Server Programming Guide

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

L. Server Scripting Guideccooooooi 9
T OVEIVIEW ..ttt e e e e et e e e e e e eeans 17
2. Directory Structure for Entity Scripting ..., 19

2.1. The entities.xml Filecccooiiiiiiiiii 19
2.2. The Entity Definition Fileccccooooooii 20
2.3. The Entity Script Filescoooooiiiiiiiii 21
3. Directory Structure for Service Scriptingccccoiiiiiiiiiii 25
3.1. The services.xml File ... 25
3.2. The Service Definition File 25
3.3. The Service Script FIlescccoiiiiiiiiiiiiiiiiiiiiiii e 26
4. Directory Structure for User Data Object Scriptingcccoovviiiii, 27
4.1. The user_data_objects.xml Fileccccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees 27
4.2. The User Data Object Definition Filecccoocoooiiiii 27
4.3. The User Data Object Script Files 28
5. PLOPEILIES ..o ettt et 29
5.1. Property TYPeScoooriiiiiiiiiiiiiii 30
5. 1.1, Primitive TYPeScooviiiiiiiiiiiiiiiiiiiiiiiiiiie 30
5.1.2. Composite TYPescoeeiiiiiiiiiii 32
5.1.3. Custom USer TYPeSoouviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieie e 35
5.1.4. Alias of Data TYPeSccooiiiiiiiiiiiiiiiiiiiiii e 35

5.2. Server to Client bandwidth usage of Property updatescccccccceeeeiiiiiiiiinn e 37
5.3. Default Valuesccccoooiiiiiiiiiiii 37
5.4. Data Distributioncccoiiiiii 40
5.4.1. Valid Data Distribution Combinationsccoooiiiiiiiiiiiiiiiiii, 41
5.4.2. Using Distribution Flagscccooiiiiiii 42
5.4.3. Data Propagation ... 43

5.5. Implementing Custom Property Data Typesccooouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee e 45
5.5.1. Wrapping a FIXED_DICT Data Typeccccccceeviiiiiiiiiiiii 45

5.6. Volatile Propertiescccccooiiiiiiiiiiiiii 50
5.7. LOD (Level of Detail) on Propertiescccccccccciiiiiiiii 52
5.7.1. LOD and Hysteresiscccccooiiiiiiiiiiiiiiiiiii i 53

5.8. Bandwidth Optimisation: Send Latest Onlyccccccoiiiiiiiiiiiiiiii 55
5.9. Bandwidth Optimisation: Is Reliableccccoiiiii 55
5.10. Detailed PoSitioncccccooiiiiiiiiiiiii 55
5.11. Appeal Radiusooooiiiiiiiiiiiiiiiiiiii 56
5.12. Temporary Propertiesccccccvviiiiiiiiiiiiiiiiiiiiiiiiii 56
5.13. PersiStentoooooiiiiiiiiiiiiiiii e 57
5.14. User Data Object Linking With UDO_REF Propertiesccccccco 57
6. Methodsoooiiiiiiii e 59
6.1. Basic Method Specification ..., 60
6.2. TWO-WAY CallSouiiiiiiiiiiiiiiiiiiit e 60
6.2.1. Twisted Deferred Objectscocoiviiiiiiiiiiiiii 61
6.2.2. EITOT ODJECtSooooiiiiiiiiiiiiiiiiii 63

6.3. Service Methodscooiiiiiiiiiiiiii 64
6.4. Intra-Entity Communicationcccoiiiiiiii 65
6.5. Bandwidth Optimisation: Send Latest Onlycccccccccc 66
6.6. Bandwidth Optimisation: Is Reliableccccoocoooiii 66
6.7. Sending Auxiliary Data to the Client Via Proxycccococciiiiiiiii, 66
6.8. Exposed Methods - Client-to-Server Communicationccccviiiiiniiiiiiiinnnnnnn.. 67
6.8.1. Security Considerations of Exposed Methodsccoo 68

6.9. Server to Client bandwidth usage of Method callsccccooiiii 69
6.10. Client callbacks on property changesccccccccciiiiii 69
6.10.1. Implicit set _<property_nanme> Methodsc.ooeevriiiiiiiiiiiiiiiiiiiiiieienea. 69
6.10.2. Implicit set Nest ed_<pr operty_name> Methodscccccieiin, 69

bigw@RLD"

Server Programming Guide

6.10.3. Implicit set Sl i ce_<property_nanme> Methodsccoeeiiiiiiiiiiiinnnnn. 70

6.11. LOD on Methodsccccooiiiiiiiiiiii 70
6.12. Inter-Entity Communicationcooooiiiiiiii 71
6.12.1. Entity IDs ... 71
6.12.2. Retrieving Servicesccccccccciiiiiiiii 72

6.13. MAilbOXESovviiiiiiiiiiiiiii e 73
6.13.1. Special MailbOXeSoouiiiiiiiiiiiiiiiiiiiiiiiiiie e 74

6.14. Method Execution Contextcccccoiiiiiiii 77
7. Inheritance in BigWorldccooooi 81
7.1. Python Class Inheritanceccccccciiiiiiiiiiiiiiiiiiiiiii 81
7.2, Entity INterfacescccooiiiiiiiiiiiiiiii 83
7.3, Entity Parents ... 85
7.4. Client Entity Reuse ... 86
7.5. User Data Object Interfaces and Parentsccccooiviniiiii 86
8. Entity Instantiation and Destructioncoooc 89
8.1. Entity Instantiation on the BaseAppccccccciiiiiiiiiiiiiiiiiiiiii 89
8. 1.1, SeIVICEAPDS ..ooovviiiiiiiiiiiiiiiiii 90

8.2. Cell Entity Creation From BaseAppccoooiiiiiiiiiiiiiiiiii, 90
8.2.1. Creation Near an Existing Cell Entityccccccooiiiiiiieees 91
8.2.2. Creation in a Numbered Spaceccooviiiii 92
8.2.3. Creation in a New Space 92
8.2.4. Creation in Default Spaceccciiiiiii 93

8.3. Entity Destruction ... 93
8.4. Entity Instantiation From The CellAppcccccoiiiiiiiiiiiiiiiiiiiees 93
8.4.1. Instantiation With No Base Counterpartccccccuviiiiiiiiiiiiiiiiiiiiiiiiiiiinenes 93
8.4.2. Instantiation With Base Counterpartccoooviiiii 94

8.5. Loading Entities From Chunk Filesccoooiiiiii 94
9. The Database Layeruuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei e 97
9.1. Persistent Propertiescccooooiiiiiiiiiiiii 97
9.1.1. Non-Persistent Propertiescccoouummiiiiiiiiiiiiiiiiiiieeciiiiii e 98
9.1.2. Built-In Propertiescccccccciiiiii 98
9.1.3. Database Indexingcccccccciiiiiiiiiiiii 98
9.1.4. The Identifier Tagcccooiiiiiiiiiii 99

9.2. Reading and Writing Entitiesccccoooiiiiiiiiiiiis 100
9.3. Mapping BigWorld Properties Into SQLcoo 102
9.3.1. Entity Tablescccccccc 102
9.3.2. The dat abasel D propertyccccccuuumemmmemimimeiiiiiiiiieiiiiieieieeeereeeeeeeeeeeeeeeees 102
9.3.3. Simple Data TyPescccoeviiiiiiiiiiiiiiiii 102
9.3.4. VECTOR Data TYPesccoovii 103
9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Types 103
9.3.6. PATROL_PATH and UDO_REF Data Typescccccceeeeiiiiiiiiiiiiiiieniiiieeen. 104
9.3.7. ARRAYs and TUPLESccccccooiiiiiiiiiiii i 104
9.3.8. FIXED_DICTSccooiiiiiiiiiiiiiiiiiiiiiiiiiiiicc e 106
9.3.9. USER _TYPEScoooiiiiiiiiiiiiiiiiiiiiiiii e 106

9.4. Execute Arbitrary Commands on Databasecccccccciiiiii 112
9.4.1. Execute Commands on SQL Databaseccooeeiiiiiiiiiiiiiiiiiiiieeeee 112
9.4.2. Execute Commands on XML Databasecccccccviiiiiiiiiiiiiiiiiiiiiiiiiiiieens 113

9.5. Secondary Databasesuuiiiiiiiiiiiiiiiiiiiiiii e 114
9.5.1. Data Consolidationcccoociiiiiiiiiiiiii 114
9.5.2. Database Snapshotcccccovviiiiii 115

10. Character Sets and Encodingsccccccoiiiiiiiii 117
10.1. Python and Entity Propertiesccccccccoiiiiiiiiiiiiiiiii 118
T0.1.1. STRING (e 118
10.1.2. UNI CODE_STRI NGoiiiiiiiiiiiiciiiiiiceeeei e 118

10.2. DBMgr and ENcOdingsouuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeee e 119

10.2.1. UNICODE_STRING StOrageccoooiiiiiiiiiiiiiiiiiiiiii e 119

Server Programming Guide

10.2.2. Sorting search results ..ot 120

T Profilingooooiiiiiiiiiiiii 121
11.1. Profiling Entitiesccccoiiiiiiiiii 121
11.1.1. Persistent Properties 122
11.1.2. Property Data Typescccoooiiiiiiiiiiiiiiiiiii 122
11.1.3. Property Data Propagation 122

11.2. Python Game SCriptoouuiiiiiiiiiiiiiiiiiiiie e 122
11.2.1. Understanding the outputooocoiiii 123
11.2.2. Increasing Memory Usage / Entity Countcoooiiiii, 124

11.3. Profiling Server Processes (C++ Code)cceeiiiiiiiiiiiiiiiiiiii i, 124
11.3.1. Common Code Block Profilesooeeviiiiiiiiiiiiiiiii, 125
11.3.2. BaseApp Code Block Profilescccooimiimiiiiiiiiiiiiiiiiiiiee e 125
11.3.3. CellApp Code Block Profilesccccooimimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeees 126

11.4. Client Communication ...ttt 126
11.4.1. Private Client EVENtsccccccoiiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 128
11.4.2. Public Client Eventsoooooiiiiii 128
11.4.3. Total Public Client Eventscoooiiiiiiiiiiiiii e 128

11.5. Server Communicationccccooiiiiiiiiiiiii 128
11.5.1. BaseApp Interface Summaryccccccciiiii 130
11.5.2. CellApp Interface SUMMATIYcooooiiiiiiiiiiiiiiii 131

12. Proxies and PIAyersccccooiiiiiiiiiiiiiiiiiiiii 133
T2.1 PIOXIES ..ot 133
12,2 WINESSES ..o 134
12.3. Entity Control ... 134
12.4. Physics COrrectionoooooiiiiiiiiiiiiiiiii e 135
12.4.1. Avoiding Y-axis rubber-banding.cccccooocii 136

13. Entities and the UNIVersecccoooiiiiiiiiiii e 137
13.1. Multiple Spacesoooooiiiiiiiii 137
13.1.1. SPAces POOLouviiiiiiiiiiiiiiiiiiiii i 139

13.2. Navigation System ...ttt 139
13.2.1. Key Featuresooooiiiiiiiiiiii 139
13.2.2. Navpoly Data Formatcccooviviiiii 139
13.2.3. Script Interfacecccccooiiiiiii 140
13.2.4. NAVIGAtEoiiiiiiiiiiiiiiiiiiiiiiiii 141
13.2.5. Graph Searchescccooiiiiiiiiiiiiiiiiiiii e 141
13.2.6. Auto-Generation of Navpoly Regionsccccccuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiines 141

133, THINIE .oeviiiiiiiiiiii s 143
13.3.1. Real TIMEooomiiiiiiiiiiiiiiiii e 143
13.3.2. Server Timecooooiiiiiiiiiiiiiiii e 143
13.3.3. Game Timecooooiiiiiiiiiiiiiiii e 144

13.4. Initialisation: Personality script, eload, and runscript 144
13.5. Global Dataooooiiiiiiiiiiiiii 147
13.5.1. gl obal Dat a, baseAppDat a and cel | AppDat acccoeevvveviiieiiieeiiieeeiee, 147

13.6. SPACe Dataooviiiiiiiiiiiiiiiii 148
13.7. GIODAL BASESuviiiiiiiiiiiiiiiiiiiitititie ettt neneee 149
14. XML Data File ACCESSoouuuiiiiiiiiiiiiiii e 151
14.1. ReSMOI DAt @SECT I ON ..eiiiiiiiiiii et 151
14.2. AccesSing Dataoooiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 151
14.2.1. Opening a Section Within an XML File 152

14.3. Data TYPES ...oooiiiiiiiiii e 152
14.4. Writing Data ... 152
14.5. Performance ISSUESoooiiiiiiiiiiiiiiiiiiiiiiiii 154
14.6. API RefEIeIICEcoiiiiiiiiiiiii i 154
15. External Servicesccccociiiiiiiiiiiiiiiiiiii 155
15.1. Non-blocking Methodsooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee s 155
15.2. Background Threadscccccooiviiiiiiiiiiiiiiii 155

bigw@RLD" v

Server Programming Guide

15.2.1. €aveats ... 157

16. Fault Tolerance ... 159
16.1. CellApp Fault Toleranceooooviviiiiiiiiiiiiiiiii s 159
16.1.1. OVEIVIEW ..oooiiiiiiiiiiiiiiiii e 159

16.1.2. Restoration processcco 159

16.1.3. EXAMPLE ...oovnniiiiiiiiiiii e 160

16.2. Base App Fault TOLeranceuuuuiiimuiimumiiiiiiiiiiiieiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeneneees 161

17. Disaster RECOVETYuuuiiiiiiiiiiiiiiiiiiiiiiiiii i aa s aaeaaaaaaaaaaes 163
18. Controlled Startup and Shutdownccoiiiiiiii 165
18.1. Controlled Shutdowncccoccocii 165

