, "Devel Tools",
 "devel","/static/images/console.png", lambda: not isAdmin() )

Example controllers.py ‐ Addition to the __init__ method

4. Create the controllers.py for the new module.

Below is an extremely basic stub module that makes the index page available, and links it to the template
KID file web_console/devel/templates/index.kid:

from turbogears.controllers import (expose, validate)
from turbogears import identity
  
from web_console.common import module
  
class Devel( module.Module ):



Web Console

252 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

  
  def __init__( self, *args, **kw ):
    module.Module.__init__( self, *args, **kw )
  
  @identity.require( identity.not_anonymous() )
  @expose( template="devel.templates.index" )
  def index( self ):
    return dict()

Example controllers.py for the new module

5. Create the template page to use when the module is accessed.

Place the text below in web_console/devel/templates/index.kid.

  <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://
www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
  <html xmlns="http://www.w3.org/1999/xhtml"
      xmlns:py="http://purl.org/kid/ns#"
      py:layout="'../../common/templates/layout.kid'">
  
  <div py:def="moduleContent()">
    The Development Module
  </div>
  
  </html>

File web_console/devel/templates/index.kid

After these modifications, the module Devel Tools will be displayed in WebConsole's left-hand navigation
menu.

35.3. Add an Action Item to ClusterControl

The action menu supports two types of functionality:

• Redirecting upon selection

• Running JavaScript upon selection

The behaviour is defined in web_console/common/util.py script, in
ActionMenuOptions.addRedirect() and ActionMenuOptions.addScript() methods.

35.3.1. Adding a Menu Item for an Existing Component Type

To add an action menu item to a cluster component type, edit the web_console/common/caps.py script,
and for the particular cluster process type, add a call to either addRedirect or addScript.

For example, in order to add a menu item called Clone, which only for CellApps redirects to a different page,
the following should be added to the get method in caps.py:

if isinstance( o, cluster.CellAppProcess ):
  addRedirect( "Clone", "/cc/clone",
           params = dict( ),
           help = "Clone this process" )

Example caps.py ‐ Addition to the get() method



Web Console

253

35.3.2. Adding a Menu Item for a New Component Type

To enable the detection of a new component process type, it is necessary to add a Python class in big-
world/tools/server/pycommon/process.py to uniquely identify that process.

In the example below, we add a new component process type for an SMS component, so that WebConsole
can display a Send SMS action.

First, a simple stub class for the SMS component must be created. To keep all the different process definitions
together, search for the class definition for ReviverProcess, then add the following text just after it:

class SMSProcess( Process ):
  
  def __init__( self, machine, mgm ):
    Process.__init__( self, machine, mgm )

Example process.py ‐ Definition of SMSProcess class

The new class then needs to be associated with an MGM message ‐ in cluster.py, in the
Process.getProcess method, edit the name2proc hash and add the mapping from the component net-
work name to the class type:

  ...
  "client": ClientProcess,
  "message_logger": MessageLoggerProcess,
  "sms": SMSProcess }

Example cluster.py ‐ Addition to the Process.getProcess method

It is now possible to add an action menu item, just as described in section “Adding a Menu Item for an
Existing Component Type” on page 252 .


	Server Programming Guide
	Table of Contents
	Part I. Server Scripting Guide
	Chapter 1. Overview
	Chapter 2. Directory Structure for Entity Scripting
	2.1. The entities.xml File
	2.2. The Entity Definition File
	2.3. The Entity Script Files

	Chapter 3. Directory Structure for Service Scripting
	3.1. The services.xml File
	3.2. The Service Definition File
	3.3. The Service Script Files

	Chapter 4. Directory Structure for User Data Object Scripting
	4.1. The user_data_objects.xml File
	4.2. The User Data Object Definition File
	4.3. The User Data Object Script Files

	Chapter 5. Properties
	5.1. Property Types
	5.1.1. Primitive Types
	5.1.2. Composite Types
	5.1.2.1. ARRAY and TUPLE Types
	5.1.2.2. FIXED_DICT Data Type

	5.1.3. Custom User Types
	5.1.4. Alias of Data Types

	5.2. Server to Client bandwidth usage of Property updates
	5.3. Default Values
	5.4. Data Distribution
	5.4.1. Valid Data Distribution Combinations
	5.4.2. Using Distribution Flags
	5.4.3. Data Propagation
	5.4.3.1. Property Callbacks On Ghosted Entities
	5.4.3.2. Forcing Data Propagation for Python and Custom User Types


