Server Web Integration Guide

BigWorld Technology 2.1. Released 2012.
Software designed and built in Australia by BigWorld.

Level 2, Wentworth Park Grandstand, Wattle St
Glebe NSW 2037, Australia
www.bigworldtech.com

Copyright © 1999-2012 BigWorld Pty Ltd. All rights reserved.

This document is proprietary commercial in confidence and access is restricted to authorised users. This document is protect-
ed by copyright laws of Australia, other countries and international treaties. Unauthorised use, reproduction or distribution of
this document, or any portion of this document, may result in the imposition of civil and criminal penalties as provided by law.

www.bigworldtech.com

Table of Contents

Lo OVEIVIBW ..ottt e 5
I. Exposing the BigWorld Server as a Web Serviceccccccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee 7
2. The TwistedWeb Servicecccoiiiiiiiiiiiiiiiiiiiiii e 11
2.1 AN @XAMIPLE .ooeiiiiiiiii et 11

2.2, QUETies t0 / D/ oot eaaas 12

2.3. Queries to / €nti ti €S_DY 1 A/ oo 12

2.4. Queries to / €ntiti €S_DY NAMB/ ooiiiiiiii e e 13

2.5. Queries to / gl 0bal _entiti @S/ oo 13

2.6. Implementation details ...t 13

2.7. TwistedWeb Error handlingcccccooiiiiiiiiiiiiiiiiiiiiiieeeeeees 14

3. Remote Methods, Arguments and Return Valuesccooovii, 15
3. 1. Method calls ... 15

3.2, ATGUIENES ... 15

3.3 Returnt Valtescoooiiiiiiiiiiiiiii e 16

3.4. One way €alls ... 16

B.5. BITOTS ..ot 16

4. Keep-alive MESSaZeSscoooiiiiiiiiiiiiiiiiiiiiiiiic i 17
II. Using the Web Service from Apacheccoooiiiiiiiiiii 19
5. OVEIVIEW ...ttt e e e e e 23
5.1, SeCULItY ..o 23

6. Configuring APACREooooiiiiiiiiiiii e 25
ToPHP (oo 27
7.1, INStAllAtionoooiiiiiiiiiiiiiiiiii ettt 27
711 Installing PHP ... 27

702, TeStingooooooviiiiiiiiii 27

7.2. BigWorld.php ... 27
7.2.1. BigWorld.php Error handlingccoooi 29

7.2.2. Locating the ServiCeAPDcouuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeee e 30

7.3. RemoteEntity Session Storage ... 30

ITII. Web Integration Exampleccccoooiiiiiiiii 33
8. OVEIVIEW ...ttt e e e 37
9. USE CASES ...euuiiiiiiiiiiiii e 39
10. PHP Presentation Layercoiiiiiiiiiiiiiiiiiiiiii e 41
T0.1. OVEIVIEW ..ooooiiiiiiiiiiiiiiiii 41

10.2. Required packagescccccooiiiiiiiiiiiiiiiiiiii 41

10.3. Constants in CONSt ANt S. PRP oeeiiiiiiiiii e e e 41

10.4. XHTML-MP helper functionscccccciiiiii, 41

10.5. Debugging PHP example SCriptscccccccviieieiiieieieees 42

10.6. XHTMLMPPAge objects ... 43

10.7. Aut hent i cat edXHTMLMPPage 0DbjJectsuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeaeeee 43

10.8. BWAUt hent i cat Or objectscccovviiiiiiiiiiiiiii 44

B0 R o o T o TR o o o PP 45
10.10. CRAr ACT €5 S. PRP ceiiiiiiiie ettt et 45
J0.10. NEWS. PRI ettt ettt e eenaaes 45

B (O B @ o= U= ok =T R o] o1 o P 46
T0.13. I NVENE OF Y. PR oo e e et e e e e e e et e e ean e erans 46
10.14. Pl @y er AUCE i ONS. PP ooniiiiiiie e e e et e e et e e e e ea e arenas 47
10.15. Sear ChAUCE T ONS. PRP .o e e e e 47
10.16. PHP Error handlingccccccciiiiiii 48

bIgW@RLED"

Chapter 1. Overview

This document describes how a web interface can be constructed that accesses script-level BigWorld func-
tionality. Web browsers, smart phones and other web-aware devices can then be used to access game func-
tionality. It also demonstrates how to provide a lower level web service interface to the game server that can
be used by other services.

This document is broken up into three parts:

1. Exposing the BigWorld server as a web service: this section explains the core elements of BigWorld that
are used as the basis for web integration. Web integration is usually implemented using a Service running
on ServiceApps. Twisted.Web is used to provide a HTTP interface for making script calls on the server.

2. Using the web service from Apache: this section describes using PHP to implement a website that inter-
faces with the BigWorld server.

3. Web integration example: this section details the implementation of an Auction House in FantasyDemo.
It is intended to be used to demonstrate a website integrated with BigWorld.

Note that while Apache and PHP are used for the implementation of these examples, it is possible to use
other languages or servers to implement web integration.

bIgW@RLD" 5

Part |. Exposing the BigWorld
Server as a Web Service

DIgWSRLD

Table of Contents

2. The TWIStEAWED SEIVICEcceeiiiiiiiiiiiiiii et ettt e e e eeeaaaaaa s 11
210 AN eXamPle ..o 11
2.2. Queries 10 / A/ oo 12
2.3. Queries to / €Nt i ti €S DY T A/ oo e 12
2.4. Queries to / €nti ti €S_DY_ NAMB/ ..o 13
2.5. Queries to / gl 0bal _entiti @S/ i 13
2.6. Implementation detailsccoooiiiiiii 13
2.7. TwistedWeb Error handlingcooooiiii s 14
3. Remote Methods, Arguments and Return Valuesccccooiiiiiiiiiiiiiiiiiii e, 15
3. 1. Method calls ... 15
3.2, ArgUMENtS ... 15
3.3 RetUIN VAUES ...eeniiiieiiiiiiiiii ettt e ettt e e e e e e eeetaab e e e e 16
3.4. One Way €allsc.ooviiiiiiiiiiiiii 16
35 BITOTS oottt ettt et e e e e 16
4. KeeP-aliVe MESSAGESceeiiiiiiiiiiie ettt ettt e e e et e e e e e e eanaaas 17

bIgW@RLD" 9

Chapter 2. The TwistedWeb Service

It is often useful to create a Web Service interface to a BigWorld server. This allows other standard services
to be used to access game functionality via standard HTTP requests.

One way to expose a web service interface is to use the TwistedWeb Service provided. This uses the Twisted
Python framework and its Twisted.Web module to map HTTP requests to script calls on game entities. Any
of an entity's methods can be called on it in this way.

See http://twistedmatrix.com/documents/current/web for more detailed information on Twisted.Web.

A BigWorld Service is a scripted object like a Base-only entity. See Server Overview's section Design Introduc-
tion for more information.

BigWorld provides a standard TwistedWeb Service located at bi gworl d/res/scripts/ser-
vi ce/ Twi st edWeb. py. This service listens for HTTP requests on port 8000. It supports four types of URL
paths.