18.2. Controlled Startupcccccuiiiiiiiiiiiiiiiiiiiii i 166

19. Transactions and Handling Fault Tolerance and Disaster Recoverycccccccvuvuinnnnins 167
19.1. Transaction LOZICouuiiiiiiiiiiiiiiiii e 167

19.2. Fault Tolerance Behaviourouiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 170
19.2.1. CellApp Fault Toleranceccooooiiiiiiiiiiiiiiiiii 170

19.2.2. BaseApp Fault Toleranceoooooiiiiiiiiii, 170

19.3. Disaster Recovery Behaviour 170

20. Implementing Common Systems ...t 171
20.1. General Scalabilitycccoooiiiiiiiiiiii e 171
20.2. Internal inter-component communicationcoccceviiiii 171

20.3. Player Aol Updatesccccooiiiiiiiiiiiiiiiiiii i 171

20.4. BigWorld Database Scalabilitycccccoiiiiiiiiiiiiiiiiiiiiiiiis 172

20.5. Player LOOK-UPoooooiiiiiiiii 173
20.5.1. ReQUITEIMENEScccoermiiiiiiiiiiiiiiiii ettt eeeeeenns 173

20.5.2. D@SIGI ..ovvviiiiiiiiiiiiiiiiiii 173

20.6. Friends Listscccccoiiiiiiiiiii 174
20.6.1. ReqUITemMentsuuuiuiiiiiiiiiiiiiiiiiiiiii 174

20.6.2. DeSIGNooovviiiiiiiiiiiii 174

20.7. CRAb ..o 176
20.7.00 P2P oo 176

20.7.2. Aol-based broadcast chatccooiiii 176

20.7.3. Non-Aol-based broadcast chatocccccii 177

20.8. Mail ..oooiiiiiiiiiiii 177
20.8.1. ReqUIIementsouuuuimiiiiiiiiiiiiiiiiiiiiiiiiii 177

20.8.2. DIE@SIGI ...t e 177

20.9. Inventory Systemccccoooiiiiiiiiiiiiiii s 177
20.9.1. Requirementscccooooiiiiiiiiiiiiiiiiiiii 177

20.9.2. DeSIGNcoooiiiiiiiiiiiiiii 178

20.10. Aol-based Tradingccccoviiiiiiiiiiiiiiiiiii 178
20.10.1. ReqUirementsuuuuumimimimimiiiiiiiiiiiiiiiiiiiiiiiiie e 178

20.10.2. D@SIGIoooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 178

21. User Authentication and Billing System Integration 181
21.1. Authentication by DBMEr ...t 181
21.1.1. Default Authentication via MySOQLccoooiiiiiii, 181

21.1.2. Default Authentication via XMLccoiiiiiiiiiiiiiiiiiiiiie 182

21.1.3. Custom Authentication and Billing System Integrationcccceee. 183

21.1.4. Accepting AIL USerscoooiiiiiiiiiiiiiii s 184

21.2. Authentication via a Base entitycccccooiiiiiiiiiiiiis 184

22, SECUTIEY ...eeeiiiiiiiiii e 187
22.1. Client/Server CommuNiCatiONsuuuuuiiiuiiiiiiiiiiiiiiieiiiiiiieieieieieieeeeeeeeeee e 187

22.2. Server-Side NetWOrkooooiiiiiiiiiiiiiii 188
22.3. Client Sideoooiiiiiiiiiii e 188
22.4. Client Cheatingccccocooo 189
22.4.1. General Rules for Managing Entity Data 189

22.4.2. Writing Secure Game Script ... 189

22.4.3. Balancing Security vs. Latencycccooovviiiiiiiii 190

Vi

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Programming Guide

22.4.4. Balancing Security vs. Server CPU Costccccccviiiiiiii 190
23. DebUGGINGcoooviiiiiiiiiiiiiiiii 191
23.1. General Debuggingcccoooiiiiiiiiiiiii 191
23.1.1. Information and Error Messagescccccceeiiiiiiiiiiiiiiiiiiiii s 191
23.1.2. Testing Scripts Using the Python Servercccoco 191
23.2. Performance Profilingcc.oooooiiiiiiiiiiiiiiii e 192
23.3. Common Mistakesccooviiiiiiiiiiiiiiii 193
23.3.1. Definition Files Inconsistent Between the Server and Client 193
23.3.2. Implementation (. py) Does Not Match Definition (. def) 193

23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Defi-
nition File ... 194
23.3.4. Trying to Update the Properties of a Ghost Entityccccocooii, 194

23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base
PATt o 194
23.4. Fixed Cell BOUNAAIIesoouiiiiiiiiiiiiiiiiiiiiiiiiiieiieeee e 194
23.5. Message Reliability And Ordering 195
24. Shared Development Environments 197
24.1. Windows and Linux cross platform developmentccoiiiiiiiiiiiiinn... 197
24.1.1. Sharing resources from Windowscccoooiiiiiiiiiiiiiiiiiiie 198
24.1.2. Accessing Windows share from Linux 198
24.2. Using BigWorld with a Version Control Systemcccooociiiiiiiniin. 201
24.2.1. Customers using the Commercial Editioncccccoiiiiiiii, 201
24.2.2. Customers using the Indie Edition 201
24.2.3. Files to exclude from version controlccccooooo 201
24.3. DBMgr database conflictsccccccccci 203
II. Server C++ Programming Guidecccooiiiiiiiiiiiiiiiiiiii e 205
25, OVEIVIEW ...ttt et 209
25.1. Compilation ... 209
25.1.1. Output Directoriesccccccccciiiiii 209
26. Extending BigWOorld Serverccooooiiiiiiiiiiiiiiiiiiiii e 211
27. Entity Extras and Controllersccccccooii 213
27.1. Implementing Entity Extras 213
27.2. Implementing Controllersccccooiviiiiiiiii 216
27.2.1. Configuring Portal's Permissivityccccooiiiiiiiiii 219
27.3. Integrating Entity Extras and Controllerscccccoiiiiiiiiiiiiiiiiiiiiiiiiieees 220
27.3.1. Restricting the Number of Controllers Per Entity ... 221
28. Updatable ODJectsuuuiiiiiiiiiiiiiiiiiiiiiie et 223
29. Encrypting Client-Server Trafficcccoooiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 225
29.1. Generating your own RSA Keypaircccoovviiiiiiis 225
29.2. Working with multiple Keyscccccciiiiiiiiiiiiiiiii 225
29.3. Customising the symmetric encryption algorithmcccccooiiiiiiiiiiiiiiiinn, 225
29.4. How PacketFilters Workcccooiiiiii 226
29.4.1. High-level requirementscccccccccc 226
29.4.2. Filtering mechanics and requirements 226
29.4.3. Extra space for filteringccccooiviiiiiiiii 227
30. Mercury Packet Structure ... 229
301, HEAdercoooiiiiiiiiiii i e 230
B0.2. IMIESSAZES ...evveeeiiiiieeiiiie ettt et ettt et ettt e e e eaaas 230
30.2.1. Fixed-Length MeSSaesuuuuuuuumimmmmuiiiiiiiiiiiiiiiiiieienieeieeeeeeeeeeeeeeeeeeeeeeeees 231
30.2.2. Variable-Length MeSSagesccoeeieieieieieieieieeeeeeeeeeeeeeeeeeeeeee e 231
30.3. FOOLETSooviiiiiiiiiiiiiiii 231
30.3.1. Fragment NUMDEeTScuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 231
30.3.2. Sequence NUMDEToiiiiiiiiiiiiiiiiiiiiii e 231
30.3.3. ACKS ...oooiiiiiiiiiiiiic e 232
30.3.4. Indexed Channel ID ... 232
30.3.5. First Request Offset and repl ¥yl D........cccoooiiis 232

bigw@RLD"

Server Programming Guide

31. The Watcher Interfaceccccooviiiiiiiiiiiiii 233
31.1. Callable Function WatChersoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeneees 233
31.1.1. Forwarding Watcherscccccciiiiiiii 234

31.1.2. Implementing Function Watchersccococci 234

32. Debug MeSSage IMACTOSccoeeeiiiiiiiiiiieiee et e e ettt e e ettt e e e e e e e aaa e e eeeees 237
32.1. Centralised LOGZINGouuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieie e eeeeeeeees 238

32.2. Filtering by Priorityccooiiiiiiiiiiiiiiiiiiiiiiiiiiieeeie e 238

32.3. Message Prioritycccccooiiiiiiiiiiiiiiiii 238

33. Non-Blocking Socket I/O Using Mercurycccccccooiiiiiiiiiiiiiiiiiiiiiiiiieeeen 241
33.1. Getting Callbacks From Mercury::EventDispatcherccoocooiiini 241

34. MySQL Database Schemaooooiiiiiiiiiiiiiiiiiii e 243
34.1. Entity Tables ... 243

34.2. Non-Entity Tablescccoooiiiiiiiiiiiiiieee s 243

III. Extending WebConsoleoooooiiiiiiiiiiiiiiii i 245
35. WWED COMSOIEuuuiiiiiiiiiiiiiiiiiitiiit ettt enenene 249
35.1. Adding a Page to a Moduleccccoiiiii 249
35.1.1. Create a Template KID File ..., 250

35.1.2. Edit CONE F Ol | €1 S, PY tiiniiiei ettt e e et e e e e eaaas 250

35.2. Adding @ Moduleouiiiiiiiiiiiiiiiiiiiiii e 251

35.3. Add an Action Item to ClusterControlcccooiiviiiiiii 252
35.3.1. Adding a Menu Item for an Existing Component Typeccccccnnn. 252

35.3.2. Adding a Menu Item for a New Component Typeccccceeviiiniinnn. 253

viii Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Part I. Server Scripting Guide

bIgW@RLD"

Table of Contents

T OVEIVIEW ..o et e e e e et e e e 17
2. Directory Structure for Entity Scriptingccccciiiiiii 19
2.1. The entities.xml File 19

2.2. The Entity Definition Filecccccoiiiiiiiiiiiiiiiiiiiiiiieeeee e 20

2.3. The Entity Script Files ... 21

3. Directory Structure for Service Scriptingcccoociiiiiiiiiiii 25
3.1. The services.Xml FAleoooiiiiiiiiiiiiiiiiiiiiiiiiii e neeenananes 25

3.2. The Service Definition File ... 25

3.3. The Service Script FIlesccoooiiiiiiiiiiiiiiiiiiii e 26

4. Directory Structure for User Data Object Scripting 27
4.1. The user_data_objects.xml Fileccocooiiiiiii e 27

4.2. The User Data Object Definition Fileccccocooooiiii, 27

4.3. The User Data Object Script Filesccccooiiiiiiiiiiiii, 28

5. PIOPEILIESooiiiiiiiiiiiiiiiiiiiiiiiiiii i 29
5.1, Property TYPEScooiiniiiii e 30
5.1.1. Primitive TYPeSouuiiiiiiiiiiiiiiiiiiiiiiiiiiie ettt 30

5.1.2. Composite TYPESccoooiiiiiiiiiiiiiiiiiiii 32

5.1.3. Custom USer TYPeScuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 35

5.1.4. Alias of Data TYPeSccoooiiiiiiiiiiiiiiiiiiiii 35

5.2. Server to Client bandwidth usage of Property updatescccoeeiiiiiin 37

5.3. Default Valuescooi 37

5.4. Data Distributionccooiiii 40
5.4.1. Valid Data Distribution Combinationscccoociiiii 41

5.4.2. Using Distribution Flagsccccoiiiiiiii 42

5.4.3. Data Propagationccooiii 43

5.5. Implementing Custom Property Data Typescccvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeens 45
5.5.1. Wrapping a FIXED_DICT Data TYPecccoormmiiiiiiiiiiiiiiiiieiieeeeciieii e 45

5.6. Volatile PrOPEItiesc.oouiiiiiiiiiiiiiiiiiiiiis et ettt 50

5.7. LOD (Level of Detail) on Propertiescocccoiiiiiiiii 52
5.7.1. LOD and Hysteresisccccccooiiiiiiiiiiiiiiiii 53

5.8. Bandwidth Optimisation: Send Latest Onlyccccccooiiiiiii, 55

5.9. Bandwidth Optimisation: Is Reliableo 55

5.10. Detailed POSItIONoiiiiiiiiiiiiiiiiiiiiiii e 55

5.11. Appeal RAdits ...ccooveriiiiiiiiiiiiiiiiiiis ettt et e eee e 56

5.12. Temporary Propertiescccoooiiiiiii 56

5.13. PersiStentcooooiiiiiiiiiiiiiiii s 57

5.14. User Data Object Linking With UDO_REF Propertiescccccccoiviiniin, 57

6. IMEtRNOMS ...ooooiiiiiiii e 59
6.1. Basic Method Specification ... e 60

6.2. TWO-WAY CallSooiiiiiiiii s 60
6.2.1. Twisted Deferred Objectsccooviiiiiiiiiiiiiii 61

6.2.2. EITOT ODJECS ...ooooiiiiiiiiiiiiiiiiiiiiiii 63

6.3. Service Methodscoooiiiiiiiiiiiiiii 64

6.4. Intra-Entity Communicationccoooiiiiiiii 65

6.5. Bandwidth Optimisation: Send Latest Only ..o 66

6.6. Bandwidth Optimisation: Is Reliableccoiiiiiiiiiiiiiiiiniiiiiii e 66

6.7. Sending Auxiliary Data to the Client Via Proxyccccccoovviiiiiiiii, 66

6.8. Exposed Methods - Client-to-Server Communicationocooooi . 67
6.8.1. Security Considerations of Exposed Methodscccccciiiiiiiiiiiiiiinn e, 68

6.9. Server to Client bandwidth usage of Method calls ..., 69

6.10. Client callbacks on property changescccooviiiiiiiiiiiii 69
6.10.1. Implicit set _<property_nanme> Methodsccccccumuiiiiiiiiiiiiiiiiiiiiies 69

6.10.2. Implicit set Nest ed_<property_nane> Methodsce 69

6.10.3. Implicit set Sl i ce_<property_name> Methodsccccccceeeiiiii 70

bigw@RLD"