	5.5. Implementing Custom Property Data Types
	5.5.1. Wrapping a FIXED_DICT Data Type
	5.5.1.1. Example of Wrapping FIXED_DICT with a Class
	5.5.1.2. Implementing a USER_TYPE Data Type


	5.6. Volatile Properties
	5.7. LOD (Level of Detail) on Properties
	5.7.1. LOD and Hysteresis

	5.8. Bandwidth Optimisation: Send Latest Only
	5.9. Bandwidth Optimisation: Is Reliable
	5.10. Detailed Position
	5.11. Appeal Radius
	5.12. Temporary Properties
	5.13. Persistent
	5.14. User Data Object Linking With UDO_REF Properties

	Chapter 6. Methods
	6.1. Basic Method Specification
	6.2. Two-way calls
	6.2.1. Twisted Deferred Objects
	6.2.2. Error objects
	6.2.2.1. BWStandardError
	6.2.2.2. BWCustomError


	6.3. Service Methods
	6.4. Intra-Entity Communication
	6.5. Bandwidth Optimisation: Send Latest Only
	6.6. Bandwidth Optimisation: Is Reliable
	6.7. Sending Auxiliary Data to the Client Via Proxy
	6.8. Exposed Methods ‐ Client-to-Server Communication
	6.8.1. Security Considerations of Exposed Methods

	6.9. Server to Client bandwidth usage of Method calls
	6.10. Client callbacks on property changes
	6.10.1. Implicit set_<property_name> Methods
	6.10.2. Implicit setNested_<property_name> Methods
	6.10.3. Implicit setSlice_<property_name> Methods

	6.11. LOD on Methods
	6.12. Inter-Entity Communication
	6.12.1. Entity IDs
	6.12.2. Retrieving Services

	6.13. Mailboxes
	6.13.1. Special Mailboxes

	6.14. Method Execution Context

	Chapter 7. Inheritance in BigWorld
	7.1. Python Class Inheritance
	7.2. Entity Interfaces
	7.3. Entity Parents
	7.4. Client Entity Reuse
	7.5. User Data Object Interfaces and Parents

	Chapter 8. Entity Instantiation and Destruction
	8.1. Entity Instantiation on the BaseApp
	8.1.1. ServiceApps

	8.2. Cell Entity Creation From BaseApp
	8.2.1. Creation Near an Existing Cell Entity
	8.2.2. Creation in a Numbered Space
	8.2.3. Creation in a New Space
	8.2.4. Creation in Default Space

	8.3. Entity Destruction
	8.4. Entity Instantiation From The CellApp
	8.4.1. Instantiation With No Base Counterpart
	8.4.2. Instantiation With Base Counterpart

	8.5. Loading Entities From Chunk Files

	Chapter 9. The Database Layer
	9.1. Persistent Properties
	9.1.1. Non-Persistent Properties
	9.1.2. Built-In Properties
	9.1.3. Database Indexing
	9.1.4. The Identifier Tag

	9.2. Reading and Writing Entities
	9.3. Mapping BigWorld Properties Into SQL
	9.3.1. Entity Tables
	9.3.2. The databaseID property
	9.3.3. Simple Data Types
	9.3.4. VECTOR Data Types
	9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Types
	9.3.6. PATROL_PATH and UDO_REF Data Types
	9.3.7. ARRAYs and TUPLEs
	9.3.7.1. Storing ARRAYs and TUPLEs as a BLOB
	9.3.7.2. The <DatabaseLength> Attribute

	9.3.8. FIXED_DICTs
	9.3.9. USER_TYPEs
	9.3.9.1. Examples


	9.4. Execute Arbitrary Commands on Database
	9.4.1. Execute Commands on SQL Database
	9.4.2. Execute Commands on XML Database

	9.5. Secondary Databases
	9.5.1. Data Consolidation
	9.5.2. Database Snapshot


	Chapter 10. Character Sets and Encodings
	10.1. Python and Entity Properties
	10.1.1. STRING
	10.1.2. UNICODE_STRING