¢ db/ <dbCommand>?<ar gunment s> - This is used to invoke a command on the database such as logging
on a player's entity.

eentities_by id/<entityType>/<databasel D>/ <net hodNane>?<ar gunent s> - This calls a
method on an entity.

e entities_by name/<entityType>/<entityNane>/ <net hodNane>?<ar gunment s> - This calls a
method on a named entity.

* gl obal _entities/<gl obal Name>/ <met hodNane>?<ar gurent s> - This calls a method on an entity
in Bi gWor | d. gl obal Bases.

The responses to these requests are structured as JSON documents.

2.1. An example

For example, in FantasyDemo, the method webTest Met hod for the global entity Auct i onHouse is used to
test the functionality of method calls using Twisted.Web.

Infantasydeno/res/scripts/entity_defs/Aucti onHouse. def, the method is declared as:

<BaseMet hods>
<webTest Met hod>

<Ar gs>
<first_arg> INT32 </first_arg>
<second_ar g> STRI NG </ second_ar g>
</ Args>

<Ret ur nVal ues>
<first result> INT32 </first _result>
<second_resul t> STRI NG </ second_resul t>
</ Ret ur nVal ues>

</ webTest Met hod>

And in fantasydemo/res/scripts/base/AuctionHouse.py as:

bIgW@RLD" 8

http://twistedmatrix.com/documents/current/web
#dest=
#dest=
#dest=

The TwistedWeb Service

cl ass AuctionHouse(...):

def webTest Met hod(self, first_arg, second_arg):
return (2 * first_arg, second_arg. upper())

An instance of AuctionHouse has been registered with Bi gWor | d. gl obal Bases as' Aucti onHouse' .

Therefore, requesting:

htt p: // machi ne_nane: 8000/ gl obal _entities/Aucti onHouse/ webTest Met hod?
first_arg=5&second_ar g=Test

returns the JSON object:
{ "first_result": 10, "second_result": "TEST" }
2.2. Queries to / db/
There is currently only one command supported by the / db/ path. This has the form:
htt p: // machi ne_nane: 8000/ db/ | ogOn?user nane=user nane&passwor d=passwor d
This attempts to log on the user. On success it returns the new entity's type and database id. For example,
{ "type": "Account", "id": 2}

This information can then be used to make queries on this entity using the path starting with /
entities_ by id/<entity_type>/<database_i d>/ <met hodNanme>.

2.3. Queriesto/entities by id/

Queries of the form /entities by id/<entity type>/<database_ i d>/ <met hodNanme>?<ar gs>
can be used to call methods on a specific entity.

For example, requesting;:
htt p: // machi ne_nane: 8000/ entities_by_id/ Account/ 2/ webGet Charact er Li st
might return:

{ "characters": [{"type": "Avatar", "databaselD': 1, "realni: "fantasy",
"chard ass": "ranger", "name": "MyChar"}] }

The details of one of the characters on this account can be retrieved using ht t p: / / machi ne_namne: 8000/
entities by id/Account/ 2/ webChooseChar act er ?nane=MyChar & ype=Avat ar:

{ "type": "Avatar", "id": 1}

12 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

The TwistedWeb Service

2.4. Queriesto/entities_by nane/

These queries are similar to ent i ti es_by_i d expect that the database string identifier is expected instead
of the database id. The ent i ti es_by_i d form is preferred as queries by name need to query the database
each time while repeated queries via database id will likely hit a local cache of the entity's mailbox on the
ServiceApp. See KeepAlive messages below.

2.5. Queriesto/ gl obal _entities/

These queries allow calling methods on a base entity that has been registered with
Bi gWor | d. gl obal Bases. The base entity must be registered with a single string as the key. These queries
have the form:

htt p: // machi ne_nane: 8000/ gl obal _entiti es/ <gl obal _key>/ <met hodNane>?<ar gs>

2.6. Implementation details

The TwistedWeb service is defined in bi gwor | d/ res/ scri pt s/ servi ce_def s/ Twi st edWeb. def , and
its methods are implemented in bi gwor| d/ res/scri pts/servi ce/ Twi st edWeb. py. Here, the re-
source tree is built up using Twisted.Web's put Chi | d function, which takes as arguments the name of the
path segment and the type of the resource that will be returned by a request for it:

from TWResour ces. Entiti esResource inport EntitiesByNameResource,
Entiti esByl DResource

from TWResour ces. G obal Entiti esResource inmport G obal EntitiesResource

from TWResour ces. DBResour ce i nport DBResource

class Tw stedWeb(Bi gWorl d. Service):
def __init__(self):
root = resource. Resource()
root.putChild("entities_by name", EntitiesByNameResource())
root.putChild("entities_by_id", EntitiesBylDResource())
root.put Child("global _entities", G obal EntitiesResource())
root. put Child("db", DBResource())

reactor.listenTCP(8000, server.Site(root))
reactor. startRunni ng()

def onDestroy(self):
reactor. stop()

The various resources used by the TwistedWeb service are implemented in the TWResources package, which
is located at bi gwor | d/ res/ scri pts/ servi ce/ TWResour ces.

In order to make use of the TwistedWeb service, it must be given an entry in the <res>/scri pts/
servi ces. xnl file in your project directory:

<r oot >
<Twi st edWeb/ >
</root>
This file contains a list of all Services that will be initialised when a ServiceApp process is started.

See http://twistedmatrix.com for more detailed information on the Twisted Python framework.

bIgW@RLD" 5

http://twistedmatrix.com/documents/current/web

The TwistedWeb Service

2.7. TwistedWeb Error handling

Two-way calls to the game server using the TwistedWeb service will always return a JSON object. If an error
occurs, the object that is returned will have a specific error format. It will consist of two fields: a string named
excType containing the error type, and an array of strings named ar gs containing the arguments. The
returned document also uses the HTTP error code 403 (Forbidden).

For example, the sample / db/ queries given in section “Queries to / db/ ” on page 12 could fail in a
number of ways. If the account does not exist on the server, the call will return:

{ "excType": "BWAuthenticateError", "args": ["No such user"] }
If the password is invalid, it will return:
{ "excType": "BWAuthenticateError", "args": ["Invalid password"] }

The regular format of error objects returned from TwistedWeb means that differentiating them from success-
ful return objects only requires the caller to check for the existence of the excType key.

For details about the different types of errors that can be returned by a two-way call, refer to theServer
Programming Guide's section”BWStandardError”.

14 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=
#dest=
#dest=

Chapter 3. Remote Methods, Arguments and
Return Values

The Twi st edWeb service allows calls to one-way and two-way methods on game entities. These can be made
using the request paths as described above.

This chapter gives more details about format of the arguments in the query string, the returned results and
the supported types.

3.1. Method calls

Any method of a base entity can be called whether it is exposed to clients using the <Exposed/ > tag or not.
The method name is the last part of the URL before the parameter list (i.e. before any ? character). Care must
be taken to ensure that general access to call methods on the Twi st edWeb service is not given.

To call a method on a cell entity, first call a method on a base entity that returns the result of a call on the
cell entity.

3.2. Arguments

The arguments are passed as URL parameters. All arguments are named and so must be named in the entity's
. def file.