Server Scripting Guide

6.11. LOD on Methods ...t 70
6.12. Inter-Entity Commumnication ... 71
6.12.1. Entity IDs ... 71
6.12.2. Retrieving SeIVICESooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 72

6.13. MAALlDOXES ...cooiiiiiiiiiiiiiiiie et e e 73
6.13.1. Special MailbOXeSouuuiiiiiiiiiiiiiiiiiiie et 74

6.14. Method Execution Contextccccoooiiiiiiiii 77
7. Inheritance in BigWorldocoooooiii 81
7.1. Python Class Inheritanceocccoiiiiiiiii 81
7.2, Entity INterfacescccccoiiiiiiiiiiiiiiiiii 83
7.3, Entity Parentsoooooiiiiiiiiii s 85
7.4. Client Entity Reuse ... 86
7.5. User Data Object Interfaces and Parents ..., 86
8. Entity Instantiation and Destructionccccccoiiiiii 89
8.1. Entity Instantiation on the BaseAppccccccoiiiiiii 89
811, SeIVICEAPDS ..oovviiiiiiiiiiiiiiiiiiii 90

8.2. Cell Entity Creation From BaseAPpciiiiiiiiiiiiiiiiiiiiiiiiiiiiee e 90
8.2.1. Creation Near an Existing Cell Entitycccccociiiiiiiiiiies 91
8.2.2. Creation in a Numbered SPaceuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeeeeeeeeeeeeeees 92
8.2.3. Creation in @ INeW SPaceoouuviiiiiiiiiiiiiiiiiiiiiii 92
8.2.4. Creation in Default Spaceccccciiiiiiiii 93

8.3. Entity Destruction ... 93
8.4. Entity Instantiation From The CellApp ..., 93
8.4.1. Instantiation With No Base Counterpartcccccuvmiiiiiiiiiiiiiiiiiinnieciiiee 93
8.4.2. Instantiation With Base Counterpart 94

8.5. Loading Entities From Chunk Filescccoiiiiii 94
9. The Database Layercooooiiiiiiiiiiiiiiiiiiii e 97
9.1. Persistent Propertiesooooiiiiiiiii 97
9.1.1. Non-Persistent Propertiescccccccciiiiiiiiiiiiiiiiiiiii 98
9.1.2. BUilt-IN Propertiesooouuiiiiiiiiiiiiiiiie e 98
9.1.3. Database INdeXingoooooiiiiiiiiiiiiii 98
9.1.4. The Identifier Tagccooviiiiiiiiiiiiiiiii 99

9.2. Reading and Writing Entitiescccocooiiiii 100
9.3. Mapping BigWorld Properties Into SQLccccciiiiiiiiiiiiiiiiiiiiiiiiies 102
9.3.1. Entity Tablesccccccccciiiiiii 102
9.3.2. The dat abasel D propertyccccccooimiiiiiiiiii e 102
9.3.3. Simple Data TYPescooooiiiiiiiiiiiiiiiiiiiii 102
9.3.4. VECTOR Data TYPeSouvuiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeie s asaaasaaaaasaaaaaaaanaaes 103
9.3.5. STRING, UNICODE_STRING, BLOB, and PYTHON Data Typesccc.oee. 103
9.3.6. PATROL_PATH and UDO_REF Data Typesccccccvviiiiiiiiiiiiiiiiiiiie, 104
9.3.7. ARRAYs and TUPLESccccciiiiiiiiiiii e 104
9.3.8. FIXED_DICTSccoooiiiiiiiiiiiiiiiiiiii i 106
9.3.9. USER_TYPEScoooiiiiiiiiiiiiiiiiiiiiiiiii e 106

9.4. Execute Arbitrary Commands on Databasecccoooiiiiiiiiiii 112
9.4.1. Execute Commands on SQL Databaseccoeeiiiuiiiiiiiiiniiiiiieeeeiiee e ee e 112
9.4.2. Execute Commands on XML Databaseccccccooiiiiiiiiiiiiiiiiiiiiiiiiiiies 113

9.5. Secondary Databasesuuiiiiiiiiiiiiiiiiiiii e 114
9.5.1. Data Consolidationcccoiiiiii 114
9.5.2. Database SNapshotuiiiiiiiiiiiiiiiiiiiiiii e 115

10. Character Sets and Encodingscccccoiiiiiiiiiiii 117
10.1. Python and Entity Propertiesccccccoiiiiiiii 118
T0.1.1. STRING Lo 118
10.1.2. UNI CODE_STRI NGoiiiiiiiiiiiiiiiiiiiice e 118

10.2. DBMgr and ENCOAINgSouuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 119
10.2.1. UNICODE_STRING StOrageccccuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 119

10.2.2. Sorting search resultscccccoovviiiiiiii 120

Server Scripting Guide

T1, PIOfIlING ... s 121
11.1. Profiling Entitiescccoviiiiiiiiiiiii 121
11.1.1. Persistent Properties 122
11.1.2. Property Data Typesooooiiiiiiiiiiiiiiiiii 122
11.1.3. Property Data Propagationccccoooiiiiiiiiiiiiiiiiiiiii e 122

11.2. Python Game SCript ... 122
11.2.1. Understanding the output 123
11.2.2. Increasing Memory Usage / Entity Countocooivviiiii, 124

11.3. Profiling Server Processes (C++ Code)ccoeeiiiiiiiiiiiiiiiiiiiiiiiiicic e 124
11.3.1. Common Code Block Profilescccccciiiiiiiiiiiiii 125
11.3.2. BaseApp Code Block Profilesoooouiiiiiiiiiiiiiiiiiiii e 125
11.3.3. CellApp Code Block Profilesccoooiiiiiiiiiiiiiiiiiiiiiiiiicciiii e 126

11.4. Client CommuNIicationccccoiiiiiiiiiiiii 126
11.4.1. Private Client EVENtSoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeeeeee e 128
11.4.2. Public Client Events ... 128
11.4.3. Total Public Client Eventsccccooiiiiiiiiii 128

11.5. Server Communicationccccccoiiiiiii 128
11.5.1. BaseApp Interface Summaryccccccc 130
11.5.2. CellApp Interface SUMMATY ... 131

12. Proxies and PLayersccoooiiiiiiiiiiiiiiiiiii 133
T2.1 PIOXIES ...t 133
D2.2. WIEIESSES ...ttt 134
12.3. Entity Controlcoooiiiiiiiii e 134
12.4. Physics Correction ... 135
12.4.1. Avoiding Y-axis rubber-banding.ccccccciiiiiiiiiiiiiiie 136

13. Entities and the UNIVeISEeuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e eeeeeee e eeeneneeenenenenes 137
13.1. MUultiple SPacesccooiiiiiiiiiiiiiiiiiiiii 137
13,11, SPAces POOLooviiiiiiiiiiiiiiiiiiiiiiiiiii e 139

13.2. Navigation System ...t 139
13.2.1. Key Features ... 139
13.2.2. Navpoly Data Format ... 139
13.2.3. Script Interfaceccccoeiiiiiiiiii 140
13.2.4. NAVIZALE ...ooviiiiiiiiiiiiiiiiiii e 141
13.2.5. Graph Searches 141
13.2.6. Auto-Generation of Navpoly RegiONseuuuuuiiiiuiiiiiiiiiiiiiiiiiiiiiiieieiiieieieeeeeees 141

1330 THINE ..o 143
13.3.1. Real TIMe ...oooooiiiiiiiiiiiiiiiiii 143
13.3.2. Server Timecooooiiiiiiiiiiiiiiiii s 143
13.3.3. Game Timecoooiiiiiiiiiiii s 144

13.4. Initialisation: Personality script, eload, and runscript 144
13.5. GIODAl Dataccooiiiiiiiiiiiiiiiii et 147
13.5.1. gl obal Dat a, baseAppDat a and cel | AppDat @ccevvveveiieiiiiieiiieeeeeeeee, 147

13.6. Space Datacooooiiiiiiiiiiiiii 148
13.7. GLODAl BASESccoooviiiiiiiiiiiiiiiiiiiiii 149
14. XML Data FIle ACCESSuuuuuuuiiiiiiiiiiiiiiiiiieiiititeeeetetetee ettt eeeseseneeeeene 151
14.1. RESMII DAL @SECT T ON ittt ettt e e e eeeaaaines 151
14.2. AccesSINg Dataoiiiiiiiiiiiiiiiiiiiiiii e 151
14.2.1. Opening a Section Within an XML File 152

14.3. Data TYPESccooiiiiiiiiiiiiiiii s 152
14.4. Writing Datacoooooiiiiiii 152
14.5. Performance ISSUESoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 154
14.6. APT REEEIIICEeuuiiiiiiiiiiiiiiiiitii e 154
15. EXterNal SETVICESccooiiiiiiiiiiiiiiiii ittt e 155
15.1. Non-blocking Methodsiiiiiiiiiiiiiiiiiiiiiiiiiii s 155
15.2. Background TRreadsccooooiii e 155
15.2.1. CAVEALS ...ouuuniiiiiiiiiiii i 157

bigw@RLD" 5

Server Scripting Guide

16. Fault TOLeTamnceooooiiiiiiiiiiiiiiiiiiiiic e 159
16.1. CellApp Fault Toleranceccccccvviiiiiiiiiiiiiii 159
16.1.1. OVEIVIEW ..ooiiiiiiiiiiiiiiiiii e e 159

16.1.2. Restoration processcccooc 159

16.1.3. Example ... 160

16.2. Base App Fault TOLEIanCeoouuuiiiiiiiiiiiiiiiii e ettt 161

17. Disaster RECOVETYouiiiiiiiiiiiiiiiiiii i 163
18. Controlled Startup and Shutdowncccoiiiiiiii 165
18.1. Controlled ShUtdOWN ..ottt 165

18.2. Controlled Startupccccoiiiiiiiiiiiiiiiiiiiiiii e 166

19. Transactions and Handling Fault Tolerance and Disaster Recoveryccceeeiiiin, 167
19.1. Transaction LOGICuuiiiiiiiiiiiiiiiii e 167

19.2. Fault Tolerance Behaviourcccooviiiiiiiiiiiiiiiiiii 170
19.2.1. CellApp Fault TOleranceccooovuiiiiiiiiiiiiiiiiiiii i 170

19.2.2. BaseApp Fault Toleranceccccoooiiiiiiiiiiiii 170

19.3. Disaster Recovery Behaviour 170

20. Implementing Common Systems 171
20.1. General Scalabilitycccccooiiiiiiiiiiiiii e 171

20.2. Internal inter-component communicationc.o.co 171

20.3. Player Aol Updatescccceoiiiiiiiiiiiiiiiiii 171

20.4. BigWorld Database Scalabilitycccccccoiiiiiiii 172

20.5. Player LOOK-Up ... 173
20.5.1. ReQUITEMENTSoouiiiiiiiiiiiiiiiiiiii e 173

20.5.2. D@SIGI ...oooviiiiiiiiiiiiiiiiiiiiiiii 173

20.6. Friends Listscccccoiiiiiiiiiii 174
20.6.1. ReqUITEMENTSouuiiiiiiiiiiiiiiiii e 174

20.6.2. DESIGNoovviiiiiiiiiiiiiiiii 174

20.7. CRAb .o 176
20.7.00 P2P oo e 176

20.7.2. Aol-based broadcast chatcccoiiii 176

20.7.3. Non-Aol-based broadcast chatc.ooociii 177

20.8. Mail ...ooiiiiiiiiiiii 177
20.8.1. ReQUITEMENTSuuuiiiiiiiiiiiiiiiiiiiii e 177

20.8.2. DESIGNoovviiiiiiiiiiiiiiiiiii 177

20.9. Inventory Systemccoooiiiiiiiiiiiiiiii 177
20.9.1. ReQUITEIMENESccooiiiiiiiiiiiiiiiiiiiiie et e ettt e e e e e 177

20.9.2. D@SIGI ..ovvviiiiiiiiiiiiiiii 178

20.10. AoI-based Tradingcccccooiiiiiiiiiiiiiiiiiiii 178
20.10.1. ReQUITEMENTSouiiiiiiiiiiiiiiiiiiiiiii 178

20.10.2. D@SIGIooviiiiiiiiiiiiiiiiiiiiiiiii e 178

21. User Authentication and Billing System Integrationcccccccoiiiiiiiiiiiiiiiiiiiis 181
21.1. Authentication by DBMEr ... 181
21.1.1. Default Authentication via MySQL ...t 181

21.1.2. Default Authentication via XMLccccooiiiiiiiiiiiiiiiieeees 182

21.1.3. Custom Authentication and Billing System Integrationoccoccoen 183

21.1.4. Accepting AIL USersooooeiiiiiiiiii 184

21.2. Authentication via a Base entitycccooiiiiiii 184

22, SECUTIEY ..ottt 187
22.1. Client/Server Communicationscccccoiiiiiiiiiiiiiii 187

22.2. Server-Side Network ... 188
22.3. CHENt STA@ ...oeeeiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 188
22.4. Client Cheatingcccccccci 189
22.4.1. General Rules for Managing Entity Datacccccoooiiiiiis 189

22.4.2. Writing Secure Game Scriptcccoooiiiiiiiiiii s 189

22.4.3. Balancing Security vs. Latencycccccccuiiiiiiiiiiiiiiiiiiiiiiieiiieieieeeees 190

22.4.4. Balancing Security vs. Server CPU Costcccccciiiiiiiiiii, 190

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Server Scripting Guide

23. DebUGGINGooooiiiiiiiiiiiiiiiii 191
23.1. General Debuggingcccooiiiiiiiiiiiiiiii 191
23.1.1. Information and Error Messagesccccccvviiiiiiiiiiiiiiiiiiii 191
23.1.2. Testing Scripts Using the Python Servercoooooiiiiiiiiiiii, 191
23.2. Performance Profilingooooiiiiiiiiiiiiiiiiii 192
23.3. Common Mistakesco 193
23.3.1. Definition Files Inconsistent Between the Server and Client 193
23.3.2. Implementation (. py) Does Not Match Definition (. def)ccccccoiiniiis 193
23.3.3. Accessing Other Entities' Properties and Methods Not Declared in the Definition
FALE oo 194
23.3.4. Trying to Update the Properties of a Ghost Entitycccc. 194
23.3.5. Database backup and fault tolerance doesn't work for entities lacking a Base part.. 194
23.4. Fixed Cell BOUNAIIESouuiiiiiiiiiiiiiiiiiiiiiiiiiiie e 194
23.5. Message Reliability And Orderingccccccociiiiiiiiiiii 195
24. Shared Development ENvironmentscccccciiiiiiiiiiiiii i 197
24.1. Windows and Linux cross platform developmentccoccciiiii . 197
24.1.1. Sharing resources from Windowsccccooiiiiiii 198
24.1.2. Accessing Windows share from Linuxo 198
24.2. Using BigWorld with a Version Control Systemcccccccocc. 201
24.2.1. Customers using the Commercial Editionoooiii 201
24.2.2. Customers using the Indie Editiono 201
24.2.3. Files to exclude from version controlcooooviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee, 201
24.3. DBMgr database CONLICSuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiete et eeeeeeeneneeeee 203

bIgW@RLED" .