	10.2. DBMgr and Encodings
	10.2.1. UNICODE_STRING storage
	10.2.1.1. Storing invalid characters

	10.2.2. Sorting search results


	Chapter 11. Profiling
	11.1. Profiling Entities
	11.1.1. Persistent Properties
	11.1.2. Property Data Types
	11.1.3. Property Data Propagation

	11.2. Python Game Script
	11.2.1. Understanding the output
	11.2.2. Increasing Memory Usage / Entity Count

	11.3. Profiling Server Processes (C++ Code)
	11.3.1. Common Code Block Profiles
	11.3.2. BaseApp Code Block Profiles
	11.3.3. CellApp Code Block Profiles

	11.4. Client Communication
	11.4.1. Private Client Events
	11.4.2. Public Client Events
	11.4.3. Total Public Client Events

	11.5. Server Communication
	11.5.1. BaseApp Interface Summary
	11.5.2. CellApp Interface Summary


	Chapter 12. Proxies and Players
	12.1. Proxies
	12.2. Witnesses
	12.3. Entity Control
	12.4. Physics Correction
	12.4.1. Avoiding Y-axis rubber-banding.


	Chapter 13. Entities and the Universe
	13.1. Multiple Spaces
	13.1.1. Spaces Pool

	13.2. Navigation System
	13.2.1. Key Features
	13.2.2. Navpoly Data Format
	13.2.3. Script Interface
	13.2.4. Navigate
	13.2.5. Graph Searches
	13.2.6. Auto-Generation of Navpoly Regions
	13.2.6.1. Configuring Girth Information for Navmesh Generation
	13.2.6.2. Generating a NavGen Mesh: The NavGen Tool
	13.2.6.3. Generating a Recast Mesh: The Offline Processor Tool


	13.3. Time
	13.3.1. Real Time
	13.3.2. Server Time
	13.3.3. Game Time

	13.4. Initialisation: Personality script, eload, and runscript
	13.5. Global Data
	13.5.1. globalData, baseAppData and cellAppData

	13.6. Space Data
	13.7. Global Bases

	Chapter 14. XML Data File Access
	14.1. ResMgr.DataSection
	14.2. Accessing Data
	14.2.1. Opening a Section Within an XML File

	14.3. Data Types
	14.4. Writing Data
	14.5. Performance Issues
	14.6. API Reference

	Chapter 15. External Services
	15.1. Non-blocking Methods
	15.2. Background Threads
	15.2.1. Caveats


	Chapter 16. Fault Tolerance
	16.1. CellApp Fault Tolerance
	16.1.1. Overview
	16.1.2. Restoration process
	16.1.3. Example

	16.2. BaseApp Fault Tolerance

	Chapter 17. Disaster Recovery
	Chapter 18. Controlled Startup and Shutdown
	18.1. Controlled Shutdown
	18.2. Controlled Startup

	Chapter 19. Transactions and Handling Fault Tolerance and Disaster Recovery
	19.1. Transaction logic
	19.2. Fault Tolerance Behaviour
	19.2.1. CellApp Fault Tolerance
	19.2.2. BaseApp Fault Tolerance

	19.3. Disaster Recovery Behaviour

	Chapter 20. Implementing Common Systems
	20.1. General Scalability
	20.2. Internal inter-component communication
	20.3. Player AoI Updates
	20.4. BigWorld Database Scalability
	20.5. Player Look-up
	20.5.1. Requirements
	20.5.2. Design

	20.6. Friends lists
	20.6.1. Requirements
	20.6.2. Design
	20.6.2.1. Adding new friends
	20.6.2.2. Private messages to friends
	20.6.2.3. Presence information
	20.6.2.4. Cache of friend player mailboxes
	20.6.2.5. Fault tolerance handling


	20.7. Chat
	20.7.1. P2P
	20.7.1.1. Requirements
	20.7.1.2. Design

	20.7.2. AoI-based broadcast chat
	20.7.2.1. Requirements
	20.7.2.2. Design

	20.7.3. Non-AoI-based broadcast chat
	20.7.3.1. Requirements
	20.7.3.2. Design


	20.8. Mail
	20.8.1. Requirements
	20.8.2. Design

	20.9. Inventory System
	20.9.1. Requirements
	20.9.2. Design

	20.10. AoI-based Trading
	20.10.1. Requirements
	20.10.2. Design


	Chapter 21. User Authentication and Billing System Integration
	21.1. Authentication by DBMgr
	21.1.1. Default Authentication via MySQL
	21.1.2. Default Authentication via XML
	21.1.3. Custom Authentication and Billing System Integration
	21.1.3.1. Billing System Integration using Python
	21.1.3.2. Billing System Integration using C++