Not all types are supported. Supported types include:

All integer types - INTS, INT16, INT32, INT64, UINTS, UINT16, UINT32 and UINT64

All float types - FLOAT32 and FLOAT64

All string types - STRING, UNICODE_STRING and BLOB

VECTOR2, VECTOR3 and VECTOR4
* Sequence types - ARRAY and TUPLE of these types except for other sequence types

UNICODE_STRING parameters should be percent-encoded for UTF-8, such as:
my St ri ng=Japanese%20t r ansl at i onY8AYR20%E6YO6Y87YESYADYY7YESYB8CYO6YEIYB81991
This string will result in the argument:
Japanese translation: XFiblf
BLOB parameters should be passed as a hexidecimal representation, for example:
myBLOB=aca3a6
VECTOR2, VECTOR3 and VECTOR4 should be passed as a comma separated sequence of floats, for example:
myVector=0.1,3.5,-6

Sequences can be passed in two ways - either as repeated arguments:

bIgW@RLD" -

Remote Methods, Arguments and Return Values

myArray=4&myArray=53
or as indexed arguments:

nyArray|[0] =4&nyArray[1] =53

3.3. Return Values
Return values are returned as a JSON document of name/value pairs. These are encoded using the Python
j son module. Any type that can be converted with this module can be used. Additionally Vect or 2, Vec-

tor 3, Vect or 4 and PyAr r ayDat al nst ance data types are converted to Python lists before this conver-
sion.

3.4. One way calls

It is also possible to call one-way methods. On success, the following object is always returned.
{"nmessage": "One way call nmade"}

3.5. Errors

Errors are returned as a specially formatted JSON object with an "excType" attribute. Refer to “TwistedWeb
Error handling” on page 14 for more information.

16 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 4. Keep-alive Messages

Mailboxes to entities residing on a BaseApp should exist for as long as they are needed by the web server.
However, these same entities may be player entities controlled by the BigWorld client. These two different
usages of the same entity must be reconciled when it comes to managing entity lifetimes — for example, if the
client disconnects while the game's web interface is still using the player's base entity, this entity should not
be destructed until the game's web interface has finished with it. Also, if the player is currently not logged
in via the BigWorld client. If the player does not explicitly log out of the web server, we would want to clean
up that mailbox reference after an inactivity period.

The solution to this problem is for the Twi st edWeb service to periodically inform the base entity that it is
still interested in it. The entity can then stay around even if the client has disconnected (destruction of the
base entity is the normal course of action).

The Twi st edWeb service keeps a cache of mailboxes. Only mailboxes to entities that have a web-
KeepAl i vePi ng() method are cached. Each time the service is queried that uses one of these mailboxes it
is either added to this cache or marked with the time it was last queried.

The service will periodically check all mailboxes in this cache. If the mailbox has not been used for a long
time, it is removed from the cache. If it is still active, the webKeepAl i vePi ng() method is called on it.

It is okay if the mailbox is removed from the cache too early. In this case, the database will be queried to
retrieve the mailbox. This is important when running multiple Twi st edWeb service fragments on different
ServiceApps. Besides a very minor performance impact on the database, it does not matter which ServiceApp
is queried. Running the service on multiple ServiceApps is a way to achieve fault tolerance and also scaling
beyond a single machine.

This functionality is implemented in bi gwor I d/ res/ scri pts/service/ TWRe-
sour ces/ KeepAl i veMai | boxes. py. The frequency of the pings is specified by the CHECK_PERI OD con-
stant. The amount of time before a mailbox times out is specified by the TI MEOUT_PERI OD constant.

For game script, entities can make use of the KeepAl i ve class located in f ant asydeno/ r es/ scri pt s/

base/ KeepAl i ve. py to implement this functionality. It also has CHECK_PERI CD and TI MEQUT_PERI OD
constants specifying how frequently to check for these entities timing out and how long before they time out.
This timeout period should be slightly more than that of KeepAl i veMai | boxes. py.

When accessing this service from a website, keep-alive intervals can be used with HTTP session timeouts
so that players have to re-login after a certain inactivity period to create a new HTTP session. Keep-alive
intervals should be set to be equal to or longer than session durations.

bigw@RLD" .

Part Il. Using the Web
Service from Apache

bIgW@RLD"

Table of Contents

5. OVEIVIEW ...t e e e e 23
5.1, SECULItY .ooooiiiiiiiiii 23

6. Configuring APAchiecoooiiiiiiiiiiii e 25
ToPHP oo 27
7.1, INStAIlAtioNooiiiiiiiiiiiiiiii e nenes 27
711 Installing PHP ... 27

702, TeStingooooooiiiiiiii 27

7.2. BigWorld.php ... 27
7.2.1. BigWorld.php Error handling ..., 29

7.2.2. Locating the SerVICEAPDcuuuummmimiiiiiiiiiiiiiiiiiiiiie i 30

7.3. RemoteEntity Session Storage ..o 30

bIgW@RLD" &

Chapter 5. Overview

This section describes a possible method for allowing BigWorld functionality to be integrated into a web
server by making use of the web service interface described above. It uses a Linux-based Apache web server
setup using PHP (related to the LAMP architecture) and interfaces to the BigWorld service via the Twi st ed-
Wb service. It assumes familiarity with concepts presented in the document Server Programming Guide.

The following diagram shows the standard cluster model, shaded, on the left-hand side, as well as an ex-
ample of a web integration implementation using an Apache server to provide a web service. For security,
ServiceApps will usually not be connected to the internet. Web clients will access the service via the Apache
web server, which will communicate with one of the ServiceApps configured to provide the Service. There
will usually be multiple ServiceApps providing each Service, for the purposes of load balancing and fault
tolerance.

Client Client Client Web Browser Web Browser
g —— o,
Internet (E_‘ Internet B
— “""'———“-h__l _— S a
Apache
|
Switch Fabric Switch Fabric
Logindpp Baselfpp Servicedpp ServiceApp
| L' I L' L' nja)
Switch Fabric
DEMgr CellApp CellAppMar
I L' L] L'
Switch Fahric BaseAppMor
el
5
A0 runs the daeman process BWvwachined.

Example configuration of a web service

It should also be noted that while accessing the TwistedWeb service in this way is common, there are many
other uses for the TwistedWeb service. Examples include custom administrative tools and statistic gathering
scripts.

5.1. Security

Web security should be a part of all web applications. Therefore, when implementing a BigWorld-aware web
application, care must be taken to ensure that users are not able to access privileged information or have
unlimited privileged access to the game script interface.

From a low-level security point of view, Apache supports HTTPS transport that is transparent to modules
used for PHP. For details on how to enable this feature, see the Apache documentation.

bigw@RLD" &

#dest=

Overview

From a scripting point of view, much of what is relevant to other web applications with regards to security
applies equally to BigWorld-aware web applications. Because the web integration module must be run inside
the cluster, care must be taken when designing interfaces to the game. For example, the standard for web
applications is to not expose the database backend to users by giving them access to executing raw shell
commands or SQL statements. In the same way, do not give users inappropriate privileged access to the
BigWorld backend by giving them the ability to run arbitrary script commands. The web integration module
does not have the same concepts of Areas of Interest or client controlled entities, so extra care must be taken
when accessing game state using this interface.

24

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

Chapter 6. Configuring Apache

The default web integration implementation uses at its core an Apache http server. The binary for the server
is called ht t pd, and it is generally run as a daemon. The binary package and the installation instructions
for it can be found at http://apache.org.