Chapter 1. Overview

This part of the document contains technical information for creating entities and user data objects for the
BigWorld Server. It is part of a larger set of documentation describing the whole BigWorld system.

The intended audience is technical-typically MMOG developers and designers.

For API-level information, please refer to the API reference documentation.

Garbage collection is disabled in BigWorld's Python integration, because garbage col-
lection is an expensive operation that can occur at any time, blocking the main thread
in the server applications.

For details on BigWorld terminology, see the document Glossary of Terms.

bigw@RLD"

#dest=

Chapter 2. Directory Structure for Entity Scripting

Entities are the objects that make up the game world. Using entities, you can create players, NPCs, loot, chat
rooms, and many other interactive elements in your games.

Each entity type is implemented as a collection of Python scripts, and an XML-based definition file that ties
the scripts together. These scripts are located in the resource tree under the folder scri pts (ie., <r es>/
scripts , where <r es> is the virtual tree defined ~/ . bwhachi ned. conf).
The list below summarises the important files and directories for entities in <r es>:
® <res> - Resource tree defined in ~/ . bwmachi ned. conf
° scri pt s - Folder containing all entity files.

e db. xm - Persistent state for the XML database system.

° entities.xm -Lists all entities to load into the client or the server at start-up time.

* base - Folder contains Python scripts for entities with a base component.

e cel | - Folder contains Python scripts for entities with a cell component.

e client - Folder contains Python scripts for entities with a client component.

e common - Folder listed in the Python search path for all components. Used for common game code.

° |'i b - Folder listed in the Python search path for all components. Used for common game code.

e entity_defs - Contains an XML . def file for each entity listed in file <res>/scri pts/
entities.xm.

e alias.xm -Data types aliases used in the project.

* <entity>. def - Entity definition file. There is one such file for each entity defined in <r es>/
scripts/entities.xm.

* i nt erf aces - Entity interface definition files
* server - System-wide settings.

* Default values for the system.

2.1. The entities.xml File

The file<res>/ scripts/entities.xm isused by the BigWorld engine to determine the types of entities
available for use.

Each tag in this file represents an entity type, and must have a corresponding definition file in the directory
<res>/scripts/entity_defs, and at least one Python script file in either the <r es>/ scri pt s/ base
or <res>/ scri pts/cel | directory. It may also have a script file in <r es>/ scri pts/client.

The order in which the entity types are declared in this file corresponds to the final entity ID associated with
each entity type.

In its simplest form, the entities file has one tag listed for each entity to be loaded.

To define an entity called NewEnt i t yType, simply add a line like the one below:

bIgW@RLD" 5

Directory Structure for Entity Scripting

<r oot >
<NewEnt i tyType/ >

</root>

<res>/scripts/entities.xn - Entity definition

2.2. The Entity Definition File

The entity definition file <r es>/ scri pts/entity_defs/<entity>. def determines how your scripts
communicate in BigWorld. This allows the BigWorld system to abstract the tasks of sending and receiving
messages into simply calling different script methods on your entities. In a sense, the definition file provides
an interface to your entity, and the Python scripts provide the implementation.

The following diagram shows the conceptual parts of a BigWorld entity:

Eritity
Cliert Cell Base 5
Python scrpt|| |Python scrpt] (Python schpt E
- E
Defintion
file R

Conceptual parts of an entity

Each entity type has a corresponding definition file, named after the entity's type name followed by the
extension '. def . For example, a Seat entity type would have a file called Seat . def .

It is useful then, to have a 'minimal’ definition file to aid in quickly defining a new entity, as well as to assist
in explaining what the document's section is trying to accomplish.

The following file is a minimal entity definition file:

<r oot >
<Parent> optional parent entity </Parent>

<l npl ermrent s>
<l-- interface references -->
</ I mpl ement s>

<d i ent Name> optional client type </ Cient Nane>

<Vol atil e>
<l-- volatile definitions -->
</ Vol atil e>

<Appeal Radi us> optional appeal radius </ Appeal Radi us>

<Det ai | edPosition> @
<SendLat est Onl y> whether to only send the npbst recent position </
SendLat est Onl y>
</ Det ai | edPosi ti on>

20 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Directory Structure for Entity Scripting

<Properties>
<!-- properties -->
</ Properties>

<d i ent Met hods> H
<l-- declaration -->
</ d i ent Met hods>

<Cel | Met hods> H
<l-- declaration -->
</ Cel | Met hods>

<BaseMet hods>
<l-- declaration -->
</ BaseMet hods>

<LoDLevel s>
<l-- levels of detail -->
</ LODLevel s>

<Net wor kConpr essi on>

<!-- internal and external network conpression -->
</ Net wor kConpr essi on>
</root>

<res>/scripts/entity_defs/<entity>. def - Minimal entity definition file

For details, see “Entity Parents” on page 85 .

For details, see “Entity Interfaces” on page 83 .

For details, see “Client Entity Reuse” on page 86 .

For details, see “Volatile Properties” on page 50 .

For details, see “Appeal Radius” on page 56 .

For details, see “Detailed Position” on page 55 .

For details, see Properties on page 29 .

For details, see Methods on page 59 .

For details, see Methods on page 59 .

U For details, see Methods on page 59 .

For details, see “LOD (Level of Detail) on Properties” on page 52 .
For details, see Server Operations Guide's chapter “General Configuration Options” for the net wor k-
Conpr essi on options.

HNRANRBRENMEMNE

By the end of this chapter, we should be able to replace all placeholders (denoted by italics) in the example
file above with actual code.

2.3. The Entity Script Files

BigWorld Technology divides processing of entities in a game world into three different execution contexts:

Entity type Script file location Description

Cell <res>/scripts/cell Takes care of the portions of an entity that
affect the space around it. Processing takes
place on the server cluster.

Base <res>/scripts/ base Takes care of the portions of an entity that do
not affect the space around it (as well as pos-
sibly acting as a proxy for a player). Process-
ing takes place on the server cluster.

Client <res>/scripts/client Takes care of the portions of an entity that
require heavy awareness of the surrounding
environment.

bigw@RLD" &

#dest=
#dest=

Directory Structure for Entity Scripting

Entity Types

It is possible for some entity instances to not have one of these three parts. Furthermore, some entity types
may not support ever having one of these parts. For each entity type, there is a script file for each of CellApp,
BaseApp, and Client, if that type supports that execution context.

These script files are named after the entity type, followed by the extension '. py'. This file must contain a
class with the name of the entity type.

For example, if you have an entity type Seat that can have cell, base and client execution contexts, there
would be three script files, each with the implementation of the class:

e <res>/scripts/cell/Seat.py
° <res>/scripts/basel/ Seat. py
e <res>/scripts/client/Seat. py

The entity's base class defined in the script file is determined by the execution context that the file represents,
as described below:

Script file execution context Entity's base class

Cell Bi gwrl d. Entity
Base Bi g\Wor | d. Base or Bi gWor | d. Pr oxy
Client Bi gwrl d. Entity

Entity's base class per execution context

For more details about the difference between the Base and Pr oxy classes, see Proxies and Players on page
133.

The start of the script for a Seat entity could be implemented as below:

* Cell script file - <r es>/ scri pt s/ cel | / Seat . py

i mport BigWwrld
class Seat(Bigwrld.Entity):

def __init__(self):
Bigwrld.Entity. __init__(self)

* Base script file - <r es>/ scri pt s/ base/ Seat . py

i mport BigWrld
cl ass Seat(BigWrld.Base):

def __init_ (self):
Bigwrld.Base. __init_ (self)

* Client script file - <r es>/ scri pt s/ cl i ent/ Seat . py

i mport BigWrld

class Seat(BigWworld.Entity):

22 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Directory Structure for Entity Scripting

def __init__(self):
BigWworld.Entity. __init__(self)

bIgW@RED B

Chapter 3. Directory Structure for Service Scripting

Services are scripted objects that are similar to base-only entities. They are designed to integrate additional
functionality with the game server. This functionality typically involves external processes.

Each service type is implemented as a collection of Python scripts, and an XML-based definition file that ties
the scripts together. These scripts are located in the resource tree under the folder scri pts (i.e., <res>/
scri pts , where <r es> is the virtual tree defined ~/ . bwrachi ned. conf).
The list below summarises the important files and directories for services in <r es>:
® <res> - Resource tree defined in ~/ . bwmachi ned. conf
° scri pt s - Folder containing all service files.

e servi ces. xm - Lists all services to load into the server at start-up time.

* base - Folder contains Python scripts for entities with a base component.

e conmon - Folder listed in the Python search path for all components. Used for common game code.

* | i b - Folder listed in the Python search path for all components. Used for common game code.

* servi ce - Folder contains Python scripts for services to be run on ServiceApps.

* servi ce_defs - Contains an XML . def file for each service listed in file <res>/ scri pts/
services. xm .

* <servi ce>. def -Service definition file. There is one such file for each service defined in <r es>/
scripts/services. xm .

3.1. The services.xml File

The file<r es>/ scri pt s/ servi ces. xm isused by the BigWorld engine to determine the types of services
available for use.

The file contains a list of Services as elements, as children of the r oot node:

<r oot >
<Servicel/ >
<Servi ce2/ >
</ root >

3.2. The Service Definition File

The service definition file <res>/scri pts/servi ce_defs/<servi ce>. def determines how your
scripts communicate in BigWorld. This allows the BigWorld system to abstract the tasks of sending and re-
ceiving messages into simply calling different script methods on your services. In a sense, the definition file
provides an interface to your service, and the Python scripts provide the implementation.

Each service type has a corresponding definition file, named after the service's type name followed by the
extension '. def '. For example, a Not eSt or e service type would have a file called Not eSt or e. def .

The following file is a 'minimal' service definition file, to aid in quickly defining a new service:

<r oot >

bigw@RLD" =

Directory Structure for Service Scripting

<Met hods>

<l-- declaration -->
</ Met hods>
</ root >

<res>/ scripts/service_defs/<service>. def - Minimal service definition file

For details, see Methods on page 59 .

3.3. The Service Script Files

BigWorld Technology handles the processing of all services in the Service execution context. Therefore, a
script file for each service type is provided for this context.

For example, a Not eSt or e service will have one script file with the implementation of the class, located at
<res>/scripts/servicel/ NoteStore. py

The service's base class defined in the script file is Bi g\Wor | d. Ser vi ce, since the file represents the Service
execution context.

The start of the script for a Not eSt or e service could be implemented as below:

i mport BigWwrld
class NoteStore(BigWrld. Service):

def __init_ (self):
BigWorld. Service. __init__ (self)

<res>/scri pt s/ servi cel/ NoteStore.py - Service script file

26 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 4. Directory Structure for User Data Object
Scripting

User data objects are a way of embedding user defined data in Chunk files. Each user data object type is
implemented as a collection of Python scripts, and an XML-based definition file that ties the scripts together.
These scripts are located in the resource tree under the folder scri pt s (i.e., <r es>/ scri pt s, where <r es>
is the virtual tree defined ~/ . bwrachi ned. conf).

User data objects differ from entities in that they are immutable (i.e. their properties don't change), and that
they are not propagated to other cells or clients. This makes them a lot lighter than entities.

A key feature of user data objects is their linkability. Entities are able to link to user data objects, and user
data objects are able to link to other user data objects. This is achieved by including a UDO_REF property in
the definition file for the user data object or entity that wishes to link to another user data object.

The list below summarises the important files and directories for user data objects in <r es>:
* <r es> — Resource tree defined in ~/ . bwnachi ned. conf .
e scri pts — Folder containing all entity files.

° user_dat a_obj ects. xm — Lists all user data objects to load into the client or the server at start-
up time.

* base — Folder contains Python scripts for user data objects with a base component.

* cel | — Folder contains Python scripts for user data objects with a cell component.

* cl i ent — Folder contains Python scripts for user data objects with a client component.

e comon — Folder listed in the Python search path for all components. Used for common game code.
* | i b — Folder listed in the Python search path for all components. Used for common game code.

° user _dat a_obj ect _def s — Contains the user data object definition files.

° <user _dat a_obj ect . def > — User data object definition file. There is one such file for each user
data object defined in <r es>/ scri pt s/ user _dat a_obj ects. xm .

e interfaces — User data object interface definition files

4.1. The user_data_objects.xml File

The file <res>/ scri pt s/ user _dat a_obj ect s. xm is used by the BigWorld engine to determine the
types of user data objects available for use.

The file structure matches that of the <res>/entiti es/entities. xm . For further details refer to “The
entities.xml File” on page 19

4.2. The User Data Object Definition File

The user data object definition file <res>/scripts/user_data_object_defs/
<user _dat a_obj ect >. def determines the properties it will store and make accessible to BigWorld user
data objects. The user data object definition file also specifies if the user data object should be created in the
server or in the client.