	21.1.4. Accepting All Users

	21.2. Authentication via a Base entity

	Chapter 22. Security
	22.1. Client/Server Communications
	22.2. Server-Side Network
	22.3. Client Side
	22.4. Client Cheating
	22.4.1. General Rules for Managing Entity Data
	22.4.2. Writing Secure Game Script
	22.4.3. Balancing Security vs. Latency
	22.4.4. Balancing Security vs. Server CPU Cost


	Chapter 23. Debugging
	23.1. General Debugging
	23.1.1. Information and Error Messages
	23.1.2. Testing Scripts Using the Python Server

	23.2. Performance Profiling
	23.3. Common Mistakes
	23.3.1. Definition Files Inconsistent Between the Server and Client
	23.3.2. Implementation (.py) Does Not Match Definition (.def)
	23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Definition File
	23.3.4. Trying to Update the Properties of a Ghost Entity
	23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base part

	23.4. Fixed Cell Boundaries
	23.5. Message Reliability And Ordering

	Chapter 24. Shared Development Environments
	24.1. Windows and Linux cross platform development
	24.1.1. Sharing resources from Windows
	24.1.1.1. Windows XP
	24.1.1.2. Windows 7

	24.1.2. Accessing Windows share from Linux
	24.1.2.1. Assumptions and Requirements
	24.1.2.2. Mapping a Windows share onto Linux


	24.2. Using BigWorld with a Version Control System
	24.2.1. Customers using the Commercial Edition
	24.2.2. Customers using the Indie Edition
	24.2.2.1. Creating a project repository
	24.2.2.2. Checking out an existing project

	24.2.3. Files to exclude from version control
	24.2.3.1. General exclusion rules
	24.2.3.2. Tools specific exclusion rules


	24.3. DBMgr database conflicts


	Part II. Server C++ Programming Guide
	Chapter 25. Overview
	25.1. Compilation
	25.1.1. Output Directories


	Chapter 26. Extending BigWorld Server
	Chapter 27. Entity Extras and Controllers
	27.1. Implementing Entity Extras
	27.2. Implementing Controllers
	27.2.1. Configuring Portal's Permissivity

	27.3. Integrating Entity Extras and Controllers
	27.3.1. Restricting the Number of Controllers Per Entity


	Chapter 28. Updatable Objects
	Chapter 29. Encrypting Client-Server Traffic
	29.1. Generating your own RSA keypair
	29.2. Working with multiple keys
	29.3. Customising the symmetric encryption algorithm
	29.4. How PacketFilters work
	29.4.1. High-level requirements
	29.4.2. Filtering mechanics and requirements
	29.4.3. Extra space for filtering


	Chapter 30. Mercury Packet Structure
	30.1. Header
	30.2. Messages
	30.2.1. Fixed-Length Messages
	30.2.2. Variable-Length Messages

	30.3. Footers
	30.3.1. Fragment Numbers
	30.3.2. Sequence Number
	30.3.3. ACKs
	30.3.4. Indexed Channel ID
	30.3.5. First Request Offset and replyID


	Chapter 31. The Watcher Interface
	31.1. Callable Function Watchers
	31.1.1. Forwarding Watchers
	31.1.2. Implementing Function Watchers


	Chapter 32. Debug Message Macros
	32.1. Centralised Logging
	32.2. Filtering by Priority
	32.3. Message Priority

	Chapter 33. Non-Blocking Socket I/O Using Mercury
	33.1. Getting Callbacks From Mercury::EventDispatcher

	Chapter 34. MySQL Database Schema
	34.1. Entity Tables
	34.2. Non-Entity Tables


	Part III. Extending WebConsole
	Chapter 35. Web Console
	35.1. Adding a Page to a Module
	35.1.1. Create a Template KID File
	35.1.2. Edit controllers.py

	35.2. Adding a Module
	35.3. Add an Action Item to ClusterControl
	35.3.1. Adding a Menu Item for an Existing Component Type
	35.3.2. Adding a Menu Item for a New Component Type