Before the server can be accessed, Apache must be told where to find the appropriate server files. This in-
volves putting a symbolic link to the appropriate directory in Apache's Docunent Root , for example/ var /
www ht ml /. For example, in FantasyDemo, the path to the server files might be / horme/ nf / f ant asyde-
nmo/ src/ web/ php/, so in order for Apache to be able to find these files, a symbolic link to that path must
be placed in/ var / ww/ ht m / . To do this for FantasyDemo, run the following as root:

1n -s [hone/nf/fantasydeno/ src/web/ php/ /var/ww/ htm /fantasydeno

The name of the link will be used as the URL segment after the server address, for example, if the link is
called f ant asydenn, as in the command above, then the URL for the server will be <machi ne addr ess>/
f ant asydeno.

Make sure that the Apache configuration directive Fol | owSyni i nks is on for the directory containing the
symlink, and that the web server user has full read access to the target directory, for example / hone/ nf /
fant asydeno/ src/ web/ php, and all individual directories in its absolute path. This is likely to require
modification only at the top level: the server user's home directory. To grant read access, run the following
as root:

chnod o+rx /hone/ <server-user>

SELinux can prevent access to an Apache server if its setting is too strict. To modify the SELinux setting, run
the following as root:

system config-securityl evel

From here, set the SELinux level to be no higher than Per mi ssi ve. That is, the setting must not be En-
forcing.

Restart the Apache server by running the following as root:

/etc/init.d/ httpd restart

bIgW@RLED" -~

http://apache.org

Chapter 7. PHP

As a functional example, a PHP module is provided to interface with a BigWorld server through script. PHP
is a very popular open-source scripting language for web development.

This sample module is designed to be used under Linux with Apache and mod_php (the PHP module for
Apache). The module also works with the PHP Linux command-line interpreter. While the BigWorld sample
implementations use PHP, it is possible to implement a web integration system using any such scripting lan-
guage or web server. As the Twi st edWeb service services HTTP requests, any mechanism that can perform
HTTP requests can integrate with the Twi st edV\b sample.

7.1. Installation
7.1.1. Installing PHP

You will need to be able to run PHP. It is possible to install it using yum:
yuminstall php
You will also need to download and install PHP's libcurl module, which you can also do using yum:

yuminstall curl

7.1.2. Testing

The easiest way to test that PHP is supported is to create a PHP script as illustrated below and use a browser
to view it:

<?php

phpi nfo();
?>

Testing PHP configuration changes

Syslem Liruy raoca 2.6.18-4-k7 #1 SMP YWed May 9 224201 UTC 2007 626
| Build Date Jul 2 2007 21:30:29

Sarver APl Apache 2.0 Handler

| Virtual Directony disabled

Support

Configuration File |fetc/phpSiapache2iphp ini

| (phip.ini) Path

Example phpi nf o output

7.2. BigWorld.php

To implement a website that can access the game server, the PHP script needs to make HTTP requests to the
TwistedWeb service. To help achieve this, Bi gWor | d. php implements a PHP class, called Renpt eEntity,

bIgW@RLD" -

that represents a game entity on which you can call methods. This is analogous to a BigWorld server Entity
mailbox.

A Renot eEnt i ty is created using the start of the URL path as the argument to its constructor. The path does
not include the machine name and port or the method to call and method arguments. For more information
about Twisted.Web and instructions on how to request entity mailboxes using the TwistedWeb service, see
The TwistedWeb Service on page 11 . For example, to obtain a Renpt eEnt i t y to FantasyDemo's Auct i on-
House global base entity, you would call:

$t hi s- >aucti onHouse = new RenoteEntity("gl obal _entities/AuctionHouse");

The variable to which the Renpt eEnt i t y was assigned can subsequently be used like an Entity mailbox
for the target entity.

When calling an entity's methods through a Rerot eEnt i t y, arguments are provided in the form of an array.
In PHP, an array is an associated map of key/value pairs. The keys are argument names, and the values are the
corresponding argument values. For example, consider the Auct i onHouse entity'swebCr eat eBi dRange-
Criteria() method, which takes two arguments, representing the minimum and maximum bids for an
item, and returns a criteria object. This method has the following definition in Auct i onHouse. def:

<webCr eat eBi dRangeCriteria>
<Ar gs>
<mi nBid> GOLDPI ECES </ m nBid>
<maxBi d> GOLDPI ECES </ maxBi d>

</ Args>
<Ret ur nVal ues>
<criteria> STRING </criteria> <!-- Search criteria object, pickled
-->

</ Ret urnVal ues>
</ webCr eat eBi dRangeCriteria>

To invoke this method from the Renot eEnti ty for the Aucti onHouse entity, you will need to create a
PHP array of the arguments. The following code illustrates how this would be performed:

$res = $this->auctionHouse- >webCr eat eBi dRangeCriteria(array(
"m nBi d* => $searchM nBi d,
"maxBi d" => $searchMaxBid));

where the values of $sear chM nBi d and $sear chMaxBi d are defined before the call. The return values
will be stored in $r es. In this example, $res["criteria"] will contain the string describing the criteria.

The Renot eEnt i t y instance converts this call into a HTTP request on an appropriate Twi st edWeb service
fragment. It adds the method name and any arguments. It then blocks waiting for the JSON response. On
success, this response is converted into a PHP object.

In addition to calling entity methods on a Renpt eEnt i t y in order to access the entity on the game server,

it is possible to access the same entities directly, by instead using a Renpt eEnt i ty to access the database,
using the TwistedWeb service's db URL option, for example:

$db = new RenpteEntity("db");

Using this Renpt eEnt i ty, it is possible to invoke commands directly on the game server. For example, to
directly log an account on to the game server, you could make the following call:

28

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

$result = $db->l ogOn(array(
"user nane" => $usernane,
"password" => $pass));

7.2.1. BigWorld.php Error handling

It is possible for remote method calls to fail for a number of reasons, including invalid arguments or methods,
or the requested entity not existing. When a call on a RemoteEntity instance fails, the TwistedWeb service will
return a specially-formatted error object instead of the expected JSON object. As described in “TwistedWeb
Error handling” on page 14, this JSON error object will have the format:

{ "excType": "ErrorType", "args": ["Argl", "Arg2" ...] }

If such an error object is encountered, Bi g\Wr | d. php will raise it as a PHP exception. This exception type
will use the excType field as the type name, and the first item in the ar gs list as the exception's message:

t hrow new $excType($args);

For example, a JSON object representing a BWInvalid ArgsError object will be raised as a BWInvalid ArgsEr-
ror exception, whose message will be the first argument contained in the original JSON object.

Any error object encountered by BigWorld.php will have originated as one of two categories of exception
objects:

1. Built-in BigWorld errors - BWst andar dEr r or

These are defined in bi gwor | d/ res/ scri pt s/ server _conmon/ BWwoWay. py, and are explained
in the Server Programming Guide's section”BWStandardError”. They originate in the server binaries,
and are propagated to the TwistedWeb service.

In order for them to be raised as exceptions, they are declared as PHP exception objects in BWEr r or . php,
sharing the class name of their python counterparts.