The following file is a minimal entity definition file:

bigw@RLD" &

Directory Structure for User Data Object Scripting

<r oot >
<Donai n> the execution context for this user </Domain>
<Parent > optional parent entity </ Parent>
<I npl ement s>
<I-- interface references -->
</ 1 nmpl emrent s>
<Properties>
<l-- properties -->

</ Properties>

</root>

<res>/scripts/user_data_object _defs/<user_data_object>. def — Minimal user data object definition file

The domain for a user data object can be either CLI ENT, CELL or BASE.
For details, see “Entity Parents” on page 85 .

For details, see “Entity Interfaces” on page 83 .

E For details, see Properties on page 29 .

4.3. The User Data Object Script Files

BigWorld Technology divides processing of user data objects in a game world into three different execution
contexts, depending on its Domai n:

* User Data Object Domain: Cell — Script File Location: <r es>/ scri pt s/ cel |
User data objects to be used by entities in the cell.

* User Data Object Domain: Base — Script File Location: <r es>/ scri pt s/ base
User data objects to be used by entities in the base.

* User Data Object Domain: Client — Script File Location: <r es>/ scri pts/cl i ent
User data objects to be used by entities in the client.

Most implementations of user data objects will only live either in the cell or in the client. For an example
of a user data object that lives in the cell, see the Pat r ol Node user data object scripts and definition file in
the <r es>/ scri pt s folder. For an example of a client-only user data object, look in the same place for the
scripts and definition file of the Camer aNode user data object.

28 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 5. Properties

Properties describe what the state of an entity is. Like traditional object systems, a BigWorld property has
a type and a name. Unlike traditional object systems, a property also has distribution properties that affect
where and how frequently it is distributed around the system.

Properties are declared in the entity's definition file (named <res>/scripts/entity_defs/
<entity>. def), in a section named Pr operti es.

The grammar for property definition is displayed below:

<Properties>
<pr opert yName>

<l-- type of this property -->
<Type> TYPE_NAME </ Type>

<l-- Method of distribution -->
<Fl ags> DI STRI BUTI ON_FLAGS </ Fl ags>

<!-- Default value (optional) -->
<Def aul t > DEFAULT_VALUE </ Def aul t >

<l-- Is the property editable? (true/false) (optional) -->
<Edi tabl e> [true|fal se] </Editable>

<I-- Level of detail for this property (optional) -->
<Detai |l Level > LOD </ Det ai | Level >

<l-- Is the property persistent? -->
<Persistent> [true|fal se] </Persistent>

<l-- 1s the property indexed? -->
<I ndexed> [true|false] @
<l-- Is the property index unique? -->

<Uni que> [true|fal se] </Unique>
</ | ndexed>

<l-- Is at nost one change sent to clients in a packet? -->
<SendLatestOnl y> [true|fal se] </ SendLatestOnly>Hd

<l-- 1s change sent reliably? -->
<I sReliable> [true|fal se] </IsReliable>H

</ pr opert yNane>
</ Properties>

<res>/scripts/entity_defs/<entity> def — Property definition syntax

NARERNEMNE

For details, see “Property Types” on page 30 .

For details, see “Data Distribution” on page 40 .

For details, see “Default Values” on page 37 .

For details, see “LOD (Level of Detail) on Properties” on page 52 .

For details, see The Database Layer on page 97 .

For details, see “Database Indexing” on page 98 .

For details, see “Bandwidth Optimisation: Send Latest Only” on page 55 .

bIgW@RLD" %

E For details, see “Bandwidth Optimisation: Is Reliable” on page 55 .

5.1. Property Types

BigWorld needs to efficiently transmit data over a network between its various components. For this purpose,
BigWorld definition file describes the type of each property of an entity (despite the fact that BigWorld is
scripted using Python — an untyped language).

Because bandwidth conservation is important in implementing an MMOG, property types should be selected
such that they are the smallest type (in terms of number of bits) that can represent the data.

5.1.1. Primitive Types

The following list summarises the primitive types available for BigWorld properties:
* BLOB — Size (bytes): N+k

Binary data. Similar to a string, but can contain NULL characters.

Stored in base-64 encoding when in XML, e.g., in the XML database.

Nis the number of bytes in the blob, and k=4.
* FLOAT32 — Size (bytes): 4

IEEE 32-bit floating-point number.

The MySQL database may have less precision than this.

* FLOAT64 — Size (bytes): 8

IEEE 64-bit floating-point number.

The MySQL database may have less precision than this.

* | NT8 — Size (bytes): 1 — Range: From: -128 To: 127
Signed 8-bit integer.
* | NT16 — Size (bytes): 2 — Range: From: -32,768 To: 32,767
Signed 16-bit integer.
* | NT32 — Size (bytes): 4 — Range: From: -2,147,483,648 To: 2,147,483,647
Signed 32-bit integer.
* | NT64 — Size (bytes): 8 — Range: From: -9,223,372,036,854,775,808 To: 9,223,372,036,854,775,807
Signed 64-bit integer.

* MAI LBOX — Size (bytes): 12

Properties

A BigWorld mailbox.
Passing an entity to a MAl LBOX argument automatically converts it to MAI LBOX.
For details, see “Mailboxes” on page 73 .
* PYTHON — Size(bytes): Size of pickled string, as per STRI NG
Uses the Python pickler to pack any Python type into a string, and transmits the result.
This should not be used between client and server, as it is insecure and inefficient.

It is recommended to use a user data type for production code. For more details, see “Implementing Cus-
tom Property Data Types” on page 45 .

* STRI NG — Size (bytes): N+k
Character string (non-Unicode).
Nis the number of characters in the string, and k=4.
* Ul NT8 — Size(bytes): 1 - Range: From: 0 To: 255
Unsigned 8-bit integer.
* U NT16 — Size(bytes): 2 — Range: From: 0 To: 65,535
Unsigned 16-bit integer.
* Ul NT32 — Size(bytes): 4 — Range: From: 0 To: 4,294,967,295
Unsigned 32-bit integer.
This type may use Python’s | ong type instead of i nt, and so might be less efficient than | NT32.
* Ul NT64 — Size(bytes): 8 — Range: From: 0 To: 18,446,744,073,709,551,615
Unsigned 64-bit integer.
* UNI CODE_STRI NG — Size (bytes): Up to 4N+k
Character string (Unicode).
Nis the number of characters in the string, and k=4. Streamed as UTF-8.
* VECTOR2 — Size(bytes): 8

Two-dimensional vector of 32-bit floats. Represented in Python as a tuple of two numbers (or
Mat h. Vect or 2).

* VECTOR3 — Size(bytes): 12

Three-dimensional vector of 32-bit floats. Represented in Python as a tuple of three numbers (or
Mat h. Vect or 3).

* VECTOR4 — Size(bytes): 16

Four-dimensional vector of 32-bit floats. Represented in Python as a tuple of four numbers (or
Mat h. Vect or 4).

bIgW@RLED" =

Properties

5.1.2. Composite Types

The following sections describe the composite types available in BigWorld.

5.1.2.1. ARRAY and TUPLE Types

BigWorld also has ARRAY and TUPLE types, which can create an array of values of any of the BigWorld
primitive types.

Properties of ARRAY type have a byte size calculated by the formula below:
N*t+k

The components of the formula are described below:

* N — Number of elements in the array.

* t — Size of the type contained in the array.

* k — Constant.

The BigWorld TUPLE type is represented in script by the Python tuple type, while the BigWorld ARRAY
type is represented in script by Python list type.

Tuples are specified as follows:

<Type> TUPLE <of > [TYPE_NAME| TYPE_ALI AS] </of > [<size> n </size>] </Type>

<res>/scripts/entity_defs/<entity> def — TUPLE declaration syntax

Arrays are specified as follows:
<Type> ARRAY <of > [TYPE_NAME| TYPE_ALI AS] </of > [<size> n </size>] </Type>

<res>/scripts/entity_defs/<entity> def — ARRAY declaration syntax

In case the size of an ARRAY or TUPLE is specified, then it must have the declared n elements. Adding or
deleting elements to fixed-sized ARRAY or TUPLE is not allowed. If the default value is not specified, then a
fixed-sized ARRAY or TUPLE will contain n default values of the element type.

Arrays have a special method called equal s_seq() that can be used for performing element-wise Boolean
equality testing against any arbitrary Python sequence (including Python lists and tuples). For example:

sel f.nyList = [1,2,3]
sel f.nyList.equals_seq([1,2,3])
should return True
sel f. nyList.equal s_seq((1,2,3))
should return True

Arrays efficiently propagate changes. This includes assigning to individual elements, appending, extending,
removing, popping and slice assignment.

For example, each of the following are propagated efficiently.

32 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

self.nyList =[1, 2, 3, 4, 5]
self.nyList[3] =8

sel f. nyLi st. append(6)

sel f.nyList.extend([7, 8])
sel f.nyList += [9, 10]

sel f. nyLi st. pop()
sel f.nyList.renmove(7)

self.nyList[2 : 5] =[11, 12]
del self.nyList[2]
del self.nyList[1 : 4]

Arrays can not only contain aliased data types, but may also be aliased themselves. For more details, see
“Alias of Data Types” on page 35 .

5.1.2.2. FIXED_DICT Data Type

The FI XED_DI CT data type allows you to define dictionary-like attributes with a fixed set of string keys.
The keys and the types of the keyed values are predefined.

The declaration of a FI XED DI CT is illustrated below:

<Type> FI XED_DI CT

<Par ent > Par ent Fi xedDi ct TypeDecl arati on </ Parent >
<Properties>

<field>
<Type> Fi el dTypeDecl arati on </ Type>
</field>
</ Properties>

<Al | owNone> true|fal se </ Al | owNone>

</ Type>

FI XED_DI CT data type declaration
Defaultisf al se.If set tot r ue, then None may be used as the value of the whole dictionary.

This data type may be declared anywhere a type declaration may appear, e.g., in <res>/scri pts/
entity defs/alias.xm !in<res>/ scri pts/entity_defs/<entity>. def, as method call argu-
ments, etc.

The code excerpt below shows the declaration of a FI XED_DI CT attribute:

<r oot >
<TradelLog> FI XED DI CT
<Properties>

<dbl DA>

<Type> | NT64 </ Type>
</ dbl DA>
<itenmsTypesA>

<Type> ARRAY <of > | TEM </ of > </ Type>

</itensTypesA>

1For details on this file's grammar, see the document File Grammar Guide's section al i as. xmi

bIgW@RLD" %

#dest=
#dest=

Properties

<gol dPi ecesA>
<Type> GOLDPI ECES </ Type>
</ gol dPi ecesA>
</ Properties>
</ Tr adeLog>
</root>

fant asydeno/res/ scripts/entity_defs/alias.xn

Instances of FI XED_DI CT can be accessed and modified like a Python dictionary, with the following excep-
tions:

* Keys cannot be added or deleted
* The type of the value must match the declaration.

For example:

if entity. TradeLog["dblDA"] == 0:
entity. TradeLog["dblIDA"] = 100

Example of FI XED_DI CT usage in script

Alternatively, it also supports the following:

if entity. TradelLog. dbl DA == 0:
entity. TradelLog. dbl DA = 100

Example of FI XED_DI CT usage as struct in script

Using struct syntax can cause problems with name collisions with FIXED_DICT meth-
ods.

A FI XED_DI CT instance can be set using a Python dictionary that has a superset of the keys required. Any
unnecessary keys in the dictionary are ignored.

For example:

entity. TradeLog = { "dbl DA" : 100, "itensTypesA" : [1, 2, 3],
"gol dPi ecesA" : 1000, "redundant Key" : 12345 }

Example of FI XED_DI CT instance being set using a Python dictionary

Changes to FI XED_DI CT values are propagated efficiently wherever a change to the whole property would
be propagated, i.e., to ghosts and to clients — including ownCl i ent s.

The default value of a FI XED_DI CT data type can be specified at the entity property level. For example:

<r oot >
<Properties> FI XED_DI CT

34 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

<soneProperty>
<Type> TradelLog </ Type> <l-- Fromlast exanple -->
<Def aul t >
<dbl DA> 0 </dbl DA>
<i tensTypesA>
<itemr 101 </itenp
<itemr 102 </itenp
</itenmsTypesA>
<gol dPi ecesA> 100 </ gol dPi ecesA>
</ Def aul t >
</ someProperty>
</ Properties>
</root>

Example of specifying default value of a FI XED DI CT data type in an entity definition file

If the <Def aul t > section is not specified, then the default value of a FI XED_DI CT data type will depend on
the value of the <al | owNone> tag, as described below:

Table . Default values for a FIXED_DICT without a <Default> section.

<AllowNone> FI XED DI CT default value

True Python None object.

False Python dictionary with keys as specified in the type definition.

Each keyed value will have a default value according to its type. For example, a
keyed value of | NT type will have a default value of 0.

5.1.3. Custom User Types

There are two ways to incorporate user-defined Python classes into BigWorld entities: wrapping a
FI XED_DI CT data type, or implementing a USER_TYPE.

The FI XED_DI CT data type supports being wrapped by a user-defined Python type. When a FI XED_DI CT
is wrapped, BigWorld will instantiate the user-defined Python type in place of a FI XED_DI CT instance. This
enables the user to customise the behaviour of a FI XED_DI CT data type.

The type system can also be arbitrarily extended with the USER_TYPE type. Unlike a wrapped FI XED_DI CT
type, the structure of a USER_TYPE type is completely opaque to BigWorld. As such, the implementation of
a USER_TYPE type is more involved. The implementation of the type operations is performed by a Python
object (such as an instance of a class) written by the user. The Python object serves as a factory and serialiser
for instances of that type, and it can choose to use whatever Python representation of that type it sees fit —
it can be as simple as an integer, or it can be an instance of a Python class.