2. Custom errors - BWCust onEr r or

These are the error types specific to the game scripts, and are described in detail in “PHP Error han-
dling” on page 48. Like the classes derived from BWSt andar dError, these must be declared as

php exception objects in order for them to be handled by normal exception-handling procedures. This
is to be done in Cust onErr or s. php. For example, if there is a custom error called MyCust onEr r or
declared in <r es>/ scri pt s/ server _conmon/ Cust onEr r or s. py, there should be a matching php
object declared in Cust onEr r or s. php:

/] Cust onErrors. php

<?php
requi re_once("BWError.php");
cl ass BWCust onError extends BWirstArgError {}

cl ass MyCustonError extends BWCustonError {}
?>

If an error object is encountered by Bi g\Wor | d. php that has not been declared as its own PHP exception
type, it will be thrown instead as a BWeener i cEr r or, maintaining the excType field as part of its
exception message:

bIgW@RLD" =

#dest=
#dest=

throw new BWEenericError($excType, $args);

For details on handling these errors, refer to “PHP Error handling” on page 48 .

7.2.2. Locating the ServiceApp

The Ser vi ce Singleton class in Bi g\Wor | d. php contains a hard-coded list of possible ServiceApp locations.
When a web client starts a new session, the Renot eEnt i t y associated with the session is given the mailbox
of a random ServiceApp that is currently online and providing a fragment of the desired service. You will
need to modify this list to reflect the addresses of your ServiceApp machines:

class Service

{
private function __construct()
{
[*** EDIT THS WTH YOUR Servi ceApp ADDRESSES ***
$this->urlList = array(
"http://sonmeMachi ne: 8000",
"http://1ocal Host: 8000",
"http://sonmeC her Machi ne: 8000"
)
}
}

A web client will access a Service through the same ServiceApp for the duration of their session. If this
ServiceApp fails during that time, the Renot eEnt i ty will find a different ServiceApp providing the same
service, and store its address for the remainder of the session.

7.3. RemoteEntity Session Storage

It is possible to store a mailbox to an entity for the duration of a HTTP session. For example, the BWAut hen-
ticator class'aut henti cat eUser Pass() method, mentioned in the previous section, is used not only
to invoke the | 0gOn command on the game server, but also to hold onto the resulting entity for the duration
of the session. By storing the URL of this entity in PHP session variables, whose values are persistent for
the entirety of a HTTP session, this allows the web server to require authentication from a web client only
once per session.

To store an entity reference:

$_SESSION[' mai | box'] = "entities_by_id/ Avatar/37"; // store details to create
mai | box | ater.

To later retrieve it:
$mai | box = new RenpteEntity($_SESSION ' nmuilbox']);
For example, to log on and store the result:

$db = new RenpteEntity("db");

try

30 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

{

$result = $db->l ogOn(array("usernane" => $usernane, "password" =>
$pass));

catch(BWAut henticateError $e)
/1 Handl e error
return;

}

$ SESSION["mailbox"] = "entities_by id/" . $result["type"] . '/’
$resul t["id"];

bIgW@RED e

Part lll. Web Integration Example

bIgW@RLD"

Table of Contents

L 0 47 o 74 -] 1 PRSPPI 37
C R L G 1T TP 39
10. PHP Presentation Layerccoooiiiiiiiiiiiiiiiiiiiiiii et 41
JO.1. OVEIVIEW .oeiiiiiiiiiee ettt ettt e et e e ettt e e e et e e e e et e e e e et e e e eetin e e eeetaeeeeennanes 41
10.2. Required packagescccceeiiiiiiiiiiiiiiiiiii i 41
10.3. Constants in CONSE AN S. PP cooeieiiiii e e e e e e e 41
10.4. XHTML-MP helper functionsccoccooiiiiiiiiiiiii s 41
10.5. Debugging PHP example SCIiptsccccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeieieieeeeeeeeaees 42
10.6. XHTMLIMPPAGE ObJECESoooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicciiiei e 43
10.7. Aut hent i cat edXHTIVLIMPPAGE ODJECtSuuiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieieieeeeeeeee s 43
10.8. BWAUt hent i cat Or objectscccooiiiiiiiiiiii 44
B0 R o o T o T o o o S PSSR 45
10.10. CRAr QCT 5 S. PRIP ceiiieiie et ettt e e e e eeaeaaaas 45
J0.10. NEWS. PRI e ettt et e e et et e e e eaaaaas 45
B0 B @ o= U= (ol =T R o] o1 o ORIt 46
B0 T I VA= o o T VN o o1 o PPNt 46
10.14. Pl ayer AUCT T ONS. PR oo e et e e et e e e e a e e eaeeaae s 47
10.15. Sear ChAUCT 1 ONS. PP .o e e et e e et e eeeeeas 47
10.16. PHP Error handlingccooooiiiii 48

bIgW@RLD" %

Chapter 8. Overview

This section describes an example web interface to FantasyDemo. It shows how to implement a web auction-
ing system in order to illustrate functions accessible from the BigWorld web integration module, such as:

* Authentication of player login details.
* Retrieval of an entity mailbox.
* Access to base methods that exist on a base entity through a mailbox.

* Passing parameters to and receiving data from the BigWorld Python scripting layer using the web scripting
layer.

The example platform used in this document is the PHP scripting language, combined with the Apache
HTTP server. This guide uses a variety of well-documented techniques for web applications (such as handling
session variables). Features and techniques used in the example code are common to other web scripting
languages; thus the techniques presented can also be used in other web scripting environments.

We provide examples on querying the player for inventory and character statistics. The item and inventory
system is based on the BigWorld FantasyDemo item and inventory system. Any item or inventory system
with similar concepts of item serial numbers, item types and item locking can be adapted for the web scripts.
Other extensions to this model are possible.

We provide a working example of an Auction House, which the player can interact with to:

¢ Create auctions.

e Search for auctions.

* Bid on auctions.

Auctions have the following characteristics:

* Refer to individual items in a player's inventory.

* Have a starting bid, and may optionally have a buyout price.

* Have adjustable expiry times specified when they are created.

* Every player can bid on auctions made by other players.

¢ Players can specify a maximum value for their bid which allows automated incremental bidding on behalf
of the player, up to the specified maximum allowed value.

This is known as proxy bidding, and this Auction House model is common in other popular Internet-based
auction houses. In the code, it is referred to as an | ncr enent al Auct i on. When entering a maximum bid,
the entire amount is considered to be passed to the auction house; on auction resolution, the difference
between the maximum bid amount and the actual bid amount is returned back to the player.

We will walk through the source and highlight the salient areas relevant to building a trading system. This
example consists of a presentation layer written in PHP, and a logic layer that is implemented as part of the
base entity scripts for the appropriate entities, namely Avat ar, Tr adi ngSuper vi sor and Auct i onHouse.

bIgW@RLD" -

Overview

Wieh Browser Wieh Browser

Internet

FantasyDema
PHF scripts

Apache

BigWarld php

Switch Fabric

] |
TwistedWeb TwistedWeb

Servicedpp Servicedpp

l |

Switch Fabric

ol |

1 1
: Fest of server: Baselfpp Baselfpp DEMgr

Block system diagram

The logic for the Auct i onHouse entity is implemented in the game scripting layer in Python, alongside
other entity logic in a BigWorld game. With some alterations, the example code used in this document can
be adapted for use in a game that already has a currency and inventory system.

This document assumes that the reader has read the Server Programming Guide, and is familiar with Big-
World Python scripting and has a basic operation of how return-value methods work.

38 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

#dest=

Chapter 9. Use Cases

* The player supplies a username and password to log in, and becomes authenticated against the BigWorld
game system — this gives access to character selection, and for a chosen character, character-specific views
and operations.

* The player views their character statistics in real-time.
* The player views their inventory and current gold pieces.

¢ The player nominates an item in their inventory for which he wishes to create an auction, then sets its
expiry time, initial bid price, and an optional buyout price.

* The player searches for auctions matching an item type name and/or bid range.
* The player selects an auction and specifies a maximum bid.

* The player logs out.

bIgW@RLD" ®

Chapter 10. PHP Presentation Layer

The presentation layer is written in PHP. It handles requests from web user agents (such as mobile phones
and PC browsers) and presents information from the game. The example code PHP sources are found at
f ant asydeno/ src/ web/ php.

10.1. Overview

PHP pages in the example code are represented as PHP objects, and the PHP class definition for <cl ass>
is located in <cl ass>. php. Generally, after the class definition an instance of the page object is created and
asked to render itself.

We do not recommend this way of structuring a web interface. The purpose of this PHP construction is to il-
lustrate, as clearly as possible, solutions to common problems encountered when implementing a web inter-
face to a BigWorld game instance. It is not meant to illustrate best practices in web interface implementation.
Developers can use any frameworks that they wish to implement a web interface in PHP or Python. BigWorld
does not limit the use of third-party frameworks, from complex systems such as Zope to simple templating
engines such as PHP Smarty.

The examples adhere to the XHTML-MP standard (XHTML Mobile Profile).

10.2. Required packages

The Web Integration example requires some packages to be installed on the machine running Apache:

* JSON: TwistedWeb queries return data as JSON objects. Install this package by running the following as
root:

yuminstall php-pecl-json

* Image processing: The FantasyDemo PHP scripts make use of the GraphicsDraw library of image process-
ing functions. To install this package, run the following as root:

yuminstall php-gd

10.3. Constants in Const ant s. php

Configuration constants and static data are defined in Const ant s. php. Among other things, it contains:

¢ The static item type data (such as URLs to image icons, image statistics, etc.) that are used when displaying
player inventory.

* The URL of the login page.

* The URL of the welcome page after authentication.

10.4. XHTML-MP helper functions

XHTM.- MP- f unct i ons. php contains functions for commonly used XHTML-MP (XHTML Mobile Profile)
element constructs. The simple base ones are listed below:

e xht m MpSi ngl eTag($nanme, $className="', S$attrString=""')

bigw@RLD" o

PHP Presentation Layer

Returns the element source of a single unenclosed XHTML element with the given name, class and attribute
string.

e xhtml MpTag($name, $contents, $classNane='', $attrString=""')

Returns the element source of a single enclosed XHTML element with the given name, contents, class and
attribute string.

e xht M MpAddAttribute($attrString=""', $key, $value)
Adds a key value attribute to an attribute string and returns it.

From these, the other common XHTML elements are built. Here are some examples:

e xht nl MpHeadi ng($contents, $level =1, $classNanme='', S$attrString=""')
Returns the element source of a single unenclosed XHTML element with the given name, class and attribute
string.

e xhtml MpDi v($contents, $className='', $attrString="")

Returns the element source for a XHTML DI V element with the given optional class and attribute string.
e xht ml MpPara($contents, $className='"' $attrString)
Returns the element source for a XHTML paragraph.

There is also a XHTMLMPFor mclass for creating XHTML MP forms.

10.5. Debugging PHP example scripts

There is a debug library implemented in Debug. php that is used throughout the code example. You can use
this to trace the flow of the example scripts using the various debugging output options.

Generally, debug output is displayed in a page as a XHTML comment.

cl ass SonePage extends Authenticat edXHTM.MPPage

{
- -funct i on render Body()
{
aébug("this is a test");
:

Example PHP using the debug function

The code above will generate HTTP output like this:

<l--
this is a test
S

Example HTTP output

42 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

PHP Presentation Layer

Additionally, you may use this in an overridden XHTMLMPPage: : i ni ti al i se method. Because i ni -
tial i se doesnot write output except for HTTP headers in order to perform actions such as HTTP redirects,
debug output is deferred until the rendering stage of the page, where you will see debug output as:

<!-- deferred error output follows
debug output instance 1

debug out put instance 2

debug out put instance 3

deferred error output above -->

Example HTTP output

There are also some helpful debugging functions for getting representations of more complex PHP objects
such as Arrays and class instance objects:

e debugSt ri ngQbj
Returns the string output.
* debugbj
Sends the string output through debug() .

Both these functions generate debug strings representing the objects. This is useful for PHP Arrays and PHP
class instance objects.

There is also a registered error handler that prints errors through debug(), including information such as
stack trace, function line numbers, and passed parameter values.

10.6. XHTM_LMPPage objects

These are abstractions of a page, and are the basis for all viewable pages on the web interface. Class definitions
can be found in Page. php.

There are methods designed to be overridden for the processing stage and the output stage.

The XHTMLMPPage: : i ni ti al i se() method is called by XHTMLMPPage: : r ender () for processing be-
fore any page source is output. Its purpose is to usually set up the page and provide a processing hook for
processing HTTP GET/POST request parameters, and initialise page instance variables so they can be easily
rendered in the output stage.

XHTMLMPPage: :initialise() allows you to set redirections from a page to another URL —
XHTMLMPPage: : set Redi rect () takes a parameter $ur | for this purpose. After calling i ni ti al i se(),
if a redirection has been set, then the browser redirects via the HTTP header Locat i on.

XHTMLMPPage: : r ender Body() (called from XHTMLMPPage: : r ender ()) renders the page, and outputs
the XHTML element for the page content.

10.7. Aut hent i cat edXHTM_LMPPage objects

Authenticated XHTML Page inherited objects (class Authenticat edXHTMLMPPage in
Aut hent i cat edPage. php) are pages that only authenticated users can view. Authentication is performed
by an instance of Aut hent i cat or, with the name of the Aut hent i cat or class used to do this (which is
configured in Const ant s. php). For FantasyDemo scripts, it is the BWAut hent i cat or class.

Aut hent i cat or objects also provide a means of storing key-value pairs as server-side session variables.

The absence of authentication token variables set in the session indicates that the user is not logged in, which
instructs the client browser to redirect to the login page configured in Const ant s. php. This login page

bigw@RLD" -

PHP Presentation Layer

must process requests for logging in so that an authenticator object be created that authenticates the user and
their password and creates the necessary authentication token variables.

There is also a timeout for an authenticated session; if no access has been made for a configured amount of
time (for details, see Const ant s. php), then the session is invalidated, and browsers that have timed out
are redirected back to the configured login page with an error message stating that their session has expired.

Authenticators are used by authenticated pages to check the presence of a valid authentication token:

i f ($this->auth->doesAut hTokenExi st ())
{

$aut hErr = $thi s->aut h- >aut henti cat eSessi onToken();

10.8. BWAut hent i cat or objects

This class provides an example of how to perform authentication with the BigWorld system. It involves
invoking the db/ LogOn method with the user's name and password:

$db = new RenpoteEntity("db");
$result = $db->l ogOn(array("usernane" => $usernane, "password" => $pass));

The result returned is a PHP object containing the entity's type and database id. These details are then stored
for later.