For more details on custom user types, see “Implementing Custom Property Data Types” on page 45 .

5.1.4. Alias of Data Types

BigWorld also allows aliases of types to be created. Aliases are a concept similar to a C++t ypedef, and are
listed in the XML file <res>/ scri pts/entity_defs/alias. xm . The format is described below:

<r oot >
other alias definitions ...
<ALl AS_NAME> TYPE_TO ALIAS [<Defaul t > Val ue </ Defaul t >] </ ALI AS_NAVE>
</root>

bigw@RLD" -

Properties

<res>/scripts/entity_defs/alias.xm — Data type alias declaration syntax
For details, see “Default Values” on page 37 .

Some examples of useful aliases are described in the list below:

Table . Entity Types

IIES Maps to Description
ANGLE FLOAT32 An angle measured in radians.
BOOL | NT8 A Boolean type (encoded as zero=false, non-zero=true).

Mapped to | NT8, the smallest BigWorld type.

I NFO Ul NT16 Element of information about a mission.
M SSI ON_STATS ARRAY <of > | NFO Array of mission information data elements (i.e., | NFOtype alias).
</ of >

Note that this is an aliased array, and the type of its elements is an aliased type.

OBJECT_I D 1 NT32 Handle to another entity. The name makes clear the property contains a handle to an
entity.
STATS_MATRI X ARRAY <of > Matrix of mission information data elements (i.e., | NFOtype alias).
M SSI ON_STATS </
of > Note that this is an aliased array, and the type of its elements is another aliased array.

Using the syntax for alias definition to the aliases describe above, we have the following file:

<r oot >
<l-- Aliased data types -->
<OBJECT_I D> | NT32 </ OBJECT_I| D>
<BOCL> | NT8 </ BOOL>
<ANGLE> FLOAT32 </ ANGLE>
<I NFO> U NT16 </ NFO>
<I-- Aliased arrays ?
<M SSI ON_STATS> ARRAY <of > | NFO </ of > </ M SSI ON_STATS>

<STATS_NATRI X> ARRAY <of > M SSI ON_STATS </of> </ STATS_NATRI X>

</ root >

<res>/scripts/entity_defs/alias.xm — Definition of data type alias

With aliases, one can also define custom Python data types, which have their own streaming semantics on the
network. We declare these types in the file <r es>/ scri pts/entity_defs/al i as. xm file as follows:

<r oot >
<ALI| AS_NAME>
USER_TYPE
<i npl enent edBy> User Dat aType. i nst ance </i npl enent edBy>
</ ALI AS_NAME>
</root>

<res>/scripts/entity_defs/alias.xm — Custom Python data type declaration syntax

For more details on this mechanism, see “Implementing Custom Property Data Types” on page 45 .

36 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

5.2. Server to Client bandwidth usage of Property updates

When the server sends a property update to the client, it generally includes a byte representing the length of
the data being streamed. However, if the server is able to determine that the size of a particular property is
always the same when streamed to the client, that byte can be eliminated.

The server will consider a property to be a fixed-size type if it is any combination of:
* A Primitive Type with a constant size. See “Primitive Types” on page 30 .

* An ARRAY or TUPLE with a declared size and containing a fixed-size type. See “ARRAY and TUPLE
Types” on page 32 .

* A FIXED_DICT which cannot be None, contains only fixed-size types, and which is not wrapped with a
class implementing addToSt r eam See “FIXED_DICT Data Type” on page 33 and “Implementing
Custom Property Data Types” on page 45 .

Slice assignment of ARRAY elements and updates to individual ARRAY or TUPLE elements or FIXED_DICT
values do not benefit from this optimisation for fixed-size types.

You can optimise your server to client bandwidth usage by ensuring that values which are updated together
are fixed-size, and bundled into FIXED_DICT structures. If the entire FIXED_DICT is updated at once, then
only a single message needs to be sent, without a byte indicating the length of the message.

Properties that are generally updated individually are better off not being bundled into FIXED_DICTs, as
updating an individual element of a FIXED_DICT uses more bandwidth than updating a top-level property.

Where possible, avoid propagating variable-sized properties to the client. The cost of a variable-sized prop-
erty is only one byte though, so for example an ARRAY should have its size specified only if it is always that
long, rather than to indicate the maximum interesting length.

One other thing to note is that there is a limited number of identifiers for properties to propagate to the client,
and if you have more properties for a given entity type than this, the excess properties will be sent slightly
less efficiently (generally one byte more per value update) and as if they were variably-sized. The server
prefers to send large fixed-size or variably-sized properties using this 'overflow' mechanism.

The dunpEnt i t yDescri pti on DBMgr Configuration Option can be used to examine the client to server
bandwidth requirements of your entity properties and methods. See the document Server Operations Guide's
section “DBMgr Configuration Options”.

5.3. Default Values

When an entity is created, its properties are initialised to their default values. Default values can be overrid-
den at the property level (in the entity definition file?) or at the type level (in al i as. xm).

The default value for each type and the syntax for overriding it are described below:

* ARRAY — Default: []

Example:
<Def aul t >
<iten> Health potion </itenp
<itenr Bear skin </itemp
<iten> Whoden shield </itenp
</ Def aul t >

2For details, see the introduction to this chapter.
“For details on this file's grammar, see the document File Grammar Guide's section al i as. xm .

bigw@RLD" -

#dest=
#dest=
#dest=
#dest=

perties

Constructs the equivalent Pythonlist[' Heal t h potion', 'Bear skin', 'Woden shield].
° BLOB — Default: "'

Example:

<Def aul t > SGVsbhGBgV29ybGhB </ Def aul t >
<I-Hello Wrld!H -->

BASE6-encoded string value must be specified.
° FI XED DI CT

For details, see “FIXED_DICT Data Type” on page 33 .
* FLOAT32 — Default: 0. 0

Example:

<Default> 1.234 </Default>

The MySQL database may have less precision than specified here. If so, this value
should be modified to match the precision of the database.

e FLOAT64 — Default: 0. 0

Example:

<Defaul t> 1.23456789 </ Default>

The MySQL database may have less precision than specified here. If so, this value
should be modified to match the precision of the database.

« I NT8, | NT16, | NT32, | NT64 — Default: 0

Example:

<Default> 99 </ Default>

* MAI LBOX — Default: None
Default value cannot be overridden.
e PYTHON — Default: None

Example:

Properties

<Def aul t >
{ "Strength": 90, "Agility": 77 }
</ Def aul t >

* STRI NG — Default: '’

Example:

<Default> Hello World! </Defaul t>

Value must be specified without quotes.
* TUPLE — Default: ()
Example: See ARRAY data type
° Ul NT8, Ul NT16, Ul NT32, Ul NT64 — Default: 0

Example:

<Default> 99 </ Defaul t>

° UNI CODE_STRI NG — Default: u' '

Example:
<Default> Hello World! (this is a UTF-8 string) </Default>

Value must be specified without quotes, and must be encoded as UTF-8".

° USER_TYPE — Default: Return value of the user-defined def aul t Val ue() function.

Example:
<Defaul t >
<intVval> 100 </intVal >
<strVal > opposites </stringVal >
<di ct Val >
<val ue>
<key> good </ key>
<val ue> bad </ val ue>
</ val ue>
</ di ct Val ue>
</ Def aul t >

* VECTOR2 — Default: PyVect or of 0. O of the appropriate length.

Example:

<Default> 3.142 2.71 </ Defaul t>

“For more details on encodings, see Character Sets and Encodings on page 117 .

bIgW@RLD" ®

Properties

VECTOR3 — Default: PyVect or of 0. O of the appropriate length.

Example:
<Default> 3.142 2.71 1.4 </ Defaul t>

VECTOR4 — Default: PyVect or of 0. O of the appropriate length.

Example:

<Default> 3.142 2.71 1.4 3.8 </Default>

5.4. Data Distribution

Properties represent the state of an entity. Some states are only relevant to the cell, others only to the base,
and yet others only to the client. Some states, however, are relevant to more than one of these.

Each property then has a distribution type that specifies to BigWorld which execution context (cell, base, or
client) is responsible for updating the property, and where to propagate its value within the system.

Data distribution is set up by specifying the sub-section <FI| ags> of the section <Pr oper t i es> in the file
<res>/scripts/entity defs/<entity>. def.

The bit flags available are defined in bi gwor | d/ src/lib/entitydef/data_description. hpp, and
are described in the list below:

DATA_BASE

Required flags: N/A — Excluded flags: DATA_GHOSTED — Master value on: Base
Data will be updated on the base, and will not be available on the cell.

DATA GHOSTED

Required flags: N/A — Excluded flags: DATA_BASE — Master value on: Cell
Data will be updated on the cell, and will be ghosted on other cells.

This means that it is safe to read the value of this property from another entity, because BigWorld safely
makes it available even across cell boundaries.

DATA OTHER_CLI ENT
Required flags: DATA_GHOSTED — Excluded flags: N/A — Master value on: Cell
Data will be updated on the cell, and made available to clients who have this entity in their Aol.

This makes the property safe to read from the client for any entity, except for that client's player avatar
entity. This flag is often combined with DATA_OWN_CLI ENT to create a property that is distributed to all
clients.

DATA_OWN_CLI ENT

Required flags: N/A — Excluded flags: N/A — Master value on: Base, if DATA BASE is set. Otherwise,
on cell.

Data is propagated to client owning this entity.

This only makes sense with player entities.

40

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

5.4.1. Valid Data Distribution Combinations

The list below describes the valid combinations of the above bit flags:
o ALL_CLI ENTS?
Available to: Other cells, Cell, Own client, Other clients
Property is available to all entities on cell and client.
Corresponds to setting both OAN_CLI ENT and OTHER_CLI| ENTS flags.
Examples include:
* The name of a player.
* The health status of a player or a creature.
* BASE
Available to: Base
Property is only available on the base.
Examples include:
¢ List of members of a chat room.
¢ Items in a character's inventory.
° BASE_AND_CLI ENT
Available to: Base, Own client

Property is available on the base and on the owning client. Corresponds to setting both OAN_CLI ENT and
BASE flags.

Properties of this type are only synchronised when the client entity is created. Nei-
ther the client nor the base is automatically updated when property changes. Meth-
ods must be used to propagate new value, which is simple, since only one player
needs to receive it.

* CELL_PRI VATE
Available to: Cell
Property is only available to its entity, and only on cell.
Examples include:
* Properties of an NPCs 'thoughts' in Al algorithms.

¢ Player properties relevant to game play, but dangerous to allow players to see (e.g., healing time after
battle).

e CELL_PUBLIC
Available to: Other cells, Cell

bigw@RLD"

Properties

Property is available only on the cell, and is available to other entities.

Examples include:

* The mana level of a player (which can be seen only by enemies, not by other players).

* The call sign for grouping from enemy NPC.
o CELL_PUBLI C_AND OWN*

Available to: Other cells, Cell, Own client

Property is available to other entities on the cell, and to this one on both the cell and the client.

Unlike OAN_CLI ENT, this data is also ghosted, and therefore available to other entities on the cell.
° EDI TOR_ONLY

Available to: World Editor

This value may be useful when using Bi gWor | d.f et chEnt i t i esFr onChunks from a BaseApp. It could
be used to decide programmatically whether a particular entity should be loaded.

For example, you may associate a level of difficulty with each entity, so entity will only be loaded if the
mission's level of difficulty is high enough.

o OTHER CLI ENTS?
Available to: Other cells, Cell, Other clients

Property is available from client to entities that are not this player's avatar. Also available on cell to other
entities.

Examples include:
* The state of dynamic world items (e.g., doors, loot containers, and buttons).
* The type of a particle system effect.
¢ The player who is currently sitting on a seat.
o OWN_CLI ENTA
Available to: Cell, Own client
Property is only available to this entity, on both the cell and the client.
Examples include:
* The character class of a player.
* Number of experience points for a player.

A — When properties with this distribution flag are updated by server, an implicit method is called on client. For details,
see “Client callbacks on property changes” on page 69 .

5.4.2. Using Distribution Flags

When choosing a distribution flag for a property, consider the points described below:

* Which methods need the property?

42 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

You have to make the property available on an execution context (cell, base, or client) if that context has
a method that manipulates the property.

* Does this property need to be accessed by other entities?

This could include methods being called to access its value. If this is the case, we need to make the property
ghosted.

When doing this, remember that the ghosted entities' properties may be a little lagged’, i.c., they may not
represent the exact state of an entity at a given time. Also, remember that other entities can only read the
property; only the entity that owns the property may change it.

¢ Is the client interested in this value directly?
Client/server bandwidth is scarce, so the number of properties on the client needs to be minimised.

Sometimes, a group of properties can be maintained on the cell and only a derived additional property
needs to be sent to the client. For example, a client part would probably not need to know that a combi-
nation of six Al state variables are causing a guard to be angry; they would however need to know the
derived value that the guard is brandishing an axe.

* Could a player cheat by seeing this property?
If so, then care must be taken about sending it to the client.
* There can only be one master value of any property.

The master value must reside on either the base or cell. Consequently, if the same property is available
on both the base and the cell, the other holder of the property needs to have the value propagated to it
via a method.

5.4.3. Data Propagation

Data propagation occurs when the entity is first created. Subsequent modifications to properties will only be
local to the component, except when the modification occurs in a CellApp, in which case the change will be
automatically propagated to all interested parties. For example, CELL_PUBLI| Cproperties are propagated to
all other CellApps that have a ghost of the entity, OTHER CLI ENTS properties are propagated to all clients
that have the entity in their Aol, and so on.

When changing the value of a property in a component other than a CellApp, the change can be manually
propagated using remote method calls. For details, see Methods on page 59 .

5.4.3.1. Property Callbacks On Ghosted Entities

When modifying a property that will be propagated to an entity's ghost on an adjacent cell, that is for
CELL_PUBLI C, OTHER CLI ENTSand ALL_CLI ENTS properties, optional callbacks can be implemented on
the cell entity class to react to those property updates for those ghosted cell entities. They are similar to the
client-side callbacks:

o @wdecor ators. cal | abl eOnGhost
def set_<property name>(self, ol dVal ue)

This method is called when the property has changed. The ol dVal ue parameter is the old value of the
property, the new value has already been set.

If the change is a nested and the set Nest ed_<property name> is implemented, this method will not
be called. Similarly, if the change is a slice change and set Sl i ce_<property namne> is implemented,
this method will not be called.

bigw@RLD" -

Properties

o @wdecorat ors. cal | abl eOnGhost
def set Nested <property nanme>(self, changePath, ol dval ue)

This method is called for nested property changes, for example when a change occurs for an ARRAY element
or a FI XED_DI CT sub-property. If this method does not exist, the set _<pr operty name> callback will
be called instead, if it exists.

The changePat h parameter contains the path to the change, for ARRAY values, the index in the array is
used, for FI XED_DI CT, the string of the key is used as a path component.

For example, suppose we have the following property definition:

<nyPr operty>
<Type> ARRAY <of >
FI XED_DI CT
<Properties>
<a>
<Type> ARRAY <of > | NT32 </ Type>
<al >

<Type> STRI NG </ Type>
</ b>
</ Properties>
</ of >
</ Type>
<Fl ags> CELL_PUBLI C </ Fl ags>
</ myProperty>

Suppose following statement on the cell entity is run:
>>> entity. myProperty[3].a[5] = 8

This would result in a call to set Nest ed_mnyPr oper t y, with changePat h set to:
[3, "a, 5]

o @wdecor ators. cal | abl eOnGhost
def setSlice_<property nane>(self, changePath, ol dval ue)

This method is called for slice changes to ARRAY properties. If this method does not exist, the
set _<property name> callback will be called instead, if it exists.

Examples of slice changes are below:

>>> entity.nyProperty. append[3] . a. append(10)
>>> entity.nyProperty[3:9] =[50, 6, 9, 10]

The changePath parameter contains the path to the change. Refer the documentation for
set Nest ed_<property name> above. The new slice is described by start and end indices that are the
last element in the changePat h list.

Note that these callbacks are never called on the real cell entity. As they are callable on ghosted cell entities,
they must be decorated with the cal | abl eOnGhost decorator function from the bwdecor at or s module.

44 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

5.4.3.2. Forcing Data Propagation for Python and Custom User Types

Changes to properties of PYTHON and custom user types are not automatically propagated, unless the prop-
erty is reassigned.

This behaviour mainly affects composite Python types like dictionaries, arrays, and classes, because modifi-
cations to the object do not cause data propagation unless the property is reassigned to itself.

For example, if entity e has the property as illustrated below:

<pyt honPr op>
<Type> PYTHON </ Type>

</ pyt honPr op>

Assigning a new value to pyt honPr op will cause data propagation:
e. pythonProp = { 'gold': 100 }

However, modifying the value will not cause data propagation:

e. pythonProp['gold"] = 50
e.pythonProp['"arrows'] = 200

Different parts of the entity will see different values for pyt honPr op, unless data propagation is manually
triggered by reassigning the property back to itself:

e. pyt honProp = e. pyt honProp

5.5. Implementing Custom Property Data Types

Custom data types are useful for the implementation of data structures with complex behaviour that is shared
between different components, or that must be attached to cell entities (in which case they must be able to
be transferred from one cell to another).

5.5.1. Wrapping a FIXED_DICT Data Type

By default, the FI XED_DI CT data type behaves like a Python dictionary. This behaviour can be changed by
replacing the dictionary-like FI XED_DI CT type with another Python type (referred to as a wrapper type in
this document).

To do so, specify a type converter object in the <i npl ement edBy> section in the FI XED_DI CT type decla-
ration. For example:

<Type>
FI XED DI CT
<i npl enent edBy> Cust oniTypeConverterlnstance </inplenentedBy>
<Properties> ... </Properties>

</ Type>

Declaration of a Wrapped FI XED_DI CT Data Type

bIgW@RLD" -

Properties

Cust onTTypeConvert er | nst ance must be a Python object that converts between FI XED_DI CT instances
and wrapper instances.

It must implement the following methods:

Table . Methods that should be implemented by wrapper type.

Method Description

addToStrean(sel f, obj) Optional method that converts a wrapper instance to a string suitable for transmitting over
the network.

The obj parameter is a wrapper instance. This method should return a string representation
of obj . Typically, this is done using the cPi ckl e module.

If this method is present, then cr eat eFr onSt r eammust also be.

If this method is not present, then wrapper instances are transmitted over the network by first
converting them to FI XED_DI CT instances using the get Di ct Fr omCbj method, and then
recreated at the receiving end using the cr eat eCbj FronDi ct method.

creat eFronftreany(sel f, stream) Optional method that creates an instance of the wrapper type from its string network form.

The st r eamparameter is a Python string obtained by calling the addToSt r eammethod.
This method should return a wrapper instance constructed from the data in stream.

If this method is present, then addToSt r eammust also be provided.

creat eCbj FronDi ct (sel f,dict) Method to convert a FI XED_DI CT instance to a wrapper instance.

The di ct parameter is a FI XED_DI CT instance. This method should return the wrapper in-
stance constructed from the information in di ct .

get Di ct Fronbj (sel f, obj) Method to convert a wrapper instance to a FI XED_DI CT instance.

The obj parameter is a wrapper instance. This method should return a Python dictionary (or
dictionary-like object) that contains the same set of keys as a FI XED_DI CT instance.

i sSameType(sel f,obj) Method to check whether an object is of the wrapper type.

The obj parameter in an arbitrary Python object. This method should return Tr ue if obj is a
wrapper instance.

5.5.1.1. Example of Wrapping FIXED_DICT with a Class

It is often desirable to wrap a FI XED_DI CT data type with a class to facilitate object-oriented programming.

i mport cPickle

cl ass MyCust onilype(object): # wrapper type
def __init__(self, dict):
self.a =dict]["a"]
self.b = dict["b"]
ot her MyCust onilype net hods

cl ass MyCust onifypeConverter(object): # type converter class
def getDictFrombj(self, obj):
return { "a": obj.a, "b": obj.b }

def createj FronDict(self, dict):
return MyCustonilype(dict)

def isSaneType(self, obj):
return isinstance(obj, MCustonType)

def addToStreanm(self, obj): # optional
return cPickl e.dunps(obj)

Properties

def createFronStrean(self, stream): # optional
return cPickle.loads(stream)

i nstance = MyCust onilfypeConverter () # type converter object

<res>/ scri pts/ cormon/ MyCust onlypel npl . py — Wrapper type and type converter object

<Type>
FI XED DI CT

<i npl ement edBy> MyCust onTTypel npl . i nstance </i npl ement edBy>
<Properties>

<a> ...

 ...
</ Properties>

</ Type>
Excerpt of a wrapped FI XED_DI CT type declaration

The above example makes a FI XED_DI CT type behave as a class with members a and b, instead of as a
dictionary with the same keys.

The drawback with the above example is that member updates are not automatically propagated to other
components. For example, if the above data type is used in an entity attribute called cust Type, the following
script code would only set the value of the attribute for the local copy of the entity:

100
200

e.cust Type. a
e.cust Type. b

To ensure that all copies of the entity e have the updated values, the attribute must be set to a different
instance of MyCust onily pe with the updated values:

e.cust Type = MyCustonilype({ "a": 100, "b": 200 })

Alternatively, MyCust onifype can be implemented using descriptors that reference the original
FI XED_DI CT instance:

cl ass Menber Proxy(object): # descriptor class
def __init__(self, menberNane):
sel f. nenber Nanme = nenber Nane

def _ _get__(self, instance, owner):
return instance.fixedDi ct[self.nenberNanme]

def _ _set_ (self, instance, value):
i nstance. fixedDi ct[self.nmenberNanme] = val ue

def _ _delete_ (self, instance):
rai se Notl npl ement edError(self.nmenber Nane)

cl ass MyCust onilype(object): # wrapper cl ass
a Menber Proxy("a")
b Menber Proxy("b")

def __init__(self, dict):
self.fixedDict = dict

bIgW@RLD" -

Properties

ot her MyCust onilype net hods

cl ass MyCust onifypeConverter(object): # type converter class
def getDictFrontbj(self, obj):
return obj.fixedDi ct # nust return original instance

def createoj FronDict(self, dict):
return MyCustonilype(dict)

def isSaneType(self, obj):
return isinstance(obj, MCustonType)

addToSt ream and creat eFrontStream cannot be i npl enent ed

<res>/scri pts/ common/ MyCust onlypel npl . py — Wrapper type and type converter object using descriptors

In the above example, MyCust onTy pe references the original FI XED_DI CT instanceinitsf i xedDi ct mem-
ber. Access to members a or b will be redirected via the descriptor class to the f i xedDi ¢t member. As up-
dates to FI XED_DI CT instances are automatically propagated to other components, updates to members a
and b are also automatically propagated.

The drawback with this approach is that custom streaming is not possible. If the addToSt r eamand cr e-
at eFr ont r eammethods are implemented, then the custom object is created directly from the stream. Since
it is not possible to instantiate a FIXED_DICT object in Python script, it will not be possible for the custom
object to reference a FIXED_DICT object that will propagate partial changes.

5.5.1.2. Implementing a USER_TYPE Data Type

The USER_TYPE data type predates the FI XED_DI CT data type, and much of its functionality can be achieved
by wrapping a FI XED_DI CT data type. However, USER_TYPE data type additionally allows customising its
representation as a <Dat aSect i on>.

A USER_TYPE data type consists of the following pieces:

¢ A declaration of the Python instance implementing the USER_TYPE data type. For example:
<Type> USER_TYPE <i npl enment edBy> User Type. i nstance </i npl ement edBy> </ Type>

<res>/scripts/entity_defs/<entity>. def — Usertype declaration syntax

However, it is recommended to declare a USER_TYPE data type in <res>/ scri pts/entity_defs/
alias.xnl to give it a name that we can use in the entity definition files ® (named <r es>/ scri pt s/
entity_defs/<entity>. def).

* A class that defines methods to read and write this data type from various places.

* A module, containing the above class, and an instance of this class, which will be used to serialise and
unserialise the custom data type.

The custom data type might also declare a Python class that represents the type at runtime. A Python list, a
dictionary, or some other native Python data type might also represent it.

The class we implement provides methods to serialise whatever Python type we use to represent a concept.
This means that we can transmit the class over the network and serialise it to a database, simply by writing
the appropriate methods in this class.

5For details on this file's grammar, see the document File Grammar Guide's section al i as. xmi
For an example of declaration of aliases for data types, see “Alias of Data Types” on page 35 .

48 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=

Properties

These methods are described in the list below:

Table . Custom data type serialisation methods.

Method Description

addToStrean(sel f, obj)

Converts the Python object obj into a string representation to be placed onto the network,
and return that string. It does the opposite of cr eat eFr on5t r eam The st r uct library from
Python is useful in performing this task.

For example, if your type contains a single | NT32 member, then addToSt r eamcould be im-
plemented as:

def addToStream(self, obj):

return struct.pack("i", obj)

creat eFrontt rean(sel f, stream)

Creates a Python object from the string passed in through st r eam It does the opposite of
addToSt r eam

The length of the st r eammust be checked before trying to unpack it.

For example, if your type contains a single | NT32 member, then cr eat eFr onf5t r eamcould
be implemented as:

def createFrontStream(self, stream):
if len(stream != 4: # one integer
raise "Error: string has wrong | ength"
el se:
return struct. unpack(

nl "

, Stream)

addToSecti on(sel f,obj,section)

Adds a representation of obj to the section <Dat aSect i on>.

It is used for persisting properties into the database. Hence, if a property is not persistent,
this method does not have to be implemented.

creat eFronBection(sel f,section)

Creates and returns a Python object from its persisted representation in section <Dat aSec-
tion>.

It is used for persisting properties into the database, and parsing default values from <r es>/
scripts/entity_defs/<entity>. def files.

You should always implement this method, even if you do not implement addToSect i on.

frontt reaniToSecti on(sel f, stream
section)

Converts data from a st r eamrepresentation (a string) to a <Dat aSect i on> representation
in secti on. It can be implemented as follows:

def fronStreanToSection(self, stream
section):
o = self.createFronStrean(stream)
sel f.addToSecti on(o, section)

It can also be implemented more efficiently (for instance if the <Dat aSect i on> representa-
tion is very similar to the stream representation). For example:

section.asBl ob = stream

fronBSecti onToStrean(sel f,section

)

Converts data from a <Dat aSect i on> representation in sect i on to a stream representa-
tion, and returns it.

It can be implemented as follows:

def fronBectionToStrean(self, section):
0 = self.createFrontection(section)

bigw@RLD"

Properties

Method Description
return sel f.addToStream o)

It can also be implemented more efficiently (for instance if the <Dat aSect i on> representa-
tion is very similar to the stream representation). For example:

return section. asBl ob

def aul t Val ue(sel f) Returns a reasonable default value for this data type.

It is used when there is no default value specified when this data type is used in a property.

We place a class implementing these methods into a module in the directory <r es>/ scri pt s/ conmon, and
create an instance variable as an instance of this class.

For example, we may define a module called MyCust Dat aType. py, as illustrated below:

cl ass MyCust Dat aType:
def addToStream(self, obj):

de% . .creat eFronttreanm self, stream):

de% . éddToSect ion(self, obj, section):

de% . .creat eFrontection(self, section):

de% . f ronst reanifoSection(self, stream section):
de% . f ronSectionToStream self, section):

de% . aef aul t Val ue(self):

i nstance = MyCust Dat aType()

<res>/ scri pt s/ cormon/ MyCust Dat aType. py — Serialisation methods

If the property is persistent, and stored in a MySQL database, then an additional method has to be imple-
mented. This method will declare the binding of the data into the database. For more details, see The Database
Layer on page 97 .