$this->setEntityDetails($result["type"], $result["id"]);
This stores the string that is required to create a Renot eEnti ty.

function setEntityDetails($type, $id)
{

$t hi s- >set Vari abl e(BW AUTHENTI CATOR_TOKEN_KEY_ENTI TY_PATH,
"entities_by_id/" . $entityType . '/' . $id);

The mailbox can then be later retrieved with the ent i t y() function.

function entity()

{
$entityPath =
$t hi s- >get Vari abl e(BW AUTHENTI CATOR TOKEN_KEY_ENTI TY_PATH) ;
return new RenoteEntity($entityPath);
}

Authenticated pages can access this mailbox by their authentication object:

$pl ayer Mai | box = $this->auth->entity();

44 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

PHP Presentation Layer

Methods can then be called with:

$pl ayer Mai | box. sonmeMet hod() ;

10.9. Logi n. php

This page is responsible for collecting the user name and password to be authenticated against the BigWorld
server. Thus, any user name and password that is valid when logging in with the FantasyDemo client is also
valid here, so that the bw. xm configuration options dbMyr/ cr eat eUnknown and dbMyr / r enenber Un-
known become relevant (for details on these configuration options, see the document Server Operations
Guide's section Server Configuration with bw. xm — “DBMgr Configuration Options”).

Authentication is performed by making a request to the authenticator object, for example:

$t hi s- >aut h- >aut hent i cat eUser Pass($_REQUEST[' user nane'],
$_REQUEST[' password']);

10.10. Char acters. php

Once the user authenticates using a username and password, the Account mailbox is queried for its list of
associated Avat ar characters. This is done as follows:

$account = $this->auth->entity();
$res = $account - >webGet Char acterList();

This returns the list of character descriptors in $r es[' char act ers'] . Each character descriptor is a dic-
tionary with keys name and t ype (of entity, usually Avat ar).

You can also create characters via this page:

$res = $account - >webCreat eCharacter(array("nane" =>
$ GET[' new character_nane']));

You choose a character to progress. Once chosen, the session player Account mailbox is replaced by a mail-
box to the player Avat ar entity and the keep-alive period is set on the newly made character mailbox.

$res = $account - >webChooseCharacter(array(
"name" => $_CET['character'],
"type" => "Avatar"));

$th| s->auth->setEntityDetails($res["type"], $res["id"]);

10.11. News. php

This page is the entry point after a user has logged in and chosen a character. Currently, this is a static PHP
page, but one possible extension to this is to have a News entity in the world, which is queried by this page
each time it loads up.

A hook for doing this is present in the NewsPage: : i ni ti al i se() method:

/1 the articles could also cone froman entity

bIgW@RLED" -

#dest=
#dest=
#dest=
#dest=

PHP Presentation Layer

Il e.g.

/1 $newsagent = new RenoteEntity("global _entities/ NewsAgent");
/1 $res = $newsagent - >get NewsArticl es();

/'l $this->articles = $res["articles'];

10.12. Char act er. php

This page queries the player Avat ar mailbox in real-time via the Avat ar. webGet Pl ayer | nf o() web
method for the current statistics of the player for display:

$pl ayer = $this->auth->entity();
$res = $pl ayer - >webGet Pl ayer | nfo();

The position and the direction the player is currently facing is also reported back through this page if the
player is online.

10.13. I nvent ory. php

This page queries the player character mailbox via the Avat ar . webGet Gol dAndl nvent ory() web
method. This method is defined in the entity definitions file for the Avat ar entity type, in f ant asyde-
no/res/scripts/entity _defs/Avatar. def:

<webGet Gol dAndl nvent ory>
<Ret ur nVal ues>

<l-- The Avatar's avail able gold pieces. -->
<gol dPi eces> GOLDPI ECES </ gol dPi eces>
<I-- List of itemdescriptions as dictionaries with keys:
"serial': the serial nunmber of the item
"itenmlype': the itemtype
"l ockHandl e' : | ock handl e associated with this item
-->
<i nventoryltens> PYTHON </inventoryltens>
<I-- List of dictionary with keys:

"serials': alist of serial nunbers of |ocked itens
' gol dPi eces': the gold pieces |ocked
50 S
<| ockedl t ens> PYTHON </ | ockedl t ens>
</ Ret ur nval ues>
</ webGet Gol dAndl nvent ory>

The excerpt above shows that that the return value to the PHP scripting layer is an Array with keys gol d-
Pi eces,inventoryltens and | ockedl t ems. We store them in the class instance variable $t hi s- >i n-
ventory:

$entity =& $this->auth->entity();

$this->inventory = $entity->webGet Gol dAndl nventory();
The gold pieces are accessible from this instance variable when displaying its value to the user:

echo(
xht M MpDi v (
"Gold: '. $this->inventory['gol dPieces'],

46 Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

PHP Presentation Layer

' gol dRow

)
DE

This page is also responsible for handling requests for creating auctions from the player. The play-
er nominates an item in their inventory, based on its serial number, then sets the initial auction pa-
rameters through the form and on submission, and creating the auction is a case of invoking the
Avat ar . webCr eat eAuct i on:

$res = $entity->webCreateAuction(array(
"itenBerial" => $itenSerial ToAucti on,
"expiry" => $expiry,
"startBid' => $hi dPrice,
"buyout" => $buyout));

10.14. Pl ayer Auct i ons. php

This page enables players to see the state of auctions they have created. The search criteria used
is an instance of SellerCriteria with the current player's database ID. This is retrieved from
Avat ar . webCet Pl ayer I nfo():

$res = $this->player->webGet Pl ayer | nfo();
$t hi s->pl ayerDBI D = $res[' databasel D];

The result is used in constructing and applying the Sel | er Cri t eri a for getting search results to present
to the user.

10.15. Sear chAuct i ons. php

This page enables players to search for auctions by using the singleton Auct i onHouse entity, and allows
for bidding of searched auctions.

Search criteria objects are built up using various methods in AuctionHouse, for example:

$res = $this->auctionHouse- >webCreat el tenilypeCriteria(array(
"itenflypes" => $itenilypesList));

$searchCriteria = $res['criteria'];

$res = $this->aucti onHouse- >webCr eat eBi dRangeCriteria(array(
"m nBi d' => $searchM nBi d,
"maxBi d" => $searchMaxBid));
$bi dRangeCriteria = $res['criteria'];
$res = $this->aucti onHouse- >webConbi neAnd(array(
"criterial" => $searchCriteria,
"criteria2" => $bidRangeCriteria));
$searchCriteria = $res['criteria'];

The $sear chCri t eri a object contains the combined search criteria. It can be applied to a search via the
Auct i onHouse. webSear chAuct i ons() method. This method returns a list of auction IDs that match the
criteria.