The variable instance is the object that performs the manipulation of this data type by BigWorld. In the aliases
file <r es>/ def s/ al i as. xnl , we would include the following definition:

<r oot >
<MY_CUSTOM DATA TYPE>
USER TYPE

<i npl enent edBy> MyCust Dat aType. i nst ance </i npl enment edBy>
</ MY_CUSTOM DATA TYPE>

<res>/ defs/alias.xm — Definition of MY_CUST_DATA _TYPE

5.6. Volatile Properties

Some properties are updated more often than others, and almost all entities have a set of properties that
need to be handled specially due to this. These properties are called volatile properties, and are pre-defined
by the BigWorld engine.

50 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

Typically, properties flagged with OTHER_CLI ENTS (or ALL_CLI ENTS) are only sent to the appropriate
client applications when the property changes. These changes are sent reliably. Properties that are deemed
to be volatile are sent to the client each time that entity is considered by an Aol (via its priority queue mech-
anism). These are sent unreliably as a newer value will be sent the next time that entity is considered. For
more details on how the Aol priority queue works, see “Player Aol Updates” on page 171 .

The default volatile properties defined by BigWorld are outlined below:

Table . BigWorld's pre-defined volatile properties.

Property Description

posi tion The (x,y,z) position of the entity. Represented in Python as a TUPLE of three floats.

yaw Three extra volatile properties, which are typically used for the direction an entity is facing, but may be used for other pur-
poses. They still must, however, have the ranges of the corresponding element of a direction:

pitch
(- pi ,pi) for yaw

rol |

(- pi/2,pi/2)forpitch

(- pi ,pi) forrol |

These properties are updated with an optimised protocol used between the client and the server, in order
to minimise bandwidth.

The volatile properties are listed separately to the normal properties in the file <res>/scri pts/
entity defs/<entity>. def.

Each entity can decide which of these volatile properties are automatically updated. Additionally, they can
have a priority attached to them. This priority determines a distance from the entity above which the property

is no longer sent.

The syntax is as follows:

<r oot >

<Vol ati | e>
<position/> | <position> float </position>

<yaw > | <yaw> float </yaw>
<pitch/> | <pitch> float </pitch>
<roll/> | <roll> float </roll>

</Vol atil e>

<res>/scripts/entity_defs/<entity>. def — Declaration of volatile properties

This is how the volatility status and priority of a property are interpreted:

e If a volatility status is not specified, then it will never be updated (Bi g\Wor | d.VOLATI LE_NEVER).
e If a volatility status is specified:

e If a priority is not specified, then property will always be updated, regardless of distance from entity
(Bi g\Wor | d.VOLATI LE_ALWAYS).

e If a priority is specified, then the value is used as the maximum distance from entity (in metres) for
which property will still be updated.

bigw@RLD"

The volatile distance for pitch cannot be less than that of yaw and the volatile distance
for roll cannot be less than that of pitch.

Supposing an entity the volatile properties as defined below:

<r oot >
<Vol ati | e>
<posi tion/>
<yaw> 30.0 </yaw>
<pitch> 25.0 </pitch>
</ Vol ati | e>
</ root >
<res>/scripts/entity_defs/<entity> def — Example definition
For the above example, we have the following for each property:
° posi ti on — Always updated (Bi gWor | d.VOLATI LE_ALWAYS)
e yaw — Updated up to a distance of 30.0 metres.

* pi tch — Updated up to a distance of 25.0 metres.

° rol | — Never updated (Bi g\Wor | d.VOLATI LE_NEVER)

Only non-moving entities should be defined without volatile properties.

Each position or direction change of an entity without any volatile properties is sent to
the necessary clients in a detailed but less efficient way. This allows an entity's position
to be correct when it is occasionally moved (e.g., a chair has been slightly moved). If
this happen consistently, it can consume a lot of server to client bandwidth.

5.7. LOD (Level of Detail) on Properties

Sometimes bandwidth usage can be optimised by not distributing information to clients that are distant. We
can do this by attaching a <Det ai | Level > tag to a property. This tag determines the distance after which
property changes will not be sent to the client.

Note that this is purely an optimisation for the property. This option should only be used if bandwidth usage
is proven to be too high. If this feature is enabled for the property, then you must test it very carefully to
check if the result achieved in terms of game play is what you expected.

The definition of the LOD (level of detail) of a property in the file <res>/scripts/entity_defs/
<entity>. def is described below:

<r oot >

<Properties>

Properties

<nodel Nunber >

<Det ai | Level > NEAR </ Det ai | Level >
</ nodel Nunber >

<res>/scripts/entity_defs/<entity> def — Declaration of LOD for property

The example above declared a LOD labelled NEAR for the property. The actual value of NEARis defined in
the sub-section <| evel > of the section <LodLevel s> in the entity's file.

For example, to subdivide the Aol into the ranges labelled NEAR, MEDI UM and FAR (with everything further
than FAR being transmitted whenever entities are within each other's Aol), the entity's definition file will

include the lines below:

<r oot >
<LODLevel s>
<l evel> 20 <l abel> NEAR </ | abel > </ | evel >

<l evel > 100 <l abel> MEDIUM </I| abel > </I|evel >
<l evel > 250 <l abel > FAR </l abel > </ | evel >

</ LODLevel s>
</root >
<res>/scripts/entity_defs/<entity>. def — Definition of labels for LODs

The LODs specified for the entity in the example file above are illustrated below:

T
- \
S/
/ M
{ y
f |
{ J @ Entity
\ /
\ / . HEAR Lol
\\ /’ () mEpTm LoD
-~ () FaR LoD
|:| Area of Interest

Location of LOD boundaries relative to the entity

Detail levels are inherited from parent definition files. Any level with the same label as a parent will modify
that level, and any new levels will be added.

There is currently a limit of six levels of detail for each entity type

5.7.1. LOD and Hysteresis

In addition to its parameter <I| abel >, the sub-section <I evel > can also have <hyst > parameter.

It is defined as illustrated in the example below:

<r oot >

<LCDLevel s>
<l evel > 20 <l abel > NEAR </l abel > <hyst> 4 </hyst> </|evel >
<l evel > 100 <l| abel > MEDI UM </ | abel > <hyst> 10 </ hyst> </| evel >

bIgW@RLD" =

Properties

<l evel > 250 <l abel > FAR </l abel > <hyst> 20 </hyst> </|evel >
</ LCDLevel s>

<res>/scripts/entity_defs/<entity> def — Definition of hysteresis regions

This parameter defines a hysteresis region starting from the LOD's outer boundary and moving outwards.
It prevents frequent changes in the LOD of a property, which saves significant processing time on the cell,
as properties do not have to change their priorities often. In order to do this, the <hyst > specifies a buffer
region around the boundary of a LOD level, which an entity must pass through completely before changing

to a lower LOD.

The declaration of the <hyst > parameter is optional, and if not declared, it will default to 10 metres.

As an example, consider a stationary entity, and another entity travelling through points A, B, C, D, E, and
finally back to A, as illustrated in the diagram below:

P __.-"- . T— ""\-\._\.H
s ™
(E)
{ A Y
|'. il I'.
L _I'H 1
I| l'/‘/l] \\"II II
e
| | : |
I'. | B ,' @ Stationary entiy
5 " ¥ hbowing entity
\) HE2E Lo O
MEZE by st
Sl [MEDIUML D

Entity moving around LODs of another entity

We consider the minimum LOD of properties that will be propagated from the moving entity to the stationary
entity, as listed in the table below:

Table . Entity moving around LODs of another entity.

Point LOD Reason

A NEAR Unaffected by hysteresis.

B NEAR Entity has moved from NEAR to MEDI UM but not yet completely through the hysteresis.
C MEDI UM Entity has moved from NEAR to MEDI UM and completely through the hysteresis.

D MVEDI UM Entity is still in MEDI UM

E MEDI UM Entity is still in MEDI UM

A NEAR Entity has moved from MEDI UMto NEAR.

In the example above, we have the following regarding the change of LOD for the moving entity:

* The change of LOD for the moving entity from NEAR to MEDI UMoccurs at a distance of 24 metres from the
stationary entity (20 metres as defined for the NEARLOD, plus 4 metres for its hysteresis). If no <hyst >

Properties

parameter were specified, the change would happen at 30 metres (since hysteresis would then default to
10 metres).

* The change of LOD for the moving entity from MEDI UMto NEAR occurs at 20 metres from the stationary
entity (since hysteresis does not affect moving to a higher LOD).

5.8. Bandwidth Optimisation: Send Latest Only

When an OTHER _CLI ENTS property of an entity changes, an event object is created and added to the event
history. This event history is used when updating client applications that have this entity in their Aol. When
this entity is considered, any events that have been added since the last time this entity was considered are
sent to the client. There is the potential for multiple changes to a single property to be sent in a single update.
For more details on how the Aol priority queue works, see “Player Aol Updates” on page 171 .

If the SendLat est Onl y flag is set on a property, only the latest change is kept in the event history. This
avoids sending multiple changes. This can save bandwidth being sent to the client and can save some memory
on Cell Apps if a property is changed frequently.

This value is f al se by default.
Client methods also have this flag. See “Bandwidth Optimisation: Send Latest Only” on page 66 .

Note that changing the contents of ARRAY and FI XED_DI CT data type instances should be avoided if the
property is SendLat est Onl y since this requires the entire property to be resent.

5.9. Bandwidth Optimisation: Is Reliable

When an OTHER_CL| ENTS property of an entity changes, a message is sent to appropriate client applications
to update their view of this entity. By default, this message is sent reliably so that the change will be received
even when there is packet loss. There may be rare situations where sending these unreliably is preferred. This
is typically only used with the SendLat est Onl y option and with a property that is changed continuously.

Setting SendLat est Onl y tot rue and | sRel i abl e tof al se and changing a value every game tick causes
behaviour similar to volatile position and direction values.

Client methods also have this flag. See “Bandwidth Optimisation: Is Reliable” on page 66 .

Note that changing the contents of ARRAY and FI XED_DI CT data type instances should be avoided if the
property has | sRel i abl e set to false since this requires the entire property to be resent.

5.10. Detailed Position

Entity position updates sent to the client are usually relative to the client position. These values are limited
in magnitude to maxAol Radi us, which allows them to be compressed to conserve bandwidth.

However, if an entity does not have any volatile properties, it will implicitly send its detailed position to
the clients interested in it. The detailed position is made up of absolute coordinates on the space. Since the
position is not classified as volatile, it will be sent to all clients interested in the entity every time its value
changes.

For entity types with volatile properties, a detailed position can be sent to interested clients by using the
Det ai | edPosi ti on option. This option is useful if higher precision is required for an entity's position
updates than is provided by the usual, compressed values. However, it should be used sparingly, as it uses
much larger types, and thus uses more bandwidth.

The DetailedPosition option can have a SendLat est Onl y flag, which defaults to f al se if not specified.
See “Bandwidth Optimisation: Send Latest Only”on page 55 for more details. Using this flag will help
reduce bandwidth usage for entity types whose positions change frequently.

bigw@RLD"

Properties

The grammar for the DetailedPosition option is displayed below:

<r oot >
<Det ai | edPosi ti on>
<SendLat est Onl y> val ue </ SendLat est Onl y>
</ Det ai | edPosi ti on>

</ root >

5.11. Appeal Radius

It is sometimes desirable to have properties sent to the client from entities outside the client's Aol. For exam-
ple, it could be that a large dragon should be visible from many kilometres away. Increasing the Aol radius
to a significantly larger value is far from ideal, since it would drastically increase bandwidth usage due to
unnecessary updates from many more entities.

A non-zero Appeal Radi us value specifies an area around the entity. If this area intersects with the client's
Aol, property updates will be sent to the client as if the entity were in its Aol. For example, if the client's
aoi Radi us is 500m, and an entity's Appeal Radi us is set to 1500m, then the player will be able to see the
entity from up to 2000m away. Specifically, the client will receive property updates from the entity if the
distance between the avatar and the entity is less than the sum of the aoi Radi us and the entity's Appeal -
Radi us, on both the X and Z axes.

In the diagram below;, three clients, A, B and C, are near a large entity. The entity is within the Aol of Client
C only. Client B, however, is close enough to the entity that its Aol intersects with the entity's area of appeal.
For this reason, Client B will receive property updates as if the entity were in its Aol.

(2)

@ Client
Clients Area of
Interest
AppeHRadivs
| epeaivasi | ® ety
. Entity's Area of
Appeal

Clients approaching an entity's area of appeal

Entity types that set an Appeal Radi us will implicitly set the Det ai | edPosi ti on/ SendLat est Onl y op-
tion. The relative position updates usually sent for an entity are restricted to values in the client's Aol, mak-
ing entities outside this area too far away to have their positions represented. Det ai | edPosi ti on is used
because it allows values outside this range. See “Detailed Position” on page 55 for more details.

5.12. Temporary Properties

Temporary properties can be used for properties that do not need to be backed up or offloaded with an entity.

The grammar for temporary property definition is displayed below:

<r oot >

<TenmpProperties>
<t enpPr opertyNanel/ >
<t enpPr opert yNane2/ >

56

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Properties

</ TenpPr operti es>
</root>

These should generally be rare but are useful for properties that cannot be streamed such as sockets or prop-
erties that are recreated on restoring. These apply to both cell and base entities.

5.13. Persistent

Typically, there is at least one database table associated with each entity type in the game's entity database.
This is where entities of this type can be persisted. Frequently, there are entity types that never need to be
persisted.

You can avoid having a table created in the database by setting its Per si st ent property to f al se.

<r oot >
<Per si st ent >f al se</ Per si st ent >
</root>

This defaults to true. The only real advantage in setting this to false is to reduce the number of tables created.
There is no real performance impact.

5.14. User Data Object Linking With UDO_REF Properties

There is a special property type, UDO_REF, that can be used in both entities and user data objects. This prop-
erty type makes it possible to create a connection between an entity and a user data object, or between two
user data objects. This property type is a key feature of user data objects, as it all