To retrieve the auction descriptors (which contains information such as the seller player, the current bid
amount, the item type), we use the Auct i onHouse. webGet Auct i onl nf o() which takes a list of auction
IDs and returns a list of auction descriptors.

bIgW@RLD" -

PHP Presentation Layer

$res = $thi s->aucti onHouse- >webSear chAucti ons(array(
"criteria" => $searchCriteria));
$res = $this->aucti onHouse- >webGet Aucti onl nfo(array(

"auctions" => $res["searchedAuctions"]));

/1 store the auctions in an associative array by auction ID
$t hi s->searchResults = Array();
foreach ($res['auctioninfo']) as $auctionlnfo)

{
}

$t hi s- >sear chResul t s[$aucti onl nfo["' auctionl D] = $aucti onl nfo;

10.16. PHP Error handling

As described in section “BigWorld.php Error handling” on page 29, all mailbox queries can fail, resulting in
an error object being returned. In addition to errors coming from the server binaries, errors can be returned
from the remote methods themselves. These are custom exception types that will be raised by the auction
house scripts, the authentication scripts, and the other methods called remotely by the web client. For ex-
ample, in the AuctionHouse methods called by the FantasyDemo web client PHP code, there are such error
classes as | nsuf fi ci ent Gol dErr or and Sear chCri t eri aErr or, allowing error messages that are dis-
played to the player to be as helpful as possible.

The filef ant asydeno/ res/ scri pt s/ server_comon/ Cust onEr r or s. py contains the declarations of
these custom Python exception classes. They are as follows:

* Auct i onHouseError
Attempt to access an AuctionHouse entity that is not allowed or non-existent
e BidError
Bid for an auction with an invalid amount
e Buyout Error
Set an invalid buyout price for an auction
e CreateEntityError
An entity can't be created
e DBErr or
A database query or modification fails
e I'nsufficientCGol dError
The player doesn't have enough gold for the desired transaction
e I nval i dAucti onError
Attempt to access an invalid or non-existent auction
e | nval i dDamageAnount Err or
Attempt to deal an invalid amount of damage to an entity

e | nvalidltenError

48

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

PHP Presentation Layer

An item can't be accessed
e | tenmLockError
An item can't be locked
° PriceError
Set an invalid price for an auction
e SearchCriteriaError
Search criteria for an auction are invalid

The TwistedWeb service will catch these exception objects, convert them to JSON objects and return them
instead of the queried response object, as explained in “TwistedWeb Error handling” on page 14 .

Additional error types can be used by declaring them in Cust onEr r or s. py. They must be derived from
BWIwoWay . BWCust onEr r or . They should also be declared in Cust onEr r or s. php, to allow them to be
handled individually. For example:

CustonErrors. py

from BWwoWay i nport BWCust onEr r or

cl ass MyCust ontzaneError(BWCustonError):
pass

/1 CustonErrors. php
requi re_once("BWError.php");
cl ass BWCust onError extends BWError {}

cl ass MyCust ontzaneError(BWCustonError):
pass

After Bi gWor | d. php receives a response, it decodes the returned JSON object. If the object is found to be
an error, it will be raised as a PHP exception. The caller of the mailbox query must therefore handle any
potential exceptions that may be raised. For example:

try
{
$result = $nmai | box- >someMet hod() ;
}
catch(Exception $e)
{
addExceptionMsg($e);
return;
}

/1 Use $result

All built-in BigWorld errors and custom errors extend a common base class, BWEr r or . This class implements
a message method, which creates a string containing both the underlying error type, and the exception

bIgW@RLD" =

PHP Presentation Layer

message. It also returns a well-formatted string for BWGenericError objects, described in “BigWorld.php
Error handling” on page 29 . This method can be used to generate error messages in an exception handler.
For example:

function get Excepti onMsg($exception)

if ($exception instanceof BWError)

{
return $exception->nessage();
}
el se
{
/1 uses the built-in get Message net hod
return $exception->get Message();
}
}
function addExceptionMsg($exception)
{
$nmsg = $t hi s->get Excepti onMsg($exception)
/'l Create an error nessage from $nsg
}

For example:

t hrow new NoConnectionError("Unable to contact game server");

If the above exception is caught and the object sent as the argument to addExceptionMsg, the player will
receive the following error message:

NoConnectionError: Unable to contact game server

Alternatively, if an instance of a BWeener i CEr r or or a non-BWEr r or object is thrown with the same mes-
sage, only that message would be emitted, and not the exception type:

Unabl e to contact gane server

The complete error handling mechanism for the FantasyDemo web client is implemented in Page. php.

Cust onEr ror s. php also defines an error class for errors specific to the PHP, called BWPHPET r or . Errors
of this type can be used to take advantage of the formatting of error messages using the nessage method
provided by BVEEr r or . This allows PHP errors to be handled and reported in a manner consistent with the
error objects encountered by Bi g\Wr | d. php:

/| CustonErrors. php
cl ass BWPHPError extends BWError {}

class InvalidFiel dError extends BWPHPError {}

/'l BWAut hent i cat or. php

50

Copyright 1999-2011 BigWorld Pty. Ltd. All rights reserved. Proprietary commercial in confidence.

PHP Presentation Layer

function authenticat eUser Pass($usernanme, $pass)

if ($usernanme == "'")
{
throw new I nvalidFiel dError("Usernane is enpty");
if ($pass == "")
{
throw new I nvalidFiel dError("Password is enpty");
}
}
/'l Logi n. php
try
{

$aut h- >aut hent i cat eUser Pass($user nane, $pass);
catch(InvalidFieldError $e)

addExcepti onMsg($e);
return;

Attempting to log in with an empty username will result in the following error message being displayed:

Inval i dFi el dError: Usernane is enpty

bIgW@RLED"

51

	Server Web Integration Guide
	Table of Contents
	Chapter 1. Overview
	Part I. Exposing the BigWorld Server as a Web Service
	Chapter 2. The TwistedWeb Service
	2.1. An example
	2.2. Queries to /db/
	2.3. Queries to /entities_by_id/
	2.4. Queries to /entities_by_name/
	2.5. Queries to /global_entities/
	2.6. Implementation details
	2.7. TwistedWeb Error handling

	Chapter 3. Remote Methods, Arguments and Return Values
	3.1. Method calls
	3.2. Arguments
	3.3. Return Values
	3.4. One way calls
	3.5. Errors

	Chapter 4. Keep-alive Messages

	Part II. Using the Web Service from Apache
	Chapter 5. Overview
	5.1. Security

	Chapter 6. Configuring Apache
	Chapter 7. PHP
	7.1. Installation
	7.1.1. Installing PHP
	7.1.2. Testing

	7.2. BigWorld.php
	7.2.1. BigWorld.php Error handling
	7.2.2. Locating the ServiceApp

	7.3. RemoteEntity Session Storage

	Part III. Web Integration Example
	Chapter 8. Overview
	Chapter 9. Use Cases
	Chapter 10. PHP Presentation Layer
	10.1. Overview
	10.2. Required packages
	10.3. Constants in Constants.php
	10.4. XHTML-MP helper functions
	10.5. Debugging PHP example scripts
	10.6. XHTMLMPPage objects
	10.7. AuthenticatedXHTMLMPPage objects
	10.8. BWAuthenticator objects
	10.9. Login.php
	10.10. Characters.php
	10.11. News.php
	10.12. Character.php
	10.13. Inventory.php
	10.14. PlayerAuctions.php
	10.15. SearchAuctions.php
	10.16. PHP Error handling